In Need of Partnerships
An Essay about the Collaboration between Computational Sciences and IT Services

Dieter Kranzlmüller

Munich Network Management Team
Ludwig-Maximilians-Universität München (LMU) &
Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences and Humanities
In Need of Partnerships
SuperMUC @ LRZ

Leibniz Rechenzentrum
Germany

SuperMUC - iDataPlex DX360M4, Xeon E5-2680 8C 2.70GHz, Infiniband FDR / 2012 IBM

147456 2897.00 3185.05 3422.7

www.top500.org, June 2012

Video: SuperMUC rendered on SuperMUC by LRZ
http://youtu.be/OlAS6iigWrQ
LRZ Supercomputers

next to come (2014): SuperMUC Phase II 6.4 PFlop/s
SuperMUC and its predecessors
SuperMUC and its predecessors
SuperMUC and its predecessors
LRZ Building Extension

Picture: Horst-Dieter Steinhöfer

Figure: Herzog+Partner für StBAM2 (staatl. Hochbauamt München 2)

Picture: Ernst A. Graf
Increasing numbers

<table>
<thead>
<tr>
<th>Date</th>
<th>System</th>
<th>Flop/s</th>
<th>Cores</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>HLRB-I</td>
<td>2 Tflop/s</td>
<td>1512</td>
</tr>
<tr>
<td>2006</td>
<td>HLRB-II</td>
<td>62 Tflop/s</td>
<td>9728</td>
</tr>
<tr>
<td>2012</td>
<td>SuperMUC</td>
<td>3200 Tflop/s</td>
<td>155656</td>
</tr>
<tr>
<td>2014</td>
<td>SuperMUC Phase II</td>
<td>3.2 + 3.2 Pflop/s</td>
<td>229960</td>
</tr>
</tbody>
</table>
SuperMUC Architecture

Snapshots/Replika
1.5 PB
(separate fire section)

18 Thin node islands
(each >8000 cores)

1 Fat node island
(8200 cores) ➔ SuperMIG

I/O
nodes

NAS
80 Gbit/s

Spine Infiniband switches

$HOME
1.5 PB / 10 GB/s

Internet

10GbE
access

GPFS for
$WORK
$SCRATCH

Parallel Storage

I/O

nodes

Login Support
nodes

Desaster Recovery Site

1.5 PB
(separate fire section)

Snapshots/Replika

Achive and Backup ~ 30 PB

16 cores/node
2 GB/core

SB-EP

non blocking

Compute nodes

10 PB
200 GB/s

WM-EX
40 cores/node
6.4 GB/core

non blocking

Compute nodes

pruned tree (4:1)

D. Kranzlmüller

In Need of Partnerships
Questions

- How to use today’s supercomputers?
- How to cope with the complexity?
- How to use these machines efficiently?
- How to scale applications?
- How to do I/O?
- How about resilience?
- ...
July 2013:

First SuperMUC Extreme Scale Workshop

Participants:
- 15 international projects

Prerequisites:
- Successful run on 4 islands (32768 cores)

Participating Groups (Software packages):
- LAMMPS, VERTEX, GADGET, WaLBerla, BQCD, Gromacs, APES, SeisSol, CIAO

Successful results (> 64000 Cores):
- Invited to participate in PARCO Conference (Sept. 2013) including a publication of their approach
Regular SuperMUC operation
- 4 Islands maximum
- Batch scheduling system

Entire SuperMUC reserved 2,5 days for challenge:
- 0,5 Days for testing
- 2 Days for executing
- 16 (of 19) Islands available

Consumed computing time for all groups:
- 1 hour of runtime = 130,000 CPU hours
- 1 year in total
Results (Sustained TFlop/s on 128000 cores)

<table>
<thead>
<tr>
<th>Name</th>
<th>MPI</th>
<th># cores</th>
<th>Description</th>
<th>TFlop/s/island</th>
<th>TFlop/s max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linpack</td>
<td>IBM</td>
<td>128000</td>
<td>TOP500</td>
<td>161</td>
<td>2560</td>
</tr>
<tr>
<td>Vertex</td>
<td>IBM</td>
<td>128000</td>
<td>Plasma Physics</td>
<td>15</td>
<td>245</td>
</tr>
<tr>
<td>GROMACS</td>
<td>IBM, Intel</td>
<td>64000</td>
<td>Molecular Modelling</td>
<td>40</td>
<td>110</td>
</tr>
<tr>
<td>Seissol</td>
<td>IBM</td>
<td>64000</td>
<td>Geophysics</td>
<td>31</td>
<td>95</td>
</tr>
<tr>
<td>waLBerla</td>
<td>IBM</td>
<td>128000</td>
<td>Lattice Boltzmann</td>
<td>5.6</td>
<td>90</td>
</tr>
<tr>
<td>LAMMPS</td>
<td>IBM</td>
<td>128000</td>
<td>Molecular Modelling</td>
<td>5.6</td>
<td>90</td>
</tr>
<tr>
<td>APES</td>
<td>IBM</td>
<td>64000</td>
<td>CFD</td>
<td>6</td>
<td>47</td>
</tr>
<tr>
<td>BQCD</td>
<td>Intel</td>
<td>128000</td>
<td>Quantum Physics</td>
<td>10</td>
<td>27</td>
</tr>
</tbody>
</table>
5 Software packages were running on max 16 islands:
- LAMMPS
- VERTEX
- GADGET
- WaLBerla
- BQCD

VERTEX reached 245 TFlop/s on 16 islands (A. Marek)
Lessons learned – Technical Perspective

- Hybrid (MPI+OpenMP) on SuperMUC still slower than pure MPI (e.g. GROMACS), but applications scale to larger core counts (e.g. VERTEX).

- Core pinning needs a lot of experience by the programmer.

- Parallel IO still remains a challenge for many applications, both with regard to stability and speed.

- Several stability issues with GPFS were observed for very large jobs due to writing thousands of files in a single directory. This will be improved in the upcoming versions of the application codes.
Next Steps

- LRZ Extreme Scale Benchmark Suite (LESS) will be available in two versions: public and internal
- All teams will have the opportunity to run performance benchmarks after upcoming SuperMUC maintenances
- Second LRZ Extreme Scaling Workshop ➔ 2-5 June 2014
- Initiation of the LRZ Partnership Initiative πCS
Slices through the three-dimensional gas density (top panels) and vorticity (bottom panels) for fully developed, highly compressible, supersonic turbulence, generated by solenoidal driving (left-hand column) and compressive driving (right-hand column), and a grid resolution of 4096^3 cells.

Federrath C MNRAS 2013;mnras.stt1644
SeisSol - Numerical Simulation of Seismic Wave Phenomena

Dr. Christian Pelties, Department of Earth and Environmental Sciences (LMU)
Prof. Michael Bader, Department of Informatics (TUM)

1,42 Petaflop/s on 147,456 Cores of SuperMUC
(44,5 % of Peak Performance)

http://www.uni-muenchen.de/informationen_fuer/presse/presseinformationen/2014/pelties_seisol.html

Picture: Alex Breuer (TUM) / Christian Pelties (LMU)
Effective usage of High Performance Computing infrastructures requires substantial amount of knowledge and expertise.

Collaboration between Computational Sciences and IT Services leads to new research results.

A partnership between CS and IT is preferred over a provider-user relationship.

Incentives are needed to ensure fruitful collaboration.

LRZ has established the Partnership Initiative Computational Sciences πCS.
In Need of Partnerships
An Essay about the Collaboration between Computational Sciences and IT Services

Dieter Kranzlmüller
kranzlmueller@lrz.de