
INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Diplomarbeit

Modelling and Assisting
the Design of IT Changes

Robert Fink





INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Diplomarbeit

Modelling and Assisting
the Design of IT Changes

Robert Fink

Aufgabensteller: Prof. Dr. Heinz-Gerd Hegering
Betreuer: Feng Liu

David Trastour (Hewlett Packard Laboratories, Bristol)

Abgabetermin: 10. November 2008





Hiermit versichere ich, dass ich die vorliegende Diplomarbeit selbständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

München, den 7. November 2008

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(Unterschrift des Kandidaten)





Zusammenfassung

Die IT Infrastructure Library (ITIL) beschreibt Richtlinien, Prozesse und Empfehlungen für
IT Service Management (ITSM). Der Change Management Prozess ist eine Empfehlung für
die Behandlung von Änderungen an Bestandteilen der IT Infrastruktur und stellt sicher,
dass Änderungsanträge (Request for Change, RFC) priorisiert und autorisiert werden, dass
die Änderungen und ihre technischen und den Geschäftsbetrieb betreffenden Auswirkungen
verstanden werden, sowie dass die für die Implementierung notwendingen Ressourcen ver-
fügbar sind. Von Business-Usern in Textform eingereichte Änderungsanträge müssen dabei
zunächst in Bezug auf gewünschte Funktionalität, die tatsächliche IT-Infrastruktur, sonstige
Richtlinien und zeitliche Vorgaben untersucht werden, um dann in entsprechende konkrete
Abfolgen von spezifischen Änderungs-Operationen übersetzt zu werden. Immer komplexere
IT-Abteilungen sind hierbei eine zunehmend größere Herausforderung für die effektive und
effiziente Bearbeitung einer stetig steigenden Anzahl von Änderungsanträgen: RFCs können
in sich unklar oder fehlerhaft sein, die Einhaltung von Unternehmsrichtlinien und Best-
Practices ist schwierig zu überprüfen und die manuelle Erstellung von Änderungsplänen ist
zeitaufwendig und fehleranfällig.

Diese Arbeit untersucht einen auf automatischem Planen (automated planning) basieren-
den Ansatz für den computer-unterstützten Entwurf von Änderungsplänen. Wir zeigen, wie
Best-Practices und sonstiges Implementierungswissen (change recipes) systematisiert gespe-
ichert und zum Verfeinern von Änderungsanträgen in konkrete Implementierungspläne einge-
setzt werden können. Die vorgestellte Architektur basiert auf einem HTN-Algorithmus (Hi-
erarchical Task Network), welcher Benutzern assistiert, diverse Informationsquellen in konsis-
tente Implementierungspläne zusammenzuführen. Statt auf die übliche, Logik-basierte Spez-
ifikation der Planungs-Welt (planning domain) zurückzugreifen, realisieren wir die Integra-
tion eines objekt-orientierten Datenmodells für die IT Infrastruktur in den HTN-Formalismus.
Ein Prototyp des Frameworks und des modifizierten HTN-Algorithmus demonstriert die
Machbarkeit unseres Ansatzes.



Abstract

The IT Infrastructure Library (ITIL) is a set of best practices that are widely accepted for
IT service management (ISTM). Change management is a core ITIL process that oversees
the handling of IT changes and ensures that all change requests are carefully prioritised and
authorised, that business and technical impacts are understood, and that required resources
are available. During this process, IT operations teams first need to understand the change
requests that are generated by business and IT personnel. They must then develop and
execute concrete IT change plans for each request. The increasingly large and complex
IT environment (people, technology and processes) presents a number of challenges to the
efficient and effective design of the ever higher volume of IT changes: Change requests
can be ill-defined, company policies and best practices are not systematically captured and
enforced, manually designing changes is time consuming and error-prone. To overcome these
issues we propose in this thesis an automated planning based approach to change design.
We illustrate how change knowledge can be represented to encode best practices and how to
refine high-level change requests into concrete plans.

The proposed architecture features in its core a Hierarchical Task Network (HTN) planner
that assists the user in integrating information from various sources into consistent change
plans. Instead of relying on the commonly used logic language formulation for the under-
lying planning domain, the presented approach introduces novel concepts to bring together
the prevailing object-oriented modelling paradigms of Configuration Management Systems
(CMS) with the logic programming based methods of automated planning algorithms. A
prototypical implementation of the framework and the planning algorithm shows the feasi-
bility of the approach.



Acknowledgements

To my supervisors David and Feng, for your continuous support and feedback, and fruitful
and interesting discussions. David, thanks a lot for helping me out with your incredibly keen
perception and breadth of knowledge, it was a great pleasure working with you!

To Andrew, Marianne, Eve, Stuart, Alan, Shane, Matt, and probably many others, I
thank you for answering all my desperately ignorant questions on the English language.

To Benedikt, Weverton, Konstantin, Andrew B., Andrew F., Johannes, and Matthias for
their valuable feedback on this work.

To all my colleagues at HP, especially Weverton, Guilherme, Andrew F., Andrew B., and
Abdel for many interesting discussions and coffee or milky tea breaks.

To all the enthusiastic football players at HP and Easton, I had a great time, thank you!
(My weaknesses are unpardonable. I will train my right foot, promised!)

Bristol, November 2008





Contents

1. Introduction and motivation 1
1.1. Structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1. IT service management and ITIL . . . . . . . . . . . . . . . . . . . . . 3
1.2.2. IT change management . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3. Challenges in IT change planning . . . . . . . . . . . . . . . . . . . . . 6

1.3. Assisted refinement of high-level IT change requests . . . . . . . . . . . . . . 8
1.3.1. Primary use case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2. Complementary user stories . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.2.1. Stepwise refinement of high-level goals . . . . . . . . . . . . . 11
1.3.2.2. Capturing change knowledge and implementation recipes . . 12
1.3.2.3. Learning from past changes . . . . . . . . . . . . . . . . . . . 12

1.4. Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2. Information model for change plan refinement 15
2.1. IT operations model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2. Change catalogue and best practices model . . . . . . . . . . . . . . . . . . . 16
2.3. IT policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3. A framework for assisted refinement of change tasks 21
3.1. IT knowledge base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2. Change catalogue repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3. Change planner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.1. Applicability of planning paradigms . . . . . . . . . . . . . . . . . . . 23
3.3.2. HTN planning with object-oriented data models . . . . . . . . . . . . 24

3.4. Temporal reasoner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.1. HTN planning with parallel plans and quantitative temporal constraints 27
3.4.2. Integration of temporal reasoning and HTN planning . . . . . . . . . . 30

3.5. Policy engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4. The ChangeRefinery prototype 33
4.1. Simplifying assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2. Prototypical implementation of the change refinement architecture . . . . . . 34

4.2.1. Change planner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.1.1. The deterministic ChangeRefinery HTN algorithm . . . . . . 34
4.2.1.2. User choice points . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.1.3. Variable handling . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.2. IT knowledge base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.2.1. The rollback() interface . . . . . . . . . . . . . . . . . . . . . 38

xi



Contents

4.2.2.2. The assert() interface . . . . . . . . . . . . . . . . . . . . . . 39
4.2.2.3. The query() interface . . . . . . . . . . . . . . . . . . . . . . 40

4.2.3. Change catalogue repository . . . . . . . . . . . . . . . . . . . . . . . 43
4.3. The J2EE scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.1. IT infrastructure components . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.2. Change catalogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.2.1. Task: SpeedUpWebApplication . . . . . . . . . . . . . . . . . 47
4.3.2.2. Task: UpgradeECommerceApplication . . . . . . . . . . . . . 48
4.3.2.3. Task: InstallECommerceApplicationVersion5 . . . . . . . . . 48
4.3.2.4. Task: InstallJ2eeModule . . . . . . . . . . . . . . . . . . . . 49
4.3.2.5. Task: AddContainerToLoadbalancer . . . . . . . . . . . . . . 49
4.3.2.6. Task: BackupDatabase . . . . . . . . . . . . . . . . . . . . . 49
4.3.2.7. Task: CopyDatabaseContent . . . . . . . . . . . . . . . . . . 49
4.3.2.8. Task: InstallDatabase . . . . . . . . . . . . . . . . . . . . . . 50
4.3.2.9. Task: InstallDatabaseSoftware . . . . . . . . . . . . . . . . . 50
4.3.2.10. Task: InstallJ2eeApplication . . . . . . . . . . . . . . . . . . 51
4.3.2.11. Task: InstallJ2eeContainerSoftware . . . . . . . . . . . . . . 51
4.3.2.12. Task: InstallJ2eeServer . . . . . . . . . . . . . . . . . . . . . 51
4.3.2.13. Task: InstallLoadBalancer . . . . . . . . . . . . . . . . . . . 52
4.3.2.14. Task: SetupServer . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.2.15. Task: UpgradeHardware . . . . . . . . . . . . . . . . . . . . 53

4.4. Evaluation of ChangeRefinery’s basic capabilities . . . . . . . . . . . . . . . . 53
4.4.1. Preconditions and variable bindings as CMDB queries . . . . . . . . . 53
4.4.2. Additional ordering constraints due to failed preconditions . . . . . . . 54
4.4.3. Reuse of change recipe information and granularity of plan refinement 54

5. Towards an advanced prototype 55
5.1. Quantitative temporal information: Durative actions and deadline tasks . . . 55
5.2. Additional ordering constraints due to CI dependencies . . . . . . . . . . . . 58
5.3. Evaluation of ChangeRefinery’s advanced capabilities . . . . . . . . . . . . . . 59

5.3.1. Reasoning on quantitative temporal information . . . . . . . . . . . . 59
5.3.2. Additional ordering constraints due to CI dependencies . . . . . . . . 60
5.3.3. A complex example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.3.1. Solution plan 1: Migrate database server . . . . . . . . . . . 62
5.3.3.2. Solution plan 2: Enable load balancing . . . . . . . . . . . . 64

5.4. Additional ideas for future extensions . . . . . . . . . . . . . . . . . . . . . . 67
5.4.1. Dependency resolution: The ChangeLedge approach to change planning 67
5.4.2. Advanced decision support through change plan metrics . . . . . . . . 67
5.4.3. Advanced decision support through pre-compiled HTN planning trees 68
5.4.4. Policies on infrastructure and change plans . . . . . . . . . . . . . . . 68
5.4.5. Richer temporal information . . . . . . . . . . . . . . . . . . . . . . . 69
5.4.6. Hybrid state-space and HTN planning . . . . . . . . . . . . . . . . . . 69

5.4.6.1. Property-based operator heuristic . . . . . . . . . . . . . . . 70
5.4.6.2. Neural network approach to operator heuristics . . . . . . . . 71

5.4.7. Advanced detection of precondition and effect interference . . . . . . . 71
5.4.8. Managing multiple and concurrent changes . . . . . . . . . . . . . . . 72
5.4.9. Semantic web technology based knowledge base component . . . . . . 72

xii



Contents

6. Conclusion and outlook 73

A. Automated planning and constraint satisfaction problems 75
A.1. Representations for classical planning . . . . . . . . . . . . . . . . . . . . . . 75

A.1.1. Classical representation . . . . . . . . . . . . . . . . . . . . . . . . . . 76
A.1.2. Example: The Dock-Worker-Robots domain . . . . . . . . . . . . . . . 77

A.2. State-space planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.2.1. State-space planning algorithms . . . . . . . . . . . . . . . . . . . . . 78
A.2.2. Guiding the planning algorithm . . . . . . . . . . . . . . . . . . . . . . 78

A.3. HTN planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.3.1. Partial-order HTN planning . . . . . . . . . . . . . . . . . . . . . . . . 82
A.3.2. Comparison of HTN and state-space planning . . . . . . . . . . . . . . 82
A.3.3. HTN planning examples . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.3.3.1. How to spend a day . . . . . . . . . . . . . . . . . . . . . . . 83
A.3.3.2. HTN-encoded state-space planning problem Tower of Hanoi 87

A.4. Constraint satisfaction problems . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.4.1. Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.4.2. Constraint propagation . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.4.2.1. Arc-consistency . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.4.2.2. Path-consistency . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.5. Quantitative temporal constraints . . . . . . . . . . . . . . . . . . . . . . . . 93

B. Revised semantics of partial-order forward decomposition HTN planning 97
B.1. Ordering of sub tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
B.2. Variable backwards passing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

C. Additional listings and UML diagrams 103
C.1. ChangeRefinery HTN algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 103
C.2. Example scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
C.3. Example task, method and operator definitions . . . . . . . . . . . . . . . . . 114
C.4. ChangeRefinery outputs for examples in Sections 4.4 and 5.3 . . . . . . . . . 119

Abbreviations 133

List of Figures 135

List of Algorithms 137

List of Listings 139

Bibliography 141

xiii





1. Introduction and motivation

In response to the increasing size and complexity of IT organisations and systems, many
companies started IT Service Management (ITSM) programs to increase the efficiency and
effectiveness of IT service delivery and support. In this context, the IT Infrastructure Library
(ITIL) [1] is a set of best practices for ITSM that defines common vocabularies and processes,
and covers a wide spectrum of IT concerns, including service strategy, service design, service
transition, service operation and continual service improvement. ITIL is becoming more
and more widely adopted by IT organisations and supported by IT management software
vendors [2].

In order to adequately support businesses that evolve at an accelerating pace, IT organi-
sations, systems and processes must constantly be adjusted: IT must introduce new business
services, and enhance or modify existing ones. Technology considerations are also a source
of IT changes, for instance by adopting a new technology that is more cost efficient or by
performing required maintenance on a hardware or software component. For these reasons,
IT organisations must cope with an increasingly large number of changes. To ensure an
efficient and prompt handling of all IT changes, ITIL recommends implementing a Change
Management process to funnel all Requests for Change (RFCs) to a Change Advisory Board
(CAB). The change management process ensures that RFCs are carefully evaluated, priori-
tised and authorised, that their business and technical impacts are understood, and that
they are scheduled in order to meet human and technical resource requirements.

While implementing ITIL change management goes some way towards a more effective
handling of IT change, a high volume of changes can still put a strain on IT operations
teams. We have observed in some HP customer sites volumes of more than one thousand
change requests per day. Handling such volumes of changes can become problematic, and
without automation, decision-support and knowledge management tools, bottlenecks and
inefficiencies are almost inevitable in the change management process.

In this thesis, we concentrate on the change design step, in which one or several IT
practitioners develop a detailed plan of action to deploy the change onto the IT infrastructure.
To the best of our knowledge, designing IT changes is still a manual process in practice, and
no tool support exists that can assist an IT practitioner in deriving a detailed plan of action
from the textual description provided in the RFC.

We have identified several shortcomings in this current situation. First, there can be an in-
formation impedance mismatch (i.e. lack of common vocabulary) between change requesters
and IT practitioners. In a survey conducted to identify the main issues faced by change
managers [3], the problem of ill-defined RFC was ranked among the three most important
challenges. Indeed, RFC can be raised by technicians, for instance for the remediation of a
security risk, but also by business users, for instance to change the behaviour of a business

1



1. Introduction and motivation

service. While technical requesters may have enough knowledge and technical vocabulary to
describe the RFC to the appropriate level of detail, this is often not the case for a business
requester. The information provided by the business user tends to be incomplete and/or
unclear for the IT technician. The second problem we have recognised is that best practices
and IT policies are usually stored in unstructured formats (documents, web pages, presen-
tations, or emails) and there is no systematic way of capturing this knowledge and making
sure it is reused. The third problem we have identified is that manually designing changes
is a time consuming activity that puts of lot of strain on the IT operations teams; this is
exacerbated if the design process requires multiple iterations between the requester and the
IT practitioners to clarify the meaning of the change request. Finally, manually designing
change plans is error-prone since the validation needs to be done manually.

Although several aspects of change management have been addressed in the literature (see
Section 1.4), much still needs to be done to address these four problems in IT change design.
To the best of our knowledge, ChangeLedge [4] is the only work that explores this field,
but, as we will see below, it does not address the first two challenges.

In this thesis, we present a solution for assisting the refinement of high-level change re-
quests into concrete actionable change workflows. Our solution introduces the notion of a
change catalogue which provides a clear interface between change requesters and IT practi-
tioners and reduces the need to rely on textual descriptions. Best practices are captured and
reused in the decomposition of change requests into change workflows. Finally, corporate IT
policies can be modelled and enforced in change designs.

The main deliverables of this thesis are:

1. Development of a conceptual framework for IT change plan design, taking into account
various involved information sources.

2. Investigation of the applicability of automated planning methods to IT change plan
design and adoption of the Hierarchical Task Network (HTN) planning paradigm to
object-oriented planning domains.

3. Evaluation of the aforementioned framework through application of our ChangeRe-
finery proof-of-concept implementation to the refinement of several exemplary high-
level change tasks.

1.1. Structure of this thesis

This thesis is organised as follows. Section 1.2 embeds this work in the field of IT Ser-
vice Management, and explains the typical challenges in IT change management that we
try to solve. We give a rough overview and possible use cases of the proposed architecture
for assisted change design in Section 1.3. Section 1.4 relates this thesis to existing work in
ITSM and applications of automated planning techniques. Chapter 2 details the information
sources we have identified, introduces the concept of a change catalogue to present to change
requesters, and describes the information models to encode change knowledge. Chapter 3
presents the architecture of our proposed framework for assisted change design and details

2



1.2. Context

the algorithms used in the refinement of high-level change tasks. Chapter 4 describes de-
tails and experimental results of the basic functionality of our prototypical implementation,
ChangeRefinery, and is complemented by the presentation of advanced ChangeRefin-
ery features and partially implemented or sketched ideas in Chapter 5. Finally, Chapter 6
names future work intentions and possible extensions to the framework and ChangeRefin-
ery. Appendix A gives detailed and formal definitions of automated planning techniques
which are illustrated by several examples, and Appendix B clarifies faulty definitions in the
HTN characterisation from [5]. Appendix C contains listings and UML diagrams.

1.2. Context

1.2.1. IT service management and ITIL

IT service management is a discipline for managing information technology systems with
emphasis on business and customers’ perspectives. It aims to provide process driven frame-
works to structure IT-related activities and interactions both within IT departments and
between IT and external parties such as users or business customers. ITSM clearly focusses
on the operational and management aspects of running IT systems while not dealing with
software and hardware development or technical details and implementations.

Being one of the most commonly used ITSM frameworks, the IT Infrastructure Library [1]
gives detailed but generic best practice inspired descriptions of numerous ITSM related
tasks published in five integrated books that align with typical IT service life cycles (Figure
1.1): Service Strategy, Service Design, Service Transition, Service Operation, and Continual
Service Improvement.

1.2.2. IT change management

Within the ITIL framework, the Service Transition publication [6] “provides guidance for
the development and improvement of capabilities for transitioning new and changed services
into operations”, which includes as a major task the management of IT changes. In this
context, the term change comprises any modification to entities (called Configuration Items
or CI ) involved in the operation of IT services. Consequently, change management covers
minor tuning, such as granting access rights or rebooting devices, as well as high level tasks,
such as design and implementation of new services due to emerging business needs.

The change management process includes several activities (Figure 1.2): In the initiation
and review activities, a Request for Change (RFC) document describing the required change
is created and reviewed. The change is then evaluated and the impact on IT infrastructure,
IT services, and other affected entities is assessed. After the change is authorised, the
required actions to perform the change are planned, implemented, and tested. Finally,
the change is deployed, reviewed, and closed. As indicated in Figure 1.2 and explicitly
stated in [6], all activities comprising the change management process should be executed in
close conjunction with the configuration management, for which ITIL recommends the use
of Configuration Management Systems (CMS) and Configuration Management Databases

3



1. Introduction and motivation

Figure 1.1: ITIL Core [6].

(CMDB) to manage information about all configuration items involved in ITSM processes.
Significant or major changes go through the Change Advisory Board (CAB) for analysis and
approval. The CAB is a group of people capable of analysing changes from a technical as
well as from a business point of view. All aspects of the change management process are
overseen by a change manager.

This work focusses on providing assistance to the change design and change planning
activity in the change management process. Depending on the nature of a specific change,
the planning task can be trivial as well as extremely complicated. Small changes, such as
tweaking a configuration parameter, might even require no planning at all. A reasonable
way of classifying changes is to group them by origination or demand; one may roughly
differentiate between the following three types of changes:

• Changes due to operational demand are often short-term changes, usually emerging
through user request. They have a very limited scope in terms of required resources
and affected systems.

Examples are minor bug fixing in response to incidents, performance tuning by adjust-
ing application parameters, or access control.

• Changes due to application demand are medium-term changes with impact on ex-
isting services and typically come up as a consequence of changing user requirements or
management decisions. The amount of required resources (personal, hardware, time,
etc.) is considerably bigger than for operational-demand changes. Implementing the

4



1.2. Context

Figure 1.2: ITIL Change Management process [6].

change may include the addition of new functionality or modules to existing services,
applying upgrades or patches, upgrading hardware, and transitioning services between
different hardware systems.

The introduction of a new backup system or the migration to newer or different versions
of operating systems, database servers or other software are examples for application-
demand changes.

• Changes due to strategic demand are long-term and high-impact changes originating
in strategic decisions by business units or the management. They usually require the
introduction of new services, architectures or infrastructure, and might go beyond
current knowledge and expertise of the IT department.

As an example, imagine a web hosting company currently only offering web space that
decides to also offer email services.

5



1. Introduction and motivation

The impact of changes from operational demand is usually not too hard to understand
and there are automation systems available1 that assist IT technicians in implementing the
RFC. Such systems usually assist users in specifying and deploying the change or even execute
change activities completely autonomously. However, current approaches to configuration
and installation management require the specification of concrete requirements at a very
low level of abstraction and thus manual translation of high-level requirements is necessary.
In this work, we investigate how to provide computer-aided assistance to the refinement of
high-level change goals. We target operational demand and application demand changes,
for which the change design task is already non-trivial, but for which on the other hand a
certain amount of implementation knowledge and best practices are available. We capture
these best practices in a systematic way (see Section 2.2) and use them to assist users in the
refinement of high-level change tasks.

Having presented how change management and change design relates to the fields of IT
service management and IT change management in particular, the following section sum-
marises the major difficulties and challenges we are trying to address.

1.2.3. Challenges in IT change planning

Figure 1.3: ITIL System Knowledge Management System [9].

1For example, LCFG: The Next Generation [7], HP Data Center Automation Center [8].

6



1.2. Context

Although the change planning and co-ordination process is not extensively discussed in the
ITIL Service Transition publication [6], it poses major challenges in practical realisations,
as discovered by a 2006 survey [3] carried out by Universidade Federal de Campina Grande
and Hewlett-Packard Brazil. The survey resulted in change scheduling and planning being
the most critical task related to change management. One of the main issues making change
planning a hard problem is the large number of non-uniform information sources contribut-
ing to the change management process. The ITILv3 Operation book [9] explicitly states the
importance of an integrated Service Knowledge Management System and proposes a layered
architecture for data storage, integration, processing, and presentation (Figure 1.3). The In-
formation Integration Layer provides integrated and compiled views on diverse data sources
from the underlying Data and Information Sources and Tools layer. In this work, we focus
on the following types of information taking part in the change planning process:

• Current state of infrastructure and other managed entities: Configuration Management
Databases (CMDB) can be used to model and store infrastructural information and
interdependencies between all entities that potentially take part in the execution phase
of a change.

• Implementation workflows, recipes, and best practices: Detailed knowledge on imple-
mentation workflows may be available from software documentation, written down in
companies’ own IT guidelines or implicitly memorised by managers or technicians.

• Constraints and policies: Planning and scheduling changes has to take into account
a company’s custom constraints and policies and should not violate Service-Level-
Agreements (SLA) and global policies.

Examples for constraints, policies, and SLAs are:

– Database servers must never be shut down.

– MySQL software may only be installed by trained personnel and must not run on
Windows operating systems.

– All changes require authorisation.

– Every database must be backed up before its server is rebooted.

– Allowed down times for web servers are 10 minutes per week. No downtime is
allowed on Mondays.

– No database server may serve more than four web applications.

Having to bear in mind these sources of information makes manual change plan generation
a difficult, very time-consuming and error-prone task. Although there exist technologies and
products that assist users in maintaining knowledge for the individual information sources2,
we are convinced that only an approach that integrates the different sources of information
consistently into the change plan generation process provides reasonable assistance to users.
2Examples for those tools include: CMDB: Common Information Model (CIM) [10], HP uCMDB;Workflows:
Business Process Execution Language (BPEL) [11], HP Data Center Automation Center [8], Workflow
Management Coalition Workflow Standard (WfMC) [12]; Policies and constraints: RuleML [13], Drools
[14].

7



1. Introduction and motivation

Among others, non-integrated change planning is difficult and error-prone for the following
reasons:

• As CMDB and workflow knowledge are decoupled, the effects of changes on the infras-
tructure cannot be assessed automatically.

• Unstructured storage of change knowledge exacerbates learning from previous experi-
ences, which are usually a valuable resource to businesses and IT departments.

• Change plans are often authored by several people with different fields of expertise.
Bringing together their individual contributions is difficult.

• As business change requesters and IT technicians usually do not share a common vo-
cabulary (impedance mismatch), RFCs are likely to be interpreted mistakenly. Again,
coordinating the requesters’ needs and expectations with the actual capabilities of IT
operations is time-consuming.

• Assessing and evaluating business metrics such as cost, risk, and time for change plans
is difficult.

The next section sketches our approach for assisted refinement of high-level IT change
requests to tackle the mentioned difficulties.

1.3. Assisted refinement of high-level IT change requests

We address the mentioned challenges in IT change management (Section 1.2.3) by investi-
gating the assisted design of IT changes. With respect to the ITILv3 Service Knowledge
Management System architecture (Figure 1.3), our solution fits in the Knowledge Processing
Layer ; it makes use of data from the underlying Integrated Information Layer and provides
the computational means to assist the user in the change planning process.

Our vision is a graphical software tool that supports the change plan design process by
guiding the user in refining change plans hierarchically. She can compose workflows from
workflow templates and assign resources such as IT infrastructure components, personnel,
and time. The software tool automatically enforces the consistency of the generated workflow
with respect to policies and constraints on infrastructure states and change plan structure.
The user is presented with alternative refinement options for workflow activities and every
option is rated with respect to the estimated value of business metrics of the potential change
plan. Wherever possible, the software tool automates the refinement process by choosing
those refinements that promise to be most applicable.

As a simplified example of an exemplary change plan design process, consider Figures 1.4
and 1.5. Figure 1.4 depicts on the left side a set of workflows that a change manager can
choose to refine change plans, and on the right side the simplified state of the IT infrastruc-
ture. The infrastructure comprises a web server (ws), and a database system (dbs) running
on a database server (ds). The InstallLoadBalancedJ2eeApplication workflow is to be refined
with help of the given sub task workflows for the tasks InstallApplication and InstallLoad-
Balancer. The result of the refinement process is illustrated in Figure 1.5. The integrated

8



1.3. Assisted refinement of high-level IT change requests

Goal workflow: InstallLoadBalancedJ2eeApplication

InstallJ2eeContainer InstallApplication

InstallLoadBalancer
AddContainerToLb

Decomposition for sub task InstallApplication

InstallDatabase

DeployApplication
AddDbResourceToContainer

Decomposition for sub task InstallLoadBalancer

InstallLinuxImage InstallLbSoftware

WebServer ws

DbServer ds

DatabaseSystem dbs

Existing
IT Infrastructure

Change
templates

Figure 1.4: Simplified example for change templates and IT infrastructure before plan
execution.

InstallJ2eeContainer

InstallDatabaseDeployApplication

AddDbResourceToContainer

InstallLinuxImage

InstallLbSoftware

AddContainerToLb

WebServer ws

J2eeContainer jc

LoadBalancer lb

J2eeApplication ja

DbServer ds

DatabaseSystem dbs

Database db

Updated
IT Infrastructure

Partially refined
change plan

Figure 1.5: Simplified example for a partially refined change workflow and altered IT infras-
tructure after plan execution. The goal task InstallLoadBalancedJ2eeApplication
(Figure 1.4) was refined by workflows for the tasks InstallApplication and In-
stallLoadBalancer. The integrated knowledge representation for workflows and
IT infrastructure allows the computation of the effects on the infrastructure as
shown on the right side: The existing configuration items ws, ds, and dbs are
integrated with additional new CIs which entered the knowledge base by virtue
of effects of the refined sub tasks.

9



1. Introduction and motivation

knowledge representation for workflows and IT infrastructure allows to compute the effects
of refined workflows on the infrastructure, as shown on the right side of Figure 1.5: The ex-
isting configuration items ws, ds, and dbs were chosen as variable bindings during the change
plan design process, and are augmented with additional new configuration items which en-
tered the IT infrastructure by virtue of effects of the refined sub tasks InstallLbSoftware,
AddContainerToLb, AddDbResourceToContainer, InstallDatabase and DeployApplication.

In this thesis, we aim for the prototype of the aforementioned software tool. We follow
a two step approach: The first, very naive version of the prototype incorporates the data
models and information sources, but the complexity of the algorithms is reduced by a set
of simplifying assumptions (detailed in Section 4.1). In a second step (Chapter 5), we relax
some of the assumptions to make towards a more realistic and expressive tool. Our prototype
makes use of automated planning algorithms joining the diverse information sources and
synthesising them into a consistent plan.

This approach diminishes the afore-said challenges posed by change plan design because:

• The integrated approach allows change managers to foresee and simulate the outcome
of a planned change. Infrastructure changes can be (semi-) automatically registered in
the CMDB.

• The concept of hierarchically refinable workflows helps to mitigate the impedance mis-
match between business requesters and IT technicians. Business managers can choose
high-level change goals from a change catalogue. The controlled and structured change
design process plays a part in contributing to the correctness of the change plan, i.e.
it ensures that the generated plan has the desired outcome. Additionally, fully refined
change plans can be used as step-by-step implementation instructions by less skilled
workers.

• Business metrics provide decision support for alternative implementations of a given
RFC. The business impact of a change can be assessed before it is actually implemented.

• Feedback from previous changes can be used to adapt and correct workflow templates
and metric estimates.

1.3.1. Primary use case

Figure 1.6 depicts the main use case our solution is addressing. A business user, the change
requester, has limited IT knowledge and needs to raise a request for change (RFC). Instead
of relying solely on textual descriptions and being confronted with the problem of ill-defined
RFCs mentioned in Section 1.2.3, the change requester browses the change catalogue, selects
one of the high-level change tasks presented to her and fills in the required parameters. The
RFC is later handled by one or several IT practitioners to be designed, documented, tested,
and implemented. Using our solution, the RFC is continuously refined into smaller and
smaller change tasks, until eventually an actionable workflow is generated. The output uses
best practices from various IT work groups and complies with all corporate IT policies. A
change knowledge manager role is responsible for maintaining the change catalogue and for
interacting with IT practitioners to ensure that best practices for change design are captured
and maintained.

10



1.3. Assisted refinement of high-level IT change requests

Change plan
designer

Change catalogue

IT policies

IT operations model

Select high-level
goal

Change
requester

Refine

IT
practitioner

Change
knowledge
manager

Change plan

Figure 1.6: Assisted change design use case. A business user, the change requester, raises
a request for change (RFC). The RFC is handled by IT practitioners to be
designed, documented, tested, and implemented. A change knowledge manager is
responsible for maintaining best practices, policies, and infrastructure knowledge,
which all contribute to the change plan design tool.

1.3.2. Complementary user stories

The following user stories complement the above use case with examples of user roles and
scenarios.

1.3.2.1. Stepwise refinement of high-level goals

Mark-Kevin, the service manager of a company offering hosting of web applications, discovers
performance issues with a web shop application after having received a number of customer
complaints. He creates a new RFC and chooses the high-level goal “Increase web application
speed” from the service catalogue. He selects the affected web shop application from a menu
and discusses possible measures with Jaqueline, the technology manager of his company.

They are presented with a list of available implementation solutions for the high-level
goal “Increase web application speed”, among them “Add new application server to load
balancer”, “Upgrade machine hardware” and “Change database software”. They decide to
choose the “Change database software” decomposition, knowing that the current database
is not well suited for high-load environments. The affected database server machine is
automatically selected and Jaqueline picks MySQL as the target database software. She can
see the risk, cost, and time estimates of the current preliminary change plan.

Jaqueline browses through the policy repository and adds a new policy, stating that
MySQL version 4 must not be installed on Microsoft Windows operating systems. Finally,
she forwards the change plan to Mikkel, a database consultant, for further refinement.

Mikkel refines the change plan by choosing database versions and is confronted with warn-
ings if he tries to choose MySQL version 4, as a Windows operating system is installed on

11



1. Introduction and motivation

the target machine. Also, he is automatically recommended to add an “Upgrade machine
RAM” task to the change plan when he chooses MySQL version 5.

The finished change plan is finally sent to a database technician and a hardware techni-
cian who can use it as a step-by-step manual for the change implementation. It includes
detailed instructions that explicitly name the affected hardware (i.e. on which machine they
are supposed to change something) and software versions (i.e. MySQL version 5), as well
as temporal dependencies of their respective actions (i.e. upgrade machine RAM before in-
stalling MySQL 5).

1.3.2.2. Capturing change knowledge and implementation recipes

Jaqueline notices that several customers experience similar problems with the provided host-
ing services: An open source calendar application that is used by many customers recently
changed the software requirements from PHP4 to PHP5. She decides to create a new change
template called “Migrate web server from PHP4 to PHP5” and adds several sub tasks:

• Check other installed web applications for incompatibilities

• Backup web server data

• Install PHP5 module

• Reboot server

She also adds preconditions for this decomposition template to be applicable: The Apache
HTTP server on which the PHP5 module is supposed to be installed must be at least of
version 2.x and the machine must have at least 1GB of RAM.

Jaqueline talks to Mandy-Loreen, a technician with expertise in Apache server software to
discuss the newly created decomposition template. Mandy-Loreen advises Jaqueline not to
use Apache servers prior to version 2.x for new installations because Apache has announced
to stop support for these version soon. Jaqueline adds a new company-wide policy to the
policy repository stating that any installation of Apache version 1.x must be authorised by
an IT manager.

1.3.2.3. Learning from past changes

In the Review and close change record activity in the company’s ITIL change management
process, Jaqueline’s task is to evaluate the quality of implemented change plans. During the
migration of a database to new server hardware, the technicians experienced loss of customer
data because of incompatible DBMS versions and had to restore the data from a one week
old backup. Jaqueline analyses the change plan and adds a backup task before the database
migration task. She also adds a new policy, enforcing that “all changes to customer database
systems must be authorised”, and increases the estimated risk for the database migration
branch of the workflow template.

12



1.4. Related work

1.4. Related work

Most IT management software vendors provide some support to implement the change ma-
nagement process, as laid out in the ITIL Service Transition book [6]. Process management
tools such as HP Service Manager or BMC Remedy Change Management help to track the
evolution of a change in all phases of its life cycle, but they provide no decision-support
functionality for change design. In another class of products, orchestration capabilities for
automated provisioning have been developed in solutions such as HP Operations Orches-
tration or Tivoli Intelligent Orchestrator. While these solutions provide graphical workflow
editors, all decisions made during the design process are left to the technician using the
editor, and no assistance is provided.

With CHAMPS (Change Management with Planning and Scheduling) [15], Keller et al.
produced the seminal work for automation and optimisation in change management. In
their work, change design was inferred from software and hardware dependencies, and was
primarily targeted at software installation and de-installation. Knowledge reuse and the
concept of high-level change requests were not the topic of their work.

FeedbackFlow [16] is a framework for automatic generation of workflows of system
management actions. It uses a state-space planner to compute plans from a given set of
available atomic actions, and an initial and a goal state of the IT environment. The plan is
executed by a workflow engine which monitors its outcome and adjusts the planner’s state
appropriately. FeedbackFlow lacks the notion of refinable high-level tasks and has no
mechanism for encoding best-practices and change recipes.

Cordeiro et al. [4] have proposed ChangeLedge, a conceptual solution for the automated
refinement of preliminary change plans into actionable workflows. After defining a conceptual
model, ChangeLedge uses the concept of change templates to capture and reuse change
knowledge in the design of recurrent or similar IT changes. ChangeLedge and our solution
address different issues in the problem of IT change design. First, ChangeLedge requires
a skilled technician to understand the textual description found in the RFC and to draft a
preliminary plan. It does not address the information impedance mismatch problem between
change requesters and IT practitioners mentioned in Section 1.2.3. Also, ChangeLedge
does not provide mechanisms to encode best practices, our second challenge; it generates
any sequence of steps in which dependencies and constraints between activities are satisfied.
There are two issues with this approach: On the one hand, it assumes complete and accurate
knowledge of the dependencies in the IT model, and on the other hand, IT practitioners are
usually only comfortable using tried and tested methods and would only trust a small subset
of such automatically generated workflows. Finally, while our approach and ChangeLedge
solve different problems, they can be seen as complementary: The former assists an IT
practitioner in refining high-level change tasks, the latter automates the generation of low-
level workflows. The integration of the two approaches is discussed in Section 5.4.

Other aspects of change management, such as change scheduling, have been proposed.
Sauvé et al. [17] take the example of change scheduling to demonstrate linkage models
between IT availability metrics and business objectives. Rebouças et al. [18] use the linkage
model from [17] and formalise the problem of business-driven scheduling of changes, in which
changes need to be assigned to maintenance windows. Trastour et al. [19] go one step further

13



1. Introduction and motivation

by breaking down changes into the elementary activities that compose them and by providing
a scalable solution to the change scheduling the problem. Finally, Setzer et al. [20] studied
the impact of IT changes onto business processes and considered stochastic durations. The
investigation of these business impact analysis techniques for the design of changes, as well
as the integration of planning and scheduling of changes, is left for future work.

In the area of IT infrastructure design, Ramshaw et al. [21] propose a constraint program-
ming approach to design IT infrastructure from SLA requirements. The main difference
with what we propose here is that [21] focuses on generating IT system configurations that
satisfy capacity and performance requirements, while we are interested in the processes for
transforming existing IT systems.

The general field of automated planning [5], an area of artificial intelligence, provides
techniques to generate plans of actions meeting certain objectives. This field has evolved
from classical planning to more specialised forms of planning. In particular, Hierarchical
Task Network (HTN) planning [5,22] is well suited for domains in which plans are known to
exhibit a hierarchic structure; the planning algorithm is then guided by predefined hierar-
chical decomposition templates. Although automated planning research and especially HTN
planning have had successes in many domains3, to our knowledge, it has not been applied
to change design. Our proposed assisted design solution adopts HTN planning principles on
knowledge representation and plan generation.

Finally, the mixed-initiative automated planning approach was applied to support user-
centric plan design in various scenarios and frameworks (crisis intervention [24], Heracles
framework for web-based information assistants [28], dialogue-based planning for transport
and routing [29,30]).

3HTN planning was, among others, deployed in Mars exploration [23], crisis intervention [24], workflow
planning in Grid computing [25], analysis and life cycle management of plans [26], and template-based
composition of web services [27]

14



2. Information model for change plan
refinement

This chapter proposes data models for information contributing to the change design pro-
cess: IT infrastructure knowledge, best practices and change recipes, and IT policies. To
minimise IT service disruptions and the need for further corrective changes, IT practitioners
favour to use procedures that are fully understood and tested. In our experience, even within
large IT organisations, these procedures can be seen as change recipes, since they are rarely
formalised; they may be documented in unstructured documents shared within workgroups,
or implicitly memorised by managers or technicians. These recipes are typically scattered
within the IT organisation, and a single change may involve recipes from different IT work-
groups, such as a database workgroup or a Unix workgroup. Moreover, change recipes can
be concrete (e.g. the steps to build a Windows 2003 web server to corporate standards) or
abstract (e.g. the steps to consolidate a set of servers in a data centre), and would require
further refinements to obtain an actionable workflow. We propose to formalise these change
recipes in the form of best practices for change design. In addition to these, IT practitioners
must also consider corporate IT policies. Such policies can impose constraints on the pos-
sible configuration of the IT infrastructure (e.g. all external facing web servers must have a
firewall) and on the processes used to perform changes (for instance, all changes affecting
the payroll system must be authorised by the financial controller). Finally, IT practitioners
must take into account the state of IT operations, i.e. the state of the IT infrastructure and
of the IT processes they need to interact with in order to carry on their work. A Configu-
ration Management Database (CMDB) is typically used to model and store infrastructural
information and interdependencies between all configuration items (CI s) that potentially
take part in the execution phase of a change. Other tools, such as service management tools,
track the state of IT processes.

Having presented the different sources of change knowledge and our assisted change refine-
ment use case (Section 1.3), we now describe our approach to provide an integrated view on
change knowledge. We first present the IT operations model, the change catalogue and best
practices model, the main contribution of this information model, and finally the IT corpo-
rate policies model. Chapter 2 presents the static data models, while Chapter 3 focusses on
the algorithms and interactions between the components of the framework that constitutes
our solution.

2.1. IT operations model

Our solution requires an information model representing concepts from IT operations that are
used in the definition of change activities. We assume that an object-oriented formulation

15



2. Information model for change plan refinement

exists and that all classes have a root class, in order to have a generic way to refer to
all such IT concepts. The model may represent hardware and software components, IT
technicians and their skills, or steps in IT processes. For the purpose of this work, we have
chosen to instantiate the IT operations model as a subset of the Common Information Model
(CIM) [10]. Being an object-oriented framework, CIM defines hierarchies of configuration
items through specialization and dependencies between items by associations, compositions,
and aggregations. The root class of the CIM model is ManagedElement.

To get a first impression of how a concrete model of infrastructure components and their
interdependencies may look like, and as a short preview on the exemplary J2EE domain used
in the ChangeRefinery prototype (Section 4.3), consider Figure 4.4. The model features
hierarchies of hardware components (web servers, load balancers, database servers), different
kinds of databases, J2EE application containers, J2EE applications connected to databases,
JDBC resources, and load balancer applications. Additionally, in compliance with the ITIL
guidelines for configuration management systems, technicians and their respective skills in
operating the above-mentioned entities are also included in the model. This J2EE scenario
can be extended to support other domains or more complicated infrastructures by adding
new classes and dependencies from CIM. Alternatively, the CIM model could be substituted
by data models from commercial CMDB products.

2.2. Change catalogue and best practices model

We propose a model whose aims are, on the one hand, to provide a clear interface between
change requesters and IT practitioners, and, on the other hand, to formalise the sets of best
practices for IT changes. Figure 2.1 depicts a UML representation of this information model.

We introduce the notion of hierarchically decomposable change tasks. In our model, change
tasks convey the meaning of what will be done, not how it will be done. For instance,
deploying a web server is a task that could be implemented in many ways, depending on
the expected traffic or on whether the server will be externally facing. A business user will
typically not be concerned with the technical implementation details of a change, and should
only have to deal with change tasks. Change tasks can represent activities at different levels
of abstraction, from high-level tasks that a business user may ask for (e.g. altering a business
process in an SAP system) to low-level technical tasks (e.g. installing an Oracle database).

To be able to represent workflows supporting parallel and sequential actions, our model
includes ordering constraints which provide qualitative binary temporal orderings between
tasks. A task network is hence a partially ordered set of tasks.

The change catalogue is the subset of predefined task networks that an IT organisation
chooses to expose to its users. We propose the change catalogue as an analogue to the ITIL
service catalogue [6]: It contains a set of high-level IT changes that are available to change
requesters. An RFC hence contains an instance of a task network to represent the goal
workflow. Note that a goal change can be refined into different sub tasks and with diverse
variable bindings. Hence, it does not represent or imply a particular solution to a change
request, but it specifies what will be done.

16



2.3. IT policies

A change task can have any number of variables. Variables have a name, a type, which
is either a data type (e.g. an integer representing a number of users) or a class from the IT
operations model (the WebServer class), and an instance value. Values for all variables of
the original task network (from the RFC) can be specified by the change requester. As we
will see in the following section, the change design process consists of recursively refining
change tasks into sub tasks until a concrete workflow is obtained. Variables are used to pass
parameters between a task and its sub tasks.

We chose the Hierarchical Task Network (HTN) planning paradigm (Appendix A) to model
both the static structure of change workflows and the dynamic refinement1 of workflow tasks
in sub tasks. Borrowing from the HTN planning paradigm, a change task (see Figure 2.1)
can be realised by one of two refinements, an operator or a method. Operators are atomic
activities that have known effects on the IT operations model. For instance, operators ac-
complishing the InstallDatabase task in Figure 1.5 have the effect of adding a database CI to
the knowledge base. Methods encode the best practices or recipes mentioned earlier, and are
the mechanism we use to refine a task into further lower-level tasks. In our model, several
operators or methods could implement the same task, leading to different effects and task
decompositions. Coming back to the introductory example of Figure 1.4, the InstallApplica-
tion task for instance could be decomposed by the shown simple sub workflow consisting of
the sub tasks DeployApplication, InstallDatabase, and AddDbResourceToContainer, but one
could also define an alternative method to refine the same task, for instance with additional
authorisation and backup steps.

Because not all refinements (operators and methods) may be applicable to a given task
in all IT infrastructure states, refinements are guarded by a condition on the IT operations
model. The refinement can be used only when the condition is satisfied. For example,
every refinement of the task AddContainerToLb in Figure 1.4 requires the existence of a
J2eeContainer and a LoadBalancer CI in the knowledge base.

To see why the HTN model of partially ordered sets of tasks is particularly well-suited
to represent hierarchically decomposable workflows, consider Figure 2.2. The Figure depicts
on the left side a set of tasks T = {A,B,C,D} with a partial order over T induced by
R = {(A,B), (A,D), (B,D), (C,D)} ⊆ T × T . The ordering constraints state that A and C
have no predecessors, that D has no successor, that B is ordered after A, and that C is not
related to A or B. The relation R intuitively induces the workflow shown on the right side
of Figure 2.2.

2.3. IT policies

Change plans typically have to comply with corporate policies resulting either from business
requirements, service level agreements (SLA) or technical considerations. We identify two
different classes of policies which constrain the change plan design process. First, policies
may qualify the allowed states of the IT infrastructure, for example by prescribing the use of
certain software versions and by only allowing certain hardware and software combinations.
Following the ITIL recommendation, this set of policies should be made available in the
1The reasons for HTN being algorithmically well-suited for our problem will be explained in Section 3.3.1.

17



2. Information model for change plan refinement

ChangeCatalogue

TaskNetwork

Task

OrderingConstraint

RefinementPrecondition

Variable PlanningElement

Method Operator

Effect

∗ ∗

from

to
∗

∗

∗

∗

∗

1
subtasks

Figure 2.1: Change catalogue and best practices UML model. A task network is a partially
ordered set of tasks (a workflow). Every task in the workflow can be refined
by its methods or operators. A method decomposes a task in its sub tasks, an
operator has effects that change the state of the world. A change catalogue is a
collection of goal task networks.

18



2.3. IT policies

A B

C D

A B

C
D

Figure 2.2: Relation between partially ordered sets of tasks (left side) and workflows (right
side).

Definitive Media Library [1]. The second type of policies addresses the logical and temporal
structure of change plans. Examples of such policies could be the obligation to perform
systematic backups before certain classes of change tasks or the need to perform changes
during maintenance windows specified in an SLA.

Our solution is independent of the choice of the policy language (e.g. RuleML [13], Drools
[14]). The only requirement is the ability to express rules on the IT operations model and
on the change catalogue and best practices model.

19





3. A framework for assisted refinement of
change tasks

After having described the information view of our approach, we now present our conceptual
architecture for assisted refinement of change tasks, give the requirements for the main
components that compose the solution, and explain the algorithms used to refine high-level
change tasks into actionable workflows.

Figure 3.1 depicts the architecture of our solution. The main goal of the architecture is
to support the integration of various information sources into a consistent change design
process. The change planner is the core component that compiles change plans from the
connected information repositories. The IT knowledge base holds the IT operations model
and acts as a simulation environment for the planner. The change catalogue repository holds
the change catalogue and best practices model and includes tasks, methods, and operators.
The temporal reasoner is used by the planner to enforce temporal consistency while building
the plans. Finally, the policy repository and policy engine store and enforce the IT corporate
policies.

Consider once again Figures 1.4 and 1.5 as a rough sketch of how we integrate IT in-
frastructure knowledge into the change plan. As explained in Section 2.2, every operator
accomplishing a particular task in a workflow is guarded by a condition that specifies under
which circumstances the operator is applicable. The condition typically imposes constraints
on the existence and linkage of configuration items. A satisfied condition thus generates
variable bindings that entail by which CIs the condition was satisfied. The variable bindings
can then be used in the effects of an operator to itemise which CIs are to be altered. As
an example, consider an operator for the sub task AddDbResourceToContainer in Figures
1.4 and 1.5: It requires as precondition the existence of a Database and a J2eeContainer CI
in the knowledge base and could pose additional optional constraints, for example on the
memory size of the DbServer CI on which the database system is installed. The natural
language formulation of the knowledge base query reads “return all tuples [J2eeContainer,
Database] such that Database is part of a DatabaseSystem and DatabaseSystem is installed
on a DbServer and DbServer has at least 1GB RAM”. A matching tuple (in this example
just the one tuple [jc, db]) is then used to specify the operator’s effect on the knowledge
base: The db CI is added as a database resource to the J2eeContainer CI jc.

3.1. IT knowledge base

The IT knowledge base component stores the IT operations model and acts as abstract inter-
face between the planner and different types of IT infrastructure and operational databases.

21



3. A framework for assisted refinement of change tasks

CMDB Asset Mgm. Service Mgm.

Change planner

Change design UI

IT knowledge base

Change catalogue

Temporal reasoner

Policy engine

Policy repository

assert()
rollback()
query()

PC()

isValid()

Figure 3.1: Architecture for assisted design of change tasks. The central change planner
component integrates various sources of change knowledge into change plans. The
IT knowledge base component is the interface to different kinds of configuration
management repositories; the temporal reasoner and policy engine components
provide and compute additional constraints on change plans.

22



3.2. Change catalogue repository

In order to simulate the effects of operators, the change planner must be able to assert
facts. In our object-oriented model, this means creating new objects, creating or changing
dependencies between objects, and changing the values of attributes of objects. Because the
change planner is implemented as a backtracking search (see Section 3.3), the IT knowledge
base must be able to snapshot its current state and to undo assertions (rollback). In other
words, it must provide versioning capabilities. At various steps in the design process, the
planner must be able to verify if preconditions are satisfied in order to check what operators
and methods are applicable. Hence, the knowledge base must also provide a query mecha-
nism that return tuples of objects matching a given search criterion. Finally, it must detect
causal dependencies between the effects of operators and the conditions of refinements to
ensure that the generated plans are temporally consistent. The rationale for this last feature
will be made evident in Section 3.4.

3.2. Change catalogue repository

The change catalogue repository stores the change template and best practices, or in HTN
terms, the tasks, methods, and operators. This repository is accessed by change requesters
when they need to author an RFCs. We do recognise that to make the change catalogue
easily accessible to requesters, change tasks need to be annotated and categorised, but this
falls outside the scope of this thesis. The change catalogue repository is also accessed by the
planner during the refinement process, and this simply consists of navigating through the
associations of the model, for instance to find suitable refinements for a given task.

3.3. Change planner

This section describes the change planner component which operates at the heart of our
architecture and relies on an adapted HTN planning algorithm. We first justify the choice
of HTN planning over state-space planning techniques in Section 3.3.1, and then detail our
algorithm for HTN planning with object-oriented data models in Section 3.3.2.

3.3.1. Applicability of planning paradigms

In Section 2.2, we have already explained why the partial-order HTN planning paradigm is
well-suited to model hierarchically decomposable workflows: A task network (i.e. a partially
ordered set of tasks) represents a single workflow, where workflow activities correspond to
tasks and parallel or sequential branching is specified by the partial order on the set of task
nodes. Conditional activities are encoded in the preconditions of methods and operators;
sub workflows are defined by decomposition methods. It remains to be asserted, why HTN
planning is favourable against state-space based planning (see Section A.2) from an algorith-
mic point of view. In the latter, a state-space search algorithm aims at finding a sequence
of operators that connects a given initial state with a given goal state; every operator has
to be applicable with respect to its precondition and changes the state of the world accord-
ing to its effects. Although HTN and state-space planning can in theory solve the same

23



3. A framework for assisted refinement of change tasks

problems (see Appendix A.3.2), they differ deeply in the style of the problem statement:
In HTN, you specify a goal task, which is a high-level description of what you want to do,
while in state-space planning you specify which state is to be achieved. The HTN notion of
hierarchical decomposition by methods can be regarded a metric that assists the planning
algorithm in finding a plan more easily, and the initial goal task network puts constraints
on the composition of the final plan. In domains that feature hierarchic structure, HTN
planning thus offers considerable performance advantages over state-space planning because
huge parts of the planning space are pruned. Furthermore, the HTN paradigm offers plans
of arbitrary degree of finesse: Operators making up the change plan can be either abstract
high-level descriptions of how to accomplish a task1, or highly specific low-level executable
actions2.

3.3.2. HTN planning with object-oriented data models

The change planner is the core component of the framework and uses a variation of the
HTN planning algorithm. Its input is a task network specified by the change requester.
By exploring the space of possible decompositions for the list of tasks in a given state, the
algorithm continuously decomposes tasks by replacing them by their sub tasks as defined in
the decomposition methods, until the initial set of goal tasks is transformed into a list of
atomic operators (then called a list of actions or a plan), which is the algorithm’s output.
Depending on the application, one may be interested in computing all plans, an arbitrary
plan, or the plan minimising a given metric. The planner is tightly coupled with the IT
knowledge base which acts as the simulation environment for the planning algorithm: Effects
of operators from partially refined workflows change the state of the knowledge base, queries
validate the applicability of methods and operators and return variable bindings. Depending
on the initial state of the world and on preconditions and effects of operators and methods,
different decomposition methods might be applicable for a given task. A formal description of
the HTN algorithm is given in Appendix A.3 and is covered to great extent in the automated
planning literature [5]. We will concentrate on our contributions which are

(i) to provide clear separation of concerns between the various information repositories,

(ii) the adaptation to object-oriented models, and

(iii) the consideration of temporal constraints.

The classical HTN formulation (Appendix A) relies on first-order logic to define tasks,
methods and operators; variable bindings are found and passed by unification, the state
of the world is given by a set of atoms and preconditions, and effects are sets of literals.
Because of the predominance of object-oriented models for IT infrastructure and operations,
such as CIM, we do not express the infrastructure data model in terms of first-order logic.
Instead, we rely on the IT knowledge base which can be queried to return all objects, such
as configuration items, matching a method’s or an operator’s preconditions. The inverse
adaption, namely using a conventional HTN planner that operates on states expressed as
sets of atoms, and connecting it with a logic based knowledge base component which is
enhanced to support object-oriented data models, is briefly discussed in Section 5.4.9.

24



3.3. Change planner

Algorithm 1 Non-deterministic algorithm for partial-order forward decomposition HTN
planning with object-oriented knowledge base and temporal reasoning integration.
Inputs: Knowledge base (kb), goal task network (tn).
Output: Plan π.
The algorithm assumes the existence of a global variable π that stores the solution plan, and
an STP instance, stp.
1: function HTN(kb, tn)
2: if tn = ∅ then
3: π ← empty plan
4: return true
5:
6: t ← tn.getFirstTask() . pick one of the tasks without predecessors
7: active ← t.getApplicableRefiners(kb) . find refinements with satisfied precondition
8: if active = ∅ then
9: return false . fail, if no refinement is applicable

10:
11: performer ← active.choose() . pick one of the refinements
12: bindings ← performer.computeBindings() . find its bindings
13: b ← bindings.choose() . pick one of the bindings
14:
15:
16: if o ← performer is an operator then
17: kb.assert(o.getEffects(b)) . simulate effects of the chosen operator
18: tn.removeTask(t) . remove accomplished task from task network
19: π.add(o) . add operator to solution plan
20: stp.decompose(t, o) . impose temporal constraints on operator
21:
22: if stp.PC() = true then . ensure temporal consistency
23: HTN(kb, tn) . recursively refine remaining task network
24: else
25: return false
26:
27:
28: else if m ← performer is a method then
29: m.decompose(tn, t, b) . decompose task into method’s sub tasks
30: stp.decompose(t, m.subTasks) . impose temporal constraints on sub tasks
31:
32: if stp.PC() = true then . ensure temporal consistency
33: HTN(kb, tn) . recursively refine remaining task network
34: else
35: return false

25



3. A framework for assisted refinement of change tasks

Algorithm 2 Finding nodes without predecessors in a partially ordered set.
1: function findNodesWithoutPredecessor(Partially ordered set (U,E))
2: candidates← U
3: for all (u1, u2) ∈ E do . check all edges
4: candidates← candidates \ {u2} . remove nodes with incoming edge
5: return candidates

Our adoption of the classical non-deterministic partial-order HTN algorithm is shown
in Algorithm 1. Every recursive invocation of the algorithm takes as input a reference
to the current state of the knowledge base (kb), and the task network (tn) to be refined.
The algorithm picks a task without predecessors3 in tn (forward decomposition, line 6) for
further decomposition, chooses one of its applicable refinements4 (lines 7,11), and computes
its respective variable bindings (line 12); one variable binding is selected for the chosen
refinement5 (line 13). If the selected refinement is an operator, its effects are applied to the
knowledge base (line 17), the refined task is removed from the task network (line 18), and
the operator is added to the preliminary plan (line 19). Before recursively decomposing the
remaining task network (line 23), the temporal reasoner component is invoked (lines 20, 22)
to check the preliminary plan’s temporal consistency (see Section 3.4). If, on the other, hand
the chosen refinement is a method, the respective task is substituted with the method’s sub
tasks (line 29), and the resulting task network is recursively decomposed (line 33). Again,
the temporal reasoner component is invoked (lines 30, 32) to check the preliminary plan’s
temporal consistency. A deterministic implementation of the algorithm (see Section 4.2.1)
searches the whole space of possible decompositions by trying all refinements and bindings,
and backtracking in the case of failure.

The knowledge base query is the central concept that links the HTN planning algorithm
with the knowledge base component. On the framework level, the only requirement for the
type of query mechanism is the support of queries against objects and their linkages, and the
capability to return tuples of matching configuration items. The concrete implementation
of the query mechanism in the ChangeRefinery prototype is detailed in Section 4.2.2.3.

3.4. Temporal reasoner

Real-world change plans consist of durative sequential and parallel change activities, both
features that are not supported by the classical partial-order HTN formalism (Appendix
A.3), where plans are sequences of atomic actions (Definition 14 in Appendix A.3). Total
order plans may be acceptable for applications in which the plan is executed in a sequential
fashion anyways (e.g. because all actions have the same resource requirements and therefore
1E.g., “ask a web application expert to install a Tomcat server.”
2E.g., “execute the script /bin/myscript on server db.company.com with parameter x=Jenny.”
3Algorithm 2 shows how to calculate all tasks that have no predecessors.
4A refinement is defined to be applicable in the current state of the knowledge base if its precondition query
has a non-zero number of matching tuples in the knowledge base.

5Note that the concept of bindings does not increase the branching factor when compared with classical
HTN, as different bindings for refinements correspond to different possible substitutions in classical HTN.

26



3.4. Temporal reasoner

cannot be accomplished simultaneously), but certainly not for change plan design: we are
seeking a change plan that conserves the parallel structure of the workflow templates and only
contains additional ordering constraints where imposed by interactions between effects and
preconditions of operators. Coming back to the initial example from Figure 1.5, operators
accomplishing, for instance, the tasks InstallDatabase and InstallJ2eeContainer are usually
independent and should remain temporally unconstrained if they affect different server CIs
(ws and ds), as in the depicted case. On the other hand, if the database and J2EE container
were chosen to be installed on the same server, additional ordering constraints are necessary
to ensure that the installation activities do not conflict with required resources.

This section introduces how the Simple Temporal Problem (STP, Appendix A.5), a con-
straint satisfaction problem specifically tailored for efficient temporal reasoning, can be inte-
grated to HTN planning in order to support both durative actions and parallel (i.e. partial-
order) solution plans. An STP is a triple (X,D,C) where X is a set of time point variables,
D defines the domain for every variable, and C is the set of binary constraints between
time points. For two time points, ti and tj , a constraint [aij , bij ] ∈ C restricts the relative
distance of the two time points by requiring aij ≤ tj − ti ≤ bij . A qualitative ordering
constraint between two time points, ti and tj can be expressed as [aij , bij ] = [0,∞]. To
support durative actions and parallel plans, we associate start and end time points with
every task and action in the HTN planning process. Temporal relations between those time
points reflect quantitative and qualitative ordering constraints between tasks and actions.
A detailed introduction to constraint satisfaction and temporal problems can be found in
Appendix A.4.

3.4.1. HTN planning with parallel plans and quantitative temporal constraints

a b c d

a bc d

a
b

c
d?⇐⇒

r b m...

l e z...

...

q y x...

?

?

?

c

?

?

g

?
?

?

?

?⇐⇒

Figure 3.2: Total order versus partial-order plans. The top (bottom) figure illustrates a
simple (more complex) example of a set of sequential plans (left side) and a
corresponding workflow (right side).

A naive approach to attain parallel plans is to compute all possible sequential plans and

27



3. A framework for assisted refinement of change tasks

use them to reverse engineer a possible parallel plan (see Figure 3.2). This approach is not
reasonably practicable for the following reasons:

1. Mapping a given set of sequential plans to a parallel plan is extremely complicated
(see lower diagram in Figure 3.2).

2. Computing all possible sequential plans is in general intractable.

3. Even for extremely simple cases (upper diagram in Figure 3.2), if actions have dura-
tions and resource requirements, there is no way to decide whether a parallel plan is
equivalent to a set of sequential plans. In the upper diagram of Figure 3.2, consider
the durative actions b and c with conflicting resource requirements: Although both
sequential plans might be perfectly valid, the corresponding parallel plan is not equiv-
alent because it allows for simultaneous execution of b and c, which is impossible due
to the conflicting resource requirements.

TimeLine [32] and SIADEX [33] are two different existing approaches to integrate HTN
planning with temporal reasoning and to obtain parallel plans. In TimeLine, the classical
HTN formalism is enhanced with durative actions, non-instant effects, and time-aware pre-
condition handling; the proposed algorithm is provably sound and complete, but lacks the
natural intuitive elegance of the pure HTN procedure. Our planner borrows from ideas im-
plemented in the SIADEX planner [33], which utilises the combination of a classical partial-
order HTN algorithm and an associated STP (Simple Temporal Problem, see chapter A.5) to
perform temporal reasoning and to compute partial-order plans. The following description
sketches out the SIADEX algorithm:

• Every action aj in the change plan has a duration, duration(aj).

• Every literal lkj in the effect of an action aj has a delay ∆tkj by which they are achieved
after the execution of its corresponding action.

• Given a sequence of states s0, s1, s2, ..., sn induced by a partial plan a1, ..., an, every
state si is given by

si = {〈lkj , aj ,∆tkj 〉}

where every tuple 〈lkj , aj ,∆tkj 〉 denotes a literal lkj that was introduced by the effect of
action aj with the delay ∆tkj .

• Every partial plan π = a1, ..., an has an associated STP, T . The time points of T are
the initial time point TR, and, for every ai ∈ π, two time points start(ai) and end(ai).

• Whenever a new action ai is added to the partial plan, the preconditions of ai are
checked against the state si−1. For every literal in the preconditions of ai that matches
a temporally annotated literal 〈lkj , aj,j<i,∆tkj 〉 ∈ si−1, a temporal constraint6 [∆tkj ,∞)
is posted between the producing start time point of the producing action, start(aj),
and the start time point of the consuming action, start(ai). This means that the
consumer action ai can only be executed at least ∆tkj time units after the action aj
which provides ai’s precondition lkj .

6The choice of using a half-open interval for an infinite interval is arbitrary. Throughout this work, closed
intervals are used.

28



3.4. Temporal reasoner

• The temporal links between tasks, as defined by the HTN methods, are passed to the
STP whenever a task is decomposed by the HTN algorithm.

• An incremental path consistency algorithm (see Section A.4.2.2 and Algorithm A.4.2.2)
enforces the consistency of the STP, and computes the equivalent minimal constraint
network.

• When the HTN finds a total order plan π, the associated STP holds the corresponding
partial-order plan. The latter complies with both the temporal links imposed by the
task decomposition procedure, and those originating in mutual dependencies between
preconditions and effects.

We adopt the basic SIADEX concept to enable partial-order plans in HTN planning. The
idea can be sketched as follows:

1. Use partial-order forward decomposition to obtain a sequential plan. Note that in
many planning domains most of the sequential ordering constraints have no semantic
justification. They solely exist by virtue of the forward decomposition paradigm.

2. Drop all ordering constraints from the plan.

3. Add ordering constraints between actions where necessary:

• Methods can define ordering constraints between sub tasks. These constraints
must be enforced in the plan.

• Let π = 〈a1, ..., an〉 be an HTN plan. If the precondition of an action ai depends
on the effect of a previous action aj,j<i, then we have to enforce the ordering
constraint [aj before ai]. This emulates the normal semantics of operator based
planning.

• Let π = 〈a1, ..., an〉 be an HTN plan. If the precondition of an action aj depends
on the effect of a subsequent action ai,i>j , then we have to enforce the ordering
constraint [aj before ai]. This is to ensure that ai is executed after aj and thus
its effect cannot invalidate the precondition of aj .

si fi

ai
[dimin, dimax]

sj fj

aj
[djmin, djmax]

[0,∞]
iff ai before aj

Figure 3.3: Detailed STP structure of HTN actions. Two actions ai and aj with their re-
spective start and end time points, and a qualitative ordering constraint [0,∞]
(red) that orders aj after ai. The duration of the actions is given by the temporal
constraint [dmin, dmax] (blue) between the start and end time points.

As mentioned in the introduction of this section, we use an STP data structure to capture
not only qualitative ordering constraints, but also quantitative temporal relations. Figures

29



3. A framework for assisted refinement of change tasks

si fi

ai [.]
sj fj

aj [.]
... sk fk

ak [.]

Ts Tf

[0,∞], i.e. ai before ak

Ts

ai ak

aj

Tf

Figure 3.4: STP and workflow representations of HTN plans. The upper figure shows an
STP with global start and end time points Ts and Tf , three actions ai,j,k and a
qualitative ordering constraint (red) between ai and ak. The lower figure shows
the corresponding workflow.

3.3 and 3.4 illustrate how a solution plan, the associated STP, and the induced workflow are
related. Figure 3.3 depicts two actions, ai and aj together with their internal and mutual
temporal structure. Every action ak is represented by two time points, sk and fk, denoting
the start and end time point of the action ak, respectively. The duration of the every action
ak is constrained by [dkmin, dkmax], which allows ak to last between dkmin and dkmax time units.
A qualitative ordering constraint [ai before aj ] is stated by a temporal constraint [0,∞]
between the end time point fi of action ai and the start time point sj of action aj . Similarly,
a constraint [a, b] between fi and sj allows action aj to start between a and b time units
after action ai has finished. Figure 3.4 shows an STP with global start and end time points
Ts and Tf , and three actions ai, aj and ak. Action ak is ordered after action ai. The lower
diagram displays the workflow induced by the STP; observe that action aj is temporally
unconstrained with respect to ai and aj , just as the STP suggests.

3.4.2. Integration of temporal reasoning and HTN planning

As the change plan is being refined by the HTN algorithm, temporal constraints are continu-
ously added to the STP. Every plan π has an associated STP with start and end time points,
Ts and Tf , and for every operator oi ∈ π there are two additional time points, si (start) and
fi (finis), representing the start and the end time points of the respective operator. Every
time a task is decomposed by a method, temporal constraints between its sub tasks and the
remaining tasks are posted (Algorithm 1, line 30) to enforce the ordering structure of the

30



3.4. Temporal reasoner

sub workflow as encoded in the decomposition methods. Whenever a task is accomplished
by an operator, the task’s temporal properties are inherited by the operator (Algorithm 1,
line 20). A durative action ai with duration d is encoded by the constraint [d, d] between the
time points si and fi; a task τ with a deadline t generates the constraint [0, t] between the
time points Ts and τs. Algorithm 3 details the decomposeTo() method used to pass temporal
properties from tasks to sub planning elements (i.e. tasks or actions, see UML diagram in
Figure 2.1 in Section 2.2 ).

Algorithm 3 The decomposeTo() method for task decomposition and forwarding of tem-
poral constraints in an STP. In a given STP stp, decompose the task p into sub planning
elements (actions or tasks) into and add additional ordering constraints c between elements
of into. A qualitative ordering constraint [0,∞] between two time points ti and tj is dis-
played as ti → tj , the subscripts s and f denote the start and end time points of planning
elements.
1: function decomposeTo(PlanningElement p, PlanningElement[] into, OrderingCon-

straint[] c)
2:
3: for all PlanningElement e ∈ into do
4: stp.add(es, ef ) . add start and end time points
5: stp.addConstraint( (ps → es) ) . e must start after the decomposed task p
6: stp.addConstraint( (ef → pf ) ) . e must end before the decomposed task p
7:
8: for all OrderingConstraint (p1 → p2) ∈ c do
9: stp.addConstraint( (p1

f → p2
s) ) . add remaining ordering constraints

Furthermore, to enforce the correct ordering of an action ai added to the preliminary
plan π, and all previous actions oj ∈ π, j < i, one has to consider the mutual dependencies
between the precondition and effect of ai, and the preconditions and effects of all previous
actions aj ∈ π, j < i: A qualitative ordering constraint is posted between ai and all those
aj ∈ π, j < i whose effects contribute to the preconditions of ai, or vice versa. This ensures
that

(i) ai is ordered after those actions whose effects contribute in making its precondition
true, and that

(ii) the effects of ai cannot invalidate the preconditions of previous actions.

To allow for this mechanism, the knowledge base component must be able to detect causal
dependencies between preconditions and effects on configuration items: Every action must be
annotated with the CIs that its effects alters, and with the CIs that occur in its precondition.

After updating the STP with new time points or temporal constraints, a path consistency
algorithm (Section A.4.2.2, Algorithm A.4.2.2) can be used to check the consistency of the
STP7, and to compute its equivalent minimal network. Checking the consistency of the STP
for every potentially new action or method decomposition in the preliminary plan can be
7For STPs the path-consistency (Section A.4.2.2) algorithm is a sound and complete method to check the
consistency of the constraint problem and compute the minimal equivalent constraint network [34, 35].
Note that for general constraint satisfaction problems, path consistency is not complete.

31



3. A framework for assisted refinement of change tasks

accomplished in O(n3) time, and thus helps to efficiently prune large chunks of the HTN
search space and ensures that all plans are temporally valid.

3.5. Policy engine

The policy engine can be integrated into the HTN algorithm in the same fashion as the
temporal reasoner. Using the isValid() interface

boolean isValid(KnowledgeBase kb, Plan p)

the planner inquires the policy engine in every planning step, if the intermediate change
plan p and the preliminary knowledge base state kb comply with policies from the policy
repository. Failure in the validation of such policies causes the planner to backtrack. The
benefit of this approach is that any off-the-shelf rule engine, such as the Drools system [14],
can be used as the policy engine.

The policy engine component is currently not implemented in ChangeRefinery, and
also not contained in Algorithm 1.

32



4. The ChangeRefinery prototype

In this section, we present our proof-of-concept implementation of the change plan design
framework which comprises the change planner, knowledge base, and change catalogue com-
ponents. We start by explaining the simplifying assumptions we made on the nature of both
the participating information sources, and the resulting change plans. Then, Section 4.2 ex-
plains and documents implementation details of the prototype basing on those assumptions;
Section 4.4 gives examples and evaluations of our prototype’s basic functionality based on
the scenario presented in Section 4.3. In a second step (Chapter 5), we relax some of the
assumptions to make towards a more realistic and expressive tool.

4.1. Simplifying assumptions

The implementation of our first ChangeRefinery prototype is based on the following
simplifying assumptions on information sources and change plans.

1. Resulting workflows are sequential and workflow activities are atomic, i.e. they have
no duration or other temporal structure. This assumption will be relaxed by the
integration of the temporal reasoner component, as described in Section 5.1.

2. Workflow activities do not fail. This especially implies that we do not cover remediation
or rollback plans. In [36], Machado et al. propose an ITIL-compliant model to support
rollback in IT change management systems. The integration of such systems is out of
scope of this work.

3. Change templates are correct and complete. We present a hybrid HTN and state-space
based planning concept for adaptive workflow reparation in Section 5.4.6.

4. We have exact and complete knowledge of the environment; the CMDB is a consistent
and correct model of the actual IT infrastructure. Also, no concurrent changes modify
the knowledge base simultaneously. We show how to find repair activities to cope
with these kinds of inconsistencies in Section 5.4.6, and mention concurrent changes
in Section 5.4.8.

5. Dependencies between configuration items are not taken into account. We assume,
that all dependencies (e.g. the installation of the Apache web server requires libraries
foo.lib and bar.lib) are explicitly encoded in change recipes (i.e. HTN methods). In
Section 5.4.1, we briefly describe how the ChangeLedge system could be integrated
with our approach in order to further refine change plans with respect to dependencies
between affected configuration items.

33



4. The ChangeRefinery prototype

4.2. Prototypical implementation of the change refinement
architecture

4.2.1. Change planner

Listing C.1 shows the da.planner.htn.HTN class containing the ChangeRefinery HTN
implementation. As the basic functioning of the (non-deterministic) algorithm was already
explained in Section 3.3.2, this section focusses on the transition to a deterministic version
of Algorithm 1, and highlights implementation details on variable handling and user choice
points.

4.2.1.1. The deterministic ChangeRefinery HTN algorithm

Algorithm 4 Non-deterministic algorithm for a depth-first search on a tree data structure.
1: function TreeSearch-NonDet(t:Tree, v:Value)
2: if t.value = v then
3: return true
4:
5: if t.subTree 6= ∅ then
6: subTree ← non-deterministically pick sub tree from t.subTrees
7: return TreeSearch-NonDet(subTree, v)
8:
9: return false

Algorithm 5 Deterministic algorithm for a depth-first search on a tree data structure.
1: function TreeSearch-Det(t:Tree, v:Value)
2: if t.value = v then
3: return true
4:
5: for all subTree ∈ t.subTrees do
6: if TreeSearch-Det(subTree, v) then
7: return true
8:
9: return false

Before digging into the details of our HTN implementation, consider Algorithm 4 as ex-
ample for a non-deterministic algorithm for depth-first search on a tree data structure, and
its deterministic equivalent in Algorithm 5. In both examples, Tree is a recursive data
structure containing an arbitrary number of sub trees of type Tree in Tree.subTrees, and a
value in Tree.value. Algorithm 4 is a non-deterministic method to decide whether a given
tree t contains a value v in one of its nodes. The algorithm non-deterministically picks one
branch of the tree and looks for the value v in all nodes of the chosen branch. One possible
design of an equivalent deterministic algorithm resolves the non-deterministic choice (line
6 in Algorithm 4) line into a loop over all possible sub trees (line 5 in Algorithm 5). The

34



4.2. Prototypical implementation of the change refinement architecture

non-deterministic algorithm is defined to return true iff there exists an execution path that
returns true. Similarly, the deterministic algorithm returns true iff the disjunction of all
sub execution branches on different sub trees is true (lines 5–7). The general pattern for the
design of a deterministic algorithm from its non-deterministic counterpart is thus to loop
over the possible choices and merge the results of the individual computation branches.

The HTN algorithm depicted in Algorithm 1 has three non-deterministic choice points: In
line 6 one of the possible tasks without predecessors is selected, and in lines 11 and 13 one of
the applicable refinements for this task and one the available variable bindings are chosen.
These choice points are resolved to forall loops in lines 74, 79 and 83 of Algorithm C.1.
Inside these loops, we have to distinguish between operator and method refinements: In case
of an operator, we assert its effects to the knowledge base (line 122), add the corresponding
action to the current plan (line 145), and recursively invoke the HTN algorithm (line 165).
In case of an operator, we decompose the refined task by the method’s sub tasks (line 188)
and recursively call the HTN algorithm on the decomposed task network (line 202). The
integration of the temporal reasoning component (STP) is explained in Section 5.1.

Algorithm 6 Deterministic algorithm for a depth-first search on a tree data structure,
without local tree variables. It assumes a global variable t holding the tree data structure.
1: function TreeHasValue-GlobalTree-Det(v:value)
2: if t.value = v then
3: return true
4:
5: i: int . local variable
6: for i ← 0; i ≤t.subTree.count(); i ← i+1 do
7: t ← t.subTree[i] . navigate ”down” in one of the branches
8: if TreeHasValue-GlobalTree-Det(v) then
9: return true

10:
11: t ← t.parentTree . navigate ”up”, i.e. rollback
12:
13: return false

What makes the HTN algorithm much more complicated than the previously explained
tree search, is the integration of the knowledge base component, which acts as simulation
environment for the planning process. The effect of a chosen operator is applied to the
knowledge base and must be undone before the next operator is tried (line 178). Equivalently,
the operator must be removed from the current plan before the next operator is tried (line
174). This rollback concept can again be compared to a tree search in the following way:
Assume that the tree variable is not passed to the search algorithm as a local variable, but
is accessible as a global variable. Furthermore let each tree point to its parent tree via
Tree.parentTree. Algorithm 6 shows the depth-first search procedure for this case: In line 7,
one of the sub trees is assigned to the global variable t, and the search is invoked recursively
on one of the sub trees (lines 7,8). After the recursive call returns, we have to navigate back
to its parent node in order to point t to the correct place in the tree.

Because the computations and particular task, refinement and binding choices in different
branches of the HTN planning tree and independent and thus may not interfere, we copy

35



4. The ChangeRefinery prototype

the entire task network and the selected variable bindings before recursively calling the HTN
algorithm (lines 108–111).

4.2.1.2. User choice points

As it is often infeasible (and undesired) to calculate all plans for an HTN planning problem,
we offer the user to choose one of the available tasks, refinements, and variable bindings at ev-
ery branching point (lines 74, 79, and 83 in Algorithm C.1). Every choice point has its associ-
ated ChoicePointFactory object (HTN.taskCPF, HTN.refinementCPF, HTN.bindingCPF),
which implements the

ChoicePoint<T> create(List<T> l, String name)

method to create and return a ChoicePoint object from the given list of tasks, refinements or
bindings, respectively. Every ChoicePoint object implements the interface Iterable<T>, and
can thus easily be used to loop over all elements of the given list. Different implementations
of the Iterable interface allow different functionality: A SimpleChoicePoint lets the user
select one particular choice and asks if she wants to backtrack over the remaining choices.
The RandomisedChoicePoint randomly picks a choice and stops backtracking with a certain
(configurable) probability. We use the RandomChoicePoint to run automated performance
tests, and the SimpleChoicePoint to offer full flexibility and user control over the planning
process.

4.2.1.3. Variable handling

The Binding class (Figure 4.3) is used to represent variable bindings for tasks and result
tuples of precondition queries. It extends the HashMap<String, Variable> interface, and
thus maps variable names to variable instances. Variables can be of type KbElementVariable
or PropertyVariable, which represent knowledge base CIs and their properties, respectively.
Because task definitions and task instances are decoupled (Figure 4.3), a task definition
can only refer to variables by their name, not by Java objects. Every task object carries a
binding object (the binding is passed in the constructor) with its current variable bindings.
The methods and operators are defined in the TaskDefinition class and can access variables
by their names.

4.2.2. IT knowledge base

The ChangeRefinery implementation of the knowledge base component comprises mainly
two parts:

(i) a model of the IT infrastructure (CMDB), and

(ii) the implementation of the assert(), rollback(), and query() interfaces to access and
manipulate data stored in the knowledge base.

36



4.2. Prototypical implementation of the change refinement architecture

«Interface»
KnowledgeBase

assert(c: Assertable[]): Long[]
rollback()
query(q: String):
List<List<Object> >

SimpleKnowledgeBase

«Interface»
VersionedDatabase

newVersion()
rollback()
getSession(): Session
S

VersionedHsqldb

«Interface»
Assertable

doAssert(s: Session,
b: Binding)

getAffectedIds(s: Session,
b: Binding): Long[]

Effect

getAffectedIds(): Long[]

Uses the Binding
b to compute and

apply changes to the
database Session s

db
1

Figure 4.1: UML model of the knowledge base implementation. The SimpleKnowledgeBase
class implements the assert(), rollback(), and query() interfaces, and uses a Ver-
sionedDatabase instance as database backend. Effects implement the Assertable
interface and can thus be asserted the knowledge base via the assert() method.

37



4. The ChangeRefinery prototype

While the implementation of the IT infrastructure model is described in Section 4.3.1, this
section focusses on (ii). We chose to base our implementation on the Hibernate object-
relational mapper [37]. Hibernate offers a transparent persistence service for Java objects;
after annotating Java classes with mapping instructions, Hibernate takes care of synchro-
nising instances of those classes with a relational database. The Hibernate Query Language
(HQL) can be used to express queries against mapped objects, their properties, and in-
terdependencies. HQL is fully object-oriented, understanding notions like inheritance and
polymorphism. This aligns nicely with the strongly hierarchic nature of CIM, on which our
IT infrastructure model is based. HQL is thus the main concept promoting the implemen-
tation of the query() interface.

We briefly examined alternative available frameworks as basis for our implementation.
Table 4.1 compares those with respect to our requirements. As we intended to use an object-
oriented implementation, and due to the lack of documentation for the EMF framework, we
decided to use Hibernate.

Versioning Querying Modelling Planner integration Documentation
EMF • • • •• • • • • • • ••
Hibernate • • • • • • • • • • • • •
Prolog •• •• •• • • • •
Jena • • • •• •• • ••

Table 4.1: Requirements for the knowledge base technology. The Eclipse Modeling Frame-
work Project (EMF) is an object-oriented framework for persistent data modelling
and querying. Its main drawback is (as of today) the lack of usable documentation.
Prolog is weak on object-oriented modelling. Jena [38] is a Java-based semantic
web toolkit. Although having chosen to use Hibernate for our first prototype, we
are convinced that semantic web technologies (especially OWL) are a promising
approach to build a powerful knowledge base backend integrating object-oriented
with logic concepts. This idea is further explained in Section 5.4.9.

Figure 4.1 shows a UML diagram of the main classes and methods constituting the know-
ledge base component. The KnowledgeBase interface defines the assert(), rollback(), and
query() methods, which are implemented in the SimpleKnowledgeBase class. To support
backtracking, the knowledge base makes use of a versioned database component, as ab-
stracted by the VersionedDatabase class and implemented by the VersionedHsqldb class.
The following sections detail the implementation of the rollback(), assert(), and query()
interfaces.

4.2.2.1. The rollback() interface

The assert() and rollback() mechanisms of logic-based knowledge bases for common planners
are quite straightforward to implement: Because a knowledge base state is given by a set s
of logical atoms and asserting the effect of an operator comprises

(i) adding the atoms in the +effects set to s, and

(ii) removing the atoms in the −effects set from s (see Appendix A).

38



4.2. Prototypical implementation of the change refinement architecture

Consequently, memorising the ±effects is sufficient to support the rollback to a previous state,
which can be accomplished by simply removing the atoms in the +effects set, and adding
the atoms in the −effects set; assert() and rollback() are their mutual inverse functions.

The above is not applicable in our object-oriented and Java-based knowledge base imple-
mentation, as arbitrary Java code is not trivially invertible. Instead, the ChangeRefinery
prototype keeps a list of copies of every knowledge base state. Asserting thus means to ap-
pend a clone of the latest state to the list of copies and applying changes to that clone;
rollback means to switch to an earlier copy in the list. Hibernate uses a relational database
as storage backend, and to facility the copying of databases, we chose the HSQLDB [39]
Java SQL database. HSQLDB can be configured to store the database in a single file. The
implementation of the newVersion() method of the VersionedHsqldb class thus performs the
following steps:

(i) shut down the old HSQLDB daemon

(ii) copy the current database file file_i to a new file file_i+1, and

(iii) start a new HSQLDB daemon on the new database file.

Equivalently, rollback() comprises

(i) shuting down the old HSQLDB running on database file_i, and

(ii) starting a new HSQLDB daemon on the previous database file file_i-1.

Although developing a versioned database is definitely out of scope of this thesis, we
do consider the current implementation the central weak point of the ChangeRefinery
prototype. Experimental results (see Section 5.4.3) show that every rollback() or assert()
invocation takes approximately 100-200 milliseconds, and that more than 99% of the total
planning time is spent on those operations. Most time is used for shutting down and starting
a new instance of the HSQLDB server daemon, which has to be done whenever the database
version is to be changed, i.e. in every rollback() or assert() call.

4.2.2.2. The assert() interface

Because the IT infrastructure model is implemented as plain Java code, the assert() interface
is fairly easy to realise. Persistent Hibernate objects can be accessed through the load()
method of an instance of the org.hibernate.Session class; new instances can be persisted by
invoking the save() method. The assert() method of the KnowledgeBase interface takes as
parameter a collection of Assertables, which have to implement the

Set<Long> doAssert(Session s, Binding b)

method. By accessing the Session parameter, the Assertable has full control over all Java
objects in the knowledge base. The assert() method returns a set of Long objects, which
are the IDs of the knowledge base objects affected by the assertion. The reason for this
will be made clear in Section 5.2 on additional ordering constraints due to interdependencies
between effects and preconditions of operators.

Every assertion creates a new version of the database backend by calling the newVersion()
method of the VersionedDatabase object before accessing the Hibernate session.

39



4. The ChangeRefinery prototype

4.2.2.3. The query() interface

By virtue of the Hibernate Query Language (HQL) support, the query() interface is trivially
easy to implement. The query method

List<List<Object>> query(String q)

takes a query string in HQL syntax and returns tuples of matching knowledge base objects.

The BindingGenerator interface and its adjacent classes abstract from the HQL syntax,
and are used to build knowledge base queries which act as preconditions for operators and
methods (see Figures 4.2, 4.3 and Section 4.2.3). The BindingGenerator interface defines
the getBindings() method, which is invoked by the HTN algorithm to compute and retrieve
matching variable bindings for a refinement. The KnowledgeBase parameter specifies the
knowledge base against which the query is to be computed, and the Binding[] parameter
passes existing variable bindings for variables in the operator or method. The getBindings()
method returns a list of found variable bindings.

The BindingGenerator interface is implemented by two classes, EmptyPrecondition and
KbPrecondition. The EmptyPrecondition class generates a query which is always true and
return one empty binding. It is used for refinements without preconditions and variables.
The KbPrecondition class can be used to build knowledge base queries and bind variables.
It maintains the following types of condition specifications:

1. ObjectBindingConstraint[] specifies query conditions on bound or unbound variables.
If a variable is unbound, no constraint is added to the query. If a variable is bound,
the variable identity is added to the query condition.

2. ObjectPropertyConstraint[] specifies constraints on properties of CIs.

3. unboundKbElements is a list of variables which must be unbound. This constraint is
used to ensure in a precondition of operators creating new knowledge base CIs, that
its effects do not change the assignments of already bound variables.

The Formula interface and its sub classes are used to actually build the query from the
various constraints. The structure follows the usual recursive schema to construct proposi-
tional formula. The sub classes of the Atom class implement the concrete query translation
into the Hibernate Query Language (HQL). The following enumeration details the semantics
of the individual classes. At this, $varName loosely denotes the variable identifier of the
variable named varName.

1. ObjectBindingConstraint: If variable vName is bound to a knowledge base object with
ID=id, this binding is preserved by requiring $vName.id=id. If vName is unbound,
the always true condition (1=1) is applied.

2. ObjectIdentityConstraint: Requires that v1 and v2 refer to the same objects. This
translated to $v1.id = $v2.id.

40



4.2. Prototypical implementation of the change refinement architecture

«Interface»
BindingGenerator

getBindings(
kb: KnowledgeBase,
b: Binding[]): Binding[]

KbPrecondition
ObjectBindingConstraint[]
ObjectPropertyConstraint[]
unboundKbElements: String[]

EmptyPrecondition

«Interface»
Formula

toString(): String

Not
f: Formula

True
F

Atom
F

Or
f1,f2: Formula

And
f1,f2: Formula

ObjectBindingConstraint

«constructor»
ObjectBindingConstraint(vName)

ObjectIdentityConstraint

«constructor»
ObjectIdentityConstraint(v1, v2)

ObjectInSetConstraint

«constructor»
ObjectInSetConstraint(culm,
hayStack, propertyName)

ObjectPropertyConstraint

«constructor»
ObjectPropertyConstraint(propVar,
propHolder, propName, rel)

ObjectPropertyIdentityConstraint

«constructor»
ObjectPropertyIdentityConstraint(v1,
prop, v2)

Figure 4.2: UML model of the BindingGenerator query building mechanism. Knowledge
base queries are represented by the BindingGenerator interface; bindings are
computed and returned in the getBindings() method. See text for a detailed
description of the Formula concept. 41



4. The ChangeRefinery prototype

3. ObjectInSetConstraint: True, if culm ∈ hayStack.propertyName, which translates to
$culm in elements($hayStack.$propertyName). This query is used to impose conditions
on associations with cardinality * (e.g. the databases property of the DbServer class).

4. ObjectPropertyConstraint: True, if the propHolder.propName stands in relation rel
to the variable propVar. Translates to $propHolder.$propName $rel $propVar.

5. ObjectPropertyIdentityConstraint: Requires that the prop property of variable v1
is identical to v2: $v1$.prop = $v2. This query is used to impose conditions on
associations with cardinality 1 (e.g. the database property of the J2eeJdbcResource
class).

The Java code for the ObjectInSetConstraint class is given in Listing 4.1.

Listing 4.1: Java code of the ObjectInSetConstraint class
1 package da . p lanner . htn . query ;
2

3 import da . p lanner . htn . Binding ;
4 import da . p lanner . htn . KbElementVariable ;
5

6 public class Object InSetConstra int extends Atom {
7 private St r ing culm ;
8 public St r ing getCulm ( ) {return this . culm ;}
9 private St r ing hayStack ;

10 public St r ing getHayStack ( ) {return this . hayStack ; }
11 private St r ing propertyName ;
12 public St r ing getPropertyName ( ) {return this . propertyName ; }
13

14 public Object InSetConstra int ( S t r ing culm , St r ing hayStack , S t r ing
propertyName ) {

15 this . culm = culm ;
16 this . hayStack = hayStack ;
17 this . propertyName = propertyName ;
18 }
19

20

21 public St r ing ge tS t r ingRepre s en ta t i on ( Binding b) {
22 KbElementVariable n = b . get ( this . culm , KbElementVariable . class ) ;
23 KbElementVariable h = b . get ( this . hayStack , KbElementVariable . class ) ;
24

25 return n . getQueryName ( )
26 + "  in  e lements ( " + h . getQueryName ( ) + " . " + this . propertyName + "

) " ;
27 }
28

29 }

As an example, consider the precondition of the MigrateDatabase method of the SpeedUp-
WebApplication task (Listing 4.2). The query enforces existing bindings for three knowledge
base variables (application, olddb, dbresource), and additionally imposes the constraint dbre-
source ∈ application.j2eeJdbcResources AND dbresource.database = olddb. The translated

42



4.2. Prototypical implementation of the change refinement architecture

HQL query shows the case of unbound olddb, and dbresource variables and the application
variable bound to the CI with id 8.

Listing 4.2: Java code and HQL translation for the precondition specification of the Migrate-
Database method of the SpeedUpWebApplication task

1 KbPrecondition p = new KbPrecondition ( ) ;
2

3 p . addKbElementConstraint ( " app l i c a t i o n " ) ;
4 p . addKbElementConstraint ( " olddb " ) ;
5 p . addKbElementConstraint ( " dbresource " ) ;
6 p . se tAddi t iona lQueryConst ra int s (new And(
7 new Object InSetConstra int ( " dbresource " , " app l i c a t i o n " , "

j2eeJdbcResources " ) ,
8 new Objec tProper ty Ident i tyConst ra in t ( " dbresource " , " database " , " olddb "

)
9 ) ) ;

10

11 // HQL t r an s l a t i o n : s e l e c t new l i s t ( J2eeAppl icat ion0 , Database4 ,
J2eeJdbcResource5 ) from J2eeApp l i ca t ion as J2eeAppl icat ion0 , Database
as Database4 , J2eeJdbcResource as J2eeJdbcResource5 where (
J2eeApp l i ca t ion0 . id=8 and 1=1 and 1=1 ) and ( J2eeJdbcResource5 in
e lements ( J2eeApp l i ca t ion0 . j2eeJdbcResources ) and J2eeJdbcResource5 .

database = Database4 )

4.2.3. Change catalogue repository

The change catalogue repository stores change recipes and makes them available to the
planner component (see Figure 3.1 and Section 3.2). As we model change tasks and their
refinement to sub tasks in alignment with the HTN planning paradigm, the basic structure of
the change catalogue data model (Figure 4.3) is built according to this scheme: The change
catalogue is basically a collection of task definitions. Instances of the TaskDefinition class
represent static definitions of tasks and their available refinements, methods, and operators.
Instances of the Task class represent run-time task objects in the planning process. Every
task object represents a task definition and owns a set of bindings for its variables. The
Binding class is used to encapsulate a set of variable names together with their instance
values. Variables can represent either knowledge base objects (CIs) or their properties,
which is represented by the KbElementVariable and PropertyVariable class, respectively.

A method is defined by instantiating an anonymous sub class of the Method class, and
implementing the abstract getSubNetwork() method. The method’s sub task network is
specified by instantiating a new TaskNetwork object and adding tasks and ordering con-
straints; variable bindings from the Binding parameter can be used to pass variable bindings
to sub tasks. The returned task network is used by the perform() method in the HTN
algorithm to decompose a task by a sub task network.

An operator is defined by instantiating an anonymous sub class of the Operator class.
The constructor of this sub class typically adds Effect objects, which specify the operator’s
effect on the knowledge base. The sub classes of Effect accomplish different changes in the

43



4. The ChangeRefinery prototype

knowledge base: AddManagedElement creates a new CI, AddToAssociation and Remove-
FromAssociation add or remove links from one CI to another CI, IncrementProperty and
SetProperty change the property values of CIs.

Every refinement (i.e. method or operator) can define its precondition query be setting an
appropriate BindingGenerator (see Figure 4.2 and Section 4.2.2.3).

Java examples for task definitions can be found in Section 4.3.2 and Listing C.4.

4.3. The J2EE scenario

4.3.1. IT infrastructure components

Figure 4.4 shows a UML diagram of the J2EE scenario IT infrastructure. It is roughly
based on the object hierarchy and naming conventions from the Common Information Model
(CIM); ManagedElement is the root class for all entities in the infrastructure. Our scenario
comprises WebServer, LoadBalancer, and DbServer classes, which are sub classes of Machine
and share the cpuSpeed and memorySize properties. A DbServer can host a Database, which
can be either a OracleDb or a MySqlDb. WebServers can host J2eeContainer applications,
which run J2eeApplications and have J2eeModules. All Java entities have the JavaAppli-
cation super class which itself inherits from ManagedElement. A J2eeApplication can be
connected to a Database by a J2eeJdbcResource. Additionally, we model IT technicians by
the Human class and their skills by the Skill class.

Listing C.2 shows a very simple instantiation of this data model. It defines a DbServer,
two WebServers, some J2eeApplications and one technician together with her skills. A bigger
scenario is given in the da.scenarios.j2ee.kb.J2eeScenario class (Listing C.3).

4.3.2. Change catalogue

This section lists the task in the J2EE scenario together with their respective methods
(with sub tasks) and operators (with preconditions and effects). A variable assignment
[var1 ← var2] in a sub task st of a method definition related to a task t means that the
variable var1 of sub task st is assigned the value of variable var2 of task t.

Java code for the listed tasks can be found in the package da.scenarios.j2ee.domain. Listing
C.4 shows the Java code for the SpeedUpWebApplication task definition and its refinements.
Methods and operators are added to the task definition by invoking the addRefinement()
method on an anonymous sub class of the Method or Operator class. Method sub classes have
to implement the getTaskNetwork() method to define how it decomposes a given task into
sub tasks. Operators define their effects by invoking their addEffect() method on instances
of the Effect class. Both operators and methods configure their precondition query by setting
an appropriate BindingGenerator.

44



4.3. The J2EE scenario

Pl
an

ni
ng

El
em

en
t

du
ra
tio

n:
flo

at
de
ad

lin
e:

flo
at

C
ha

ng
e
ca
ta
lo
gu

e
du

ra
tio

n:
flo

at
de
ad

lin
e:

flo
at

A
ct
io
n

Ta
sk

Ta
sk
D
efi
ni
tio

n
R
efi
ne
m
en
t

B
in
di
ng

G
en
er
at
or

du
ra
tio

n:
flo

at
de
ad

lin
e:

flo
at

«a
bs
tr
ac
t»

M
et
ho

d

«a
bs
tr
ac
t»

ge
tS
ub

N
et
w
or
k(
B
in
di
ng

)
pe

rf
or
m
(T

as
kN

et
w
or
k,

Ta
sk
,B

in
di
ng

)

«a
bs
tr
ac
t»

O
pe

ra
to
r

ad
dE

ffe
ct
(e
:
Eff

ec
t)

T

*

1

1
*

1

«a
bs
tr
ac
t»

Eff
ec
t

«e
xt
en
ds
»
A
ss
er
ta
bl
e

A
dd

M
an

ag
ed
El
em

en
t

A
dd

To
A
ss
oc
ia
tio

n

In
cr
em

en
tP

ro
pe

rt
y

R
em

ov
eF

ro
m
A
ss
oc
ia
tio

n

Se
tP

ro
pe

rt
y

*

B
in
di
ng

«e
xt
en
ds
»

H
as
hM

ap
<
St
rin

g,
Va

ria
bl
e>

Va
ria

bl
e

K
bE

le
m
en
tV

ar
ia
bl
e

Pr
op

er
ty
Va

ria
bl
e

1
1

Figure 4.3: UML model of the change catalogue implementation.

45



4. The ChangeRefinery prototype

W
e

b
S

e
rv

e
r

«
cr

e
a
te

»

+
W

e
b
S
e
rv

e
r

«
cr

e
a
te

»
+

W
e
b
S
e
rv

e
r

+
se

tJ
2
e
e
C
o
n
ta

in
e
rs

:v
o
id

+
g
e
tJ

2
e
e
C
o
n
ta

in
e
rs

:
S
e
t<

J2
e
e
C
o
n
ta

in
e
r>

+
j2

e
e
C
o
n
ta

in
e
rs

:
S
e
t<

J2
e
e
C
o
n
ta

in
e
r>

D
a

ta
b

a
s
e

«
cr

e
a
te

»

+
D

a
ta

b
a
se

«
cr

e
a
te

»

+
D

a
ta

b
a
se

O
ra

c
le

D
b

«
cr

e
a
te

»

+
O

ra
cl

e
D

b

«
cr

e
a
te

»

+
O

ra
cl

e
D

b

L
o

a
d

B
a

la
n

c
e

r

«
cr

e
a
te

»

+
Lo

a
d
B
a
la

n
ce

r

«
cr

e
a
te

»
+

Lo
a
d
B
a
la

n
ce

r

+
b
a
la

n
ce

d
C
o
n
ta

in
e
rs

:
S
e
t<

J2
e
e
C
o
n
ta

in
e
r>

D
b

S
e

rv
e

r

«
cr

e
a
te

»

+
D

b
S
e
rv

e
r «
cr

e
a
te

»
+

D
b
S
e
rv

e
r

+
sw

a
p
F
ile

S
iz

e
:i
n
t

+
d
a
ta

b
a
se

s:
S
e
t<

D
a
ta

b
a
se

>

H
u

m
a

n

«
cr

e
a
te

»

+
H

u
m

a
n

«
cr

e
a
te

»
+

H
u
m

a
n

«
cr

e
a
te

»

+
H

u
m

a
n

+
sk

ill
s:

S
e
t<

S
ki

ll>

+
w

o
rk

in
g
T
im

e
H

o
u
rs

:i
n
t

M
a

n
a

g
e

d
E

le
m

e
n

t

«
cr

e
a
te

»

+
M

a
n
a
g
e
d
E
le

m
e
n
t

«
cr

e
a
te

»
+

M
a
n
a
g
e
d
E
le

m
e
n
t

+
to

S
tr

in
g
:

S
tr

in
g

+
e
q
u
a
ls

:b
o
o
le

a
n

-i
d
:L

o
n
g

-n
a
m

e
:S

tr
in

g

M
a

c
h

in
e

«
cr

e
a
te

»

+
M

a
ch

in
e

«
cr

e
a
te

»
+

M
a
ch

in
e

+
cp

u
S
p
e
e
d
:i
n
t

+
m

e
m

o
ry

S
iz

e
:i
n
t

M
y
S

q
lD

b

«
cr

e
a
te

»

+
M

yS
q
lD

b

«
cr

e
a
te

»

+
M

yS
q
lD

b

S
k

il
l

«
cr

e
a
te

»

+
S
ki

ll

«
cr

e
a
te

»
+

S
ki

ll

«
cr

e
a
te

»

+
S
ki

ll

«
cr

e
a
te

»

+
S
ki

ll

-s
ki

llF
a
ct

o
r:

in
t

H
a

rd
w

a
re

«
cr

e
a
te

»

+
H

a
rd

w
a
re

«
cr

e
a
te

»

+
H

a
rd

w
a
re

«
cr

e
a
te

»

+
H

a
rd

w
a
re

D
a

ta
b

a
s
e

D
e

s
ig

n

«
cr

e
a
te

»

+
D

a
ta

b
a
se

D
e
si

g
n

«
cr

e
a
te

»
+

D
a
ta

b
a
se

D
e
si

g
n

«
cr

e
a
te

»

+
D

a
ta

b
a
se

D
e
si

g
n

W
e

b
s
e

rv
e

rC
o

n
fi

g
u

ra
ti

o
n

«
cr

e
a
te

»

+
W

e
b
se

rv
e
rC

o
n
fi
g
u
ra

ti
o
n

«
cr

e
a
te

»
+

W
e
b
se

rv
e
rC

o
n
fi
g
u
ra

ti
o
n

«
cr

e
a
te

»

+
W

e
b
se

rv
e
rC

o
n
fi
g
u
ra

ti
o
n

J2
e

e
Jd

b
c
R

e
s
o

u
rc

e

«
cr

e
a
te

»
+

J2
e
e
Jd

b
cR

e
so

u
rc

e

«
cr

e
a
te

»

+
J2

e
e
Jd

b
cR

e
so

u
rc

e

+
d
a
ta

b
a
se

:
D

a
ta

b
a
se

J2
e

e
M

o
d

u
le

«
cr

e
a
te

»

+
J2

e
e
M

o
d
u
le

«
cr

e
a
te

»

+
J2

e
e
M

o
d
u
le

J2
e

e
A

p
p

li
c
a

ti
o

n

«
cr

e
a
te

»
+

J2
e
e
A
p
p
lic

a
ti
o
n

«
cr

e
a
te

»

+
J2

e
e
A
p
p
lic

a
ti
o
n

+
se

tJ
2
e
e
Jd

b
cR

e
so

u
rc

e
s:

vo
id

+
g
e
tJ

2
e
e
Jd

b
cR

e
so

u
rc

e
s:

S
e
t<

J2
e
e
Jd

b
cR

e
so

u
rc

e
>

+
j2

e
e
Jd

b
cR

e
so

u
rc

e
s:

S
e
t<

J2
e
e
Jd

b
cR

e
so

u
rc

e
>

JV
M

«
cr

e
a
te

»
+

JV
M

«
cr

e
a
te

»

+
JV

M

«
cr

e
a
te

»

+
JV

M

+
ve

rs
io

n
:

S
tr

in
g

L
o

g
4

jJ
2

e
e

M
o

d
u

le

«
cr

e
a
te

»
+

Lo
g
4
jJ

2
e
e
M

o
d
u
le

«
cr

e
a
te

»

+
Lo

g
4
jJ

2
e
e
M

o
d
u
le

E
C

o
m

m
e

rc
e

J
2

e
e

A
p

p
li

c
a

ti
o

n

«
cr

e
a
te

»

+
E
C
o
m

m
e
rc

e
J2

e
e
A
p
p
lic

a
ti
o
n

«
cr

e
a
te

»

+
E
C
o
m

m
e
rc

e
J2

e
e
A
p
p
lic

a
ti
o
n

J2
e

e
C

o
n

ta
in

e
r

«
cr

e
a
te

»
+

J2
e
e
C
o
n
ta

in
e
r

«
cr

e
a
te

»

+
J2

e
e
C
o
n
ta

in
e
r

+
se

tJ
2
e
e
M

o
d
u
le

s:
vo

id

+
g
e
tJ

2
e
e
M

o
d
u
le

s:
S
e
t<

J2
e
e
M

o
d
u
le

>
+

se
tJ

2
e
e
A
p
p
lic

a
ti
o
n
s:

vo
id

+
g
e
tJ

2
e
e
A
p
p
lic

a
ti
o
n
s:

S
e
t<

J2
e
e
A
p
p
lic

a
ti
o
n
>

+
j2

e
e
A
p
p
lic

a
ti
o
n
s:

S
e
t<

J2
e
e
A
p
p
lic

a
ti
o
n
>

+
j2

e
e
M

o
d
u
le

s:
S
e
t<

J2
e
e
M

o
d
u
le

>

J
a

v
a

A
p

p
li

c
a

ti
o

n

«
cr

e
a
te

»
+

Ja
va

A
p
p
lic

a
ti
o
n

«
cr

e
a
te

»

+
Ja

va
A
p
p
lic

a
ti
o
n

+
jv

m
:J

V
M

1 0
..
*

1 0
..
*

1

0
..
*

1

0
..
*

1

0
..
*

1

0
..
*

1

0
..
*

1

0
..
*

1
0
..
*

1
0
..
*

1 0
..
*

1 0
..
*

1

0
..
*

1

0
..
*

Figure 4.4: UML model of the IT infrastructure scenario. See Appendix C for a bigger
version of the figure.

46



4.3. The J2EE scenario

4.3.2.1. Task: SpeedUpWebApplication

Variables J2eeApplication application
LoadBalancer lb
J2eeContainer jc
WebServer ws, newws
DbServer dbserver
Database olddb, newdb
J2eeJdbcResource dbresource
Human expert
Skill skill

Method EnableLoadBalancing
Precondition application is a CI
Sub tasks InstallLoadBalancer(lb ← lb)

InstallJ2eeServer(server ← newws, container ← jc)
InstallJ2eeApplication(cont ← jc, app ← application)
AddContainerToLoadbalancer(container ← jc, lb ← lb)

Method MigrateDatabase
Precondition application, dbserver, olddb, dbresource are CIs

dbresource ∈ application.j2eeJdbcResources
dbresource = database.olddb

Sub tasks BackupDatabase(db ← olddb)
InstallDatabase(dbServer ← dbserver, db ← newdb)
CopyDatabaseContent(fromDb ← olddb, toDb ← newdb)

Operator AskWebApplicationExpert
Duration 10
Precondition application, expert, skill are CIs

skill ∈ expert.skills
Effects ∅

Method UpgradeWebServerHardware
Precondition application, ws, jc are CIs

jc ∈ ws.j2eeContainers
application ∈ jc.j2eeApplications

Sub tasks UpgradeHardware(machine ← ws)

Method UpgradeDatabaseServerHardware
Precondition application, dbserver, olddb, dbresource are CIs

dbresource ∈ application.j2eeJdbcResources
dbresource = database.olddb
olddb ∈ dbserver.databases

Sub tasks UpgradeHardware(machine ← dbserver)

47



4. The ChangeRefinery prototype

Method UpgradeDatabaseServerAndWebServerHardware
Precondition application, dbserver, olddb, dbresource, ws, jc are CIs

dbresource ∈ application.j2eeJdbcResources
dbresource = database.olddb
olddb ∈ dbserver.databases
jc ∈ ws.j2eeContainers
application ∈ jc.j2eeApplications

Sub tasks UpgradeHardware(machine ← dbserver)
UpgradeHardware(machine ← ws)

4.3.2.2. Task: UpgradeECommerceApplication

Variables ECommerceJ2eeApplication application, newApplication
WebServer ws
J2eeContainer jc
Log4jJ2eeModule mod
Integer mem, cpu

Method DefaultECommerceUpgrade
Precondition application, ws, jc are CIs

jc ∈ ws.j2eeContainers
application ∈ jc.j2eeApplications

Sub tasks UpgradeHardware(machine ← ws, mem ← mem, cpu ←
cpu)
InstallECommerceApplicationVersion5(app ← newApp,
cont ← jc, log4jmodule ← mod)
InstallJ2eeModule(module ← mod, container ← jc)

4.3.2.3. Task: InstallECommerceApplicationVersion5

Variables J2eeContainer cont
Log4jJ2eeModule log4jmodule
ECommerceJ2eeApplication app

Operator InstallECommerceApplicationVersion5-Script
Duration 10
Precondition cont, log4jmodule are CIs

app is unbound
log4jmodule ∈ cont.j2eeModules

Effects add new app CI
add app to cont.j2eeApplications

48



4.3. The J2EE scenario

4.3.2.4. Task: InstallJ2eeModule

Variables J2eeContainer container
J2eeModule module

Operator InstallJ2eeModule-Script
Duration 5
Precondition container is a CI

module is unbound
Effects add new module CI

add module to container.j2eeModules

4.3.2.5. Task: AddContainerToLoadbalancer

Variables J2eeContainer container
LoadBalancer lb

Operator AddContainerToLoadBalancer-Script
Duration 5
Precondition container, lb are CIs

container 6∈ lb.balancedContainers
Effects add container to lb.balancedContainers

4.3.2.6. Task: BackupDatabase

Variables Database db

Operator RunBackupScript
Duration 50
Precondition db is a CI
Effects ∅

4.3.2.7. Task: CopyDatabaseContent

Variables Database fromDb, toDb

Operator CopyDbScript
Duration 40
Precondition fromDb, toDb are CIs

fromDb 6= toDb
Effects ∅

49



4. The ChangeRefinery prototype

4.3.2.8. Task: InstallDatabase

Variables DbServer dbServer
Database db
DbServer dbServer
Integer mem

Operator InstallNewDatabaseOnNewDbServer-Script
Duration 5
Precondition dbServer, db are unbound
Effects create dbServer and db CIs

add db to dbServer.databases

Operator InstallNewDatabaseOnExistingDbServer
Duration 10
Precondition dbServer is a CI

db is unbound
Effects create db CI

add db to dbServer.databases

Method InstallNewDatabaseOnSpecialDbServer
Precondition
Sub tasks SetupServer(server ← dbServer, mem ← mem)

InstallDatabaseSoftware(dbserver ← dbserver, db ← db)

4.3.2.9. Task: InstallDatabaseSoftware

Variables DbServer dbserver
Database db

Operator InstallMySqlDb-Script
Duration 15
Precondition dbserver is a CI

db is unbound
Effects create db CI

add db to server.databases

Operator InstallOracleDb-Script
Duration 20
Precondition dbserver is a CI

db is unbound
Effects create db CI

add db to server.databases

50



4.3. The J2EE scenario

4.3.2.10. Task: InstallJ2eeApplication

Variables J2eeContainer cont
J2eeApplication app

Operator InstallJ2eeApplication-Script
Duration 10
Precondition cont, app are CIs

app 6∈ cont.j2eeApplications
Effects add app to cont.j2eeApplications

4.3.2.11. Task: InstallJ2eeContainerSoftware

Variables DbServer webserver
J2eeContainer cont

Operator InstallJ2eeContainerSoftware-Script
Duration 10
Precondition webserver is a CI

cont is unbound
Effects create cont CI

add cont to webserver.j2eeContainers

4.3.2.12. Task: InstallJ2eeServer

Variables WebServer server
J2eeContainer container

Method DefaultJ2eeServerInstallation
Precondition ∅
Sub tasks SetupServer(server ← server, mem ← 1000)

InstallJ2eeContainerSoftware(webserver ← server, cont ←
container)

51



4. The ChangeRefinery prototype

4.3.2.13. Task: InstallLoadBalancer

Variables LoadBalancer lb

Method LoadbalancerOnServer
Precondition
Sub tasks SetupServer(server ← lb)

Operator InstallLoadBalancer-Script
Duration 10
Precondition lb is unbound
Effects add lb CI

Operator UseExistingLoadBalancer
Duration 1
Precondition lb is CI
Effects ∅

4.3.2.14. Task: SetupServer

Variables Machine server
Integer mem

Operator InstallVirtualServerByScript
Duration 10
Precondition server is unbound
Effects add server CI

Operator UseExistingServer
Duration 1
Precondition server is a CI

server.memorySize ≥ mem
Effects ∅

Operator UseLowEndServer
Duration 10
Precondition server is a CI

server.memorySize ≤ mem
Effects ∅

52



4.4. Evaluation of ChangeRefinery’s basic capabilities

4.3.2.15. Task: UpgradeHardware

Variables Machine machine
Integer mem, cpu

Operator UpgradeMem
Duration 15
Precondition machine is a CI
Effects machine.memorySize += mem

Operator UpgradeCpu
Duration 15
Precondition machine is a CI
Effects machine.cpuSpeed += cpu

Operator UpgradeMemAndCpu
Duration 25
Precondition machine is a CI
Effects machine.cpuSpeed += cpu

machine.memorySize += mem

4.4. Evaluation of ChangeRefinery’s basic capabilities

This section gives examples of the basic ChangeRefinery capabilities. The evaluation of
more advanced features, such as temporal reasoning, and the illustration of the refinement
of a more complex workflow can be found in Section 5.3.

4.4.1. Preconditions and variable bindings as CMDB queries

ChangeRefinery output: Listing C.5
Domain: J2eeScenario(5), Listing C.3
Goal task: SpeedUpWebApplication

The preconditions of the UpgradeWebServerHardware method for the SpeedUpWebApp-
lication goal task constrain its applicability to “all J2eeApplications that are deployed on
a J2eeContainer which is hosted on a WebServer”. Lines 14-24 in Listing C.5 show the
matching tuples of CMDB CIs. Variables in the remaining task network are bound accord-
ing to the user’s choice, which is reflected in the found change plan: In line 25, binding [0]
with WebshopServer5 was chosen, and the final plan contains the action UpgradeMemAnd-
Cpu(machine ← WebshopServer5). As described earlier, preconditions of methods and op-
erators are used to constrain their applicability to CMDB states and to bind variables to
CMDB CIs.

53



4. The ChangeRefinery prototype

4.4.2. Additional ordering constraints due to failed preconditions

ChangeRefinery output: Listing C.9
Domain: VerySimpleJ2eeScenario, Listing C.2
Goal task: UpgradeECommerceApplication

Listing C.9 shows all possible plans for the goal task UpgradeECommerceApplication
in the scenario VerySimpleJ2eeScenario. The precondition log4jmodule ∈ cont.j2eeModules
(see Section 4.3.2) of the InstallECommerceApplicationVersion5-Script operator requires the
Log4j module to be installed on the application container. As this is not the case in the
initial state of the VerySimpleJ2eeScenario scenario, the InstallJ2eeModule-Script action is
ordered before the InstallECommerceApplicationVersion5-Script action, because this is the
only ordering that satisfies this preconditions.

4.4.3. Reuse of change recipe information and granularity of plan refinement

ChangeRefinery output: %
Domain: %
Goal tasks: SpeedUpWebApplication, UpgradeECommerceApplication

Task, methods, and operators can be reused to refine different goal tasks; the granularity of
change plan refinement can be easily extend from rather abstract actions (e.g. the AskWeb-
ApplicationExpert operator for the SpeedUpWebApplication task) to specialised and very
detailed actions (e.g. UpgradeMem and UpgradeCpu operators for the UpgradeHardware
task).

As an example for change recipe reuse, consider the high-level goal tasks SpeedUpWeb-
Application and UpgradeECommerceApplication (see Section 4.3.2), which both use the
UpgradeHardware sub task. The SpeedUpWebApplication goal task can be trivially accom-
plished by the single action AskWebApplicationExpert, or refined to a more complicated
task network by the EnableLoadbalancing or MigrateDatabase methods.

54



5. Towards an advanced prototype

This chapter describes the temporal reasoning capabilities of ChangeRefinery , and ex-
plains them with examples (Section 5.3). Additionally, Section 5.4 briefly describes other
possible but so far unimplemented extensions that we have been investigating (Section 5.4).

5.1. Quantitative temporal information: Durative actions and
deadline tasks

As detailed in Section 3.4, the ChangeRefinery prototype uses the Simple Temporal Prob-
lem (STP) concept for temporal reasoning. Figure 5.1 depicts a UML diagram of the data
model used to represent the STP. The classes STP, StpNode and TemporalRelation are a
straightforward and independent implementation of the STP concept (Section A.5). Every
time point is an instance of the StpNode class and a binary temporal constraint [a′, b′] be-
tween two time points stpNode1 and stpNode2 is an instance of the TemporalRelation class
with [a← a′], [b← b′], [from← stpNode1], and [to← stpNode2]. Nodes and constraints can
be added to the STP via its add() and setConstraint() methods, respectively.

The HTN algorithm does not use the STP-related StpNode and TemporalRelation classes,
but its own PlanningElement and OrderingConstraint objects: Instances of PlanningEle-
ment1 are qualitatively ordered by instances of the OrderingConstraint class. The Stp-
HtnConnector class functions as adapter between the HTN and the STP “world”: Every
PlanningElement has two associated STP time points, the start and the end time point.
The global init and finis time points are created in the StpHtnConnector constructor. The
add() method of the StpHtnConnector class can be used to add to the STP the set p of Plan-
ningElements with a partial order as specified by the set c of OrderingConstraints. Every
PlanningElement in p generates two StpNode instances in the STP and every OrderingCon-
straint between two PlanningElements in p generates the temporal constraint [0,∞] between
the respective start and end time points.

Whenever a task is decomposed into sub tasks by the HTN algorithm, the decomposeTo()
method (see Algorithm 3 in Section 3.4) is invoked. Intuitively, the decomposeTo() method
translates the HTN δ-function for task decomposition to the STP data model and has the
following effects:

• Add all PlanningElements in into to the STP (i.e. add start and end nodes for all of
them).

1PlanningElement is the super class of tasks, operators and actions, see UML diagram in Figure 2.1 in
Section 2.2.

55



5. Towards an advanced prototype

STP
c: TemporalRelation[][]
add(StpNode)
setConstraint(
from: StpNode,
to: StpNode,
rel: TemporalRelation)

PC(): boolean

StpHtnConnector
start, finis: StpNode
add(
p: PlanningElement[]
c: OrderingCon-

straint[])
decomposeTo(
p: PlanningElement
into: PlanningElement[]
c: OrderingConstraint[]

PC()
rollback()

HTNPlanningElement

OrderingConstraint

StpNode
name: String

TemporalRelation
a,b: float

stpHtn1

stp
*

timePoints * *
from

to

from to

Figure 5.1: Simplified UML diagram for the integration of STP temporal reasoning with
HTN planning. The StpHtnConnector is an adaptor between the HTN-related
classes OrderingConstraint and PlanningElement, and their STP equivalents
StpNode and TemporalRelation. See text for a detailed description.

• Enforce the temporal constraints of p to all PlanningElements in into. This enforces
that all sub tasks have to be accomplished in the same time interval as their respective
parent tasks.

• Add qualitative ordering constraints [0,∞] as specified by c.

• Add constraints [0, d] between init time point and start time points of actions with
deadline d.

The STP integration to the HTN algorithm (Listing C.1) is straightforward: In line 37,
all tasks and ordering constraints are added to the initial STP. When a task is accomplished
by an operator, we first compute the previous actions that interfere with the effects or
preconditions of the accomplishing operator (lines 138–141); see Section 5.2 for details.
The task is then decomposed using the decomposeTo() method with respect to the found
additional ordering constraints (line 147). Similarly, in line 193, a task is decomposed into
its sub tasks when refined by a method. After both decomposition activities, the path

56



5.1. Quantitative temporal information: Durative actions and deadline tasks

consistency algorithm PC() is invoked to check the consistency of the resulting constraint
network (lines 163 and 201, respectively). If it turns out to be inconsistent, the HTN branch
is aborted; otherwise the HTN algorithm is called recursively. Finally, whenever a valid
plan is found (lines 45–55) a copy of the current STP state is stored together with the
plan. As HTN is implemented as a backtracking algorithm, the temporal constraints in
the STP need to be rolled back similarly to the preliminary plan and the remaining task
network. Unfortunately, all simple2 path consistency algorithms are non-reversible and thus
we have to store a copy of every STP version before it is changed by adding new nodes,
constraints, or by invoking the path consistency algorithm. The StpHtnConnector class
handles versioning of STPs transparently by saving the old state of the STP before applying
changes. Furthermore, it exposes the rollback() function to return to the previous state
of the STP. From the HTN algorithm’s perspective, calling decomposeTo() and rollback()
(lines 178 and 210) are the only interfaces required to communicate with the versioned STP.

Listing 5.1: ChangeRefinery implementation of the path consistency algorithm
1 public boolean PC() {
2 i f ( ! this . i sSymmetric )
3 throw new Error ( "PC i s  only  de f ined  f o r  symmetric  STPs" ) ;
4 for ( int k=0; k<this . s i z e ( ) ; k++){
5 for ( int i =0; i<this . s i z e ( ) ; i++){
6 i f ( i !=k )
7 for ( int j =0; j<this . s i z e ( ) ; j++){
8 i f ( j !=k && i != j ) {
9 this . c . get ( i ) . s e t ( j , this . i n t e r s e c t ( this . c . get ( i ) . get ( j ) ,

this . compose ( this . c . get ( i ) . get ( k ) , this . c . get ( k ) . get ( j ) ) )
) ;

10

11 // the STP i s i n c on s i s t e n t i f a c on s t r a i n t i s empty
12 // [ a , b ] <=> a <= t_j − t_i <= b
13 // a>b ==> there are no t_j and t_i t ha t s a t i s f y the

c on s t r a i n t
14 i f ( this . c . get ( i ) . get ( j ) . a > this . c . get ( i ) . get ( j ) . b ) return

fa l se ;
15 }
16 }
17 }
18 }
19 i f ( ! this . checkSymmetry ( ) )
20 throw new Error ( "PC operat ion  produced non−symmetric  STP" ) ;
21 return true ;
22 }

Our implementation of the path consistency algorithm (Algorithm 11) is depicted in List-
ing 5.1. The STP class uses a two-dimension LinkedList

private List<List<TemporalRelation>> c = new ArrayList<List<TemporalRelation>>();

to store the TemporalRelation objects in a n×n matrix where n is the number of time points
in the STP. In the path consistency algorithm, the iteration of all triples is implemented as
2An approach for flexible constraint handling (including retractable constraints) in STPs is presented in [40].

57



5. Towards an advanced prototype

iActionp:id1
e:id2 jActionp:id2

e:id1

HTN

e→ p

p→ e

Figure 5.2: Additional ordering constraints due to CI dependencies.

three nested for-loops, which obviously result in O(n3) time complexity, where n is the
number of time points in the STP.

5.2. Additional ordering constraints due to CI dependencies

As explained in Section 3.4, the knowledge base must support a dependency detection mech-
anism to decide if the preconditions and effects of two actions ai and aj interfere. The
ChangeRefinery prototype supports the following simple dependency detection: Let pi,
ei, pj , ej be the preconditions and effects of two actions ai and aj , and bi, bj their respec-
tive variable bindings. Define two functions queryDependencies(pk, bk) := “the set of IDs of
knowledge base CIs in bk that satisfy the precondition pk”, and effectDependencies(ek, bk) :=
“the set of IDs of knowledge base CIs in bk that are altered by the effect ek”. We can know
define a function depends() that decides whether the preconditions and effects of two actions
interfere:

depends(ai, aj) =


true ifqueryDependencies(pi, bi) ∩ effectDependencies(ej , bj) 6= ∅

OR effectDependencies(ei, bi) ∩ queryDependencies(pj , bj) 6= ∅
false otherwise

The dependency detection mechanism is illustrated in Figure 5.2: The two actions ai and
aj are ordered sequentially by the HTN algorithm (edge labelled “HTN”). The effectDepen-
dencies and queryDependencies sets are found as subscript and superscript of the actions.
The red ordering constraint (labelled “p→ e”) is added because the effect of action aj alters
CI id1 and can potentially invalidate the precondition of action ai, which depends on CI id1.
Similarly, the green ordering constraint (labelled “e→ p”) is added because the precondition
of action aj depends on CI id2, which is altered by the effect of action ai.

The computation of the effectDependencies set is supported by the method

public Set<Long> getAffectedIds(Session s, Binding b);

that is implemented by all sub classes of Assertable (and thus all sub classes of Effect, see
Figures 4.1 and 4.3). The set is returned to the HTN algorithm by the assertToKb() method

58



5.3. Evaluation of ChangeRefinery’s advanced capabilities

of the knowledge base component (see Figure 4.1 and line 122 in Listing C.1). The query-
Dependecies set is directly calculated from the binding of an operator (lines 86–92 in Listing
C.1). Every action in the plan stores the two sets as private variables queryDependencies
and effectDependencies, they are passed to the action in its constructor (line 124).

The disjunction in the depends() function is calculated using an action’s

public boolean preconditionDependsOnOtherActionsEffects(Action otherAction);

method (Listing 5.2), which computes if the intersection of the two sets if empty. Finally,
for every interfering previous action, a qualitative ordering constraint is added to the STP
(lines 137–141 and 147 in Listing C.1).

Listing 5.2: ChangeRefinery implementation of the preconditionDependsOnOtherAction-
sEffects() method of the Action class

1 public boolean precondit ionDependsOnOtherAct ionsEf fects ( Action
otherAct ion ) {

2 for (Long queryCi : this . queryDependencies )
3 for (Long e f f e c tC i : otherAct ion . ge tEf f e c tDependenc i e s ( ) )
4 i f ( queryCi . equa l s ( e f f e c tC i ) )
5 return true ;
6 return fa l se ;
7 }

5.3. Evaluation of ChangeRefinery’s advanced capabilities

This section gives examples of temporal reasoning and dependency detection capabilities of
the ChangeRefinery prototype. For the output of the ChangeRefinery sessions, please
refer the listings as given in the beginning of every example. The resulting workflows and
temporal constraints are illustrated in Tables 5.1 to 5.5 and the corresponding figures.

5.3.1. Reasoning on quantitative temporal information

ChangeRefinery output: Listings C.6, C.7
Domain: VerySimpleJ2eeScenario, Listing C.2
Goal task: SpeedUpWebApplication

This example shows how quantitative temporal constraints are propagated during the
planning process and how they enforce the temporal validity of plans. Using the Up-
gradeDatabaseServerAndWebServerHardware method, the goal task SpeedUpWebApplica-
tion with temporal deadline 50 is refined into two UpgradeHardware sub tasks with deadlines
30 and 35, respectively. The UpgradeHardware sub tasks are supposed to upgrade the hard-
ware of a WebServer and a DbServer to which the J2eeApplication is connected. For the
first (second) sub tasks, the UpgradeMemAndCpu (UpgradeMem) operator with duration
25 (15) is chosen (lines 27 and 38, respectively). The change plan (line 49) shows the

59



5. Towards an advanced prototype

two actions UpgradeMemAndCpu(machine ← MiscDbServer) and UpgradeMem(machine
← MiscServer) and the resulting Simple Temporal Problem (STP). Note how the durations
and temporal deadlines are propagated as tasks are decomposed: The first UpgradeHard-
ware task (line 50) with deadline 30 is decomposed into the UpgradeMemAndCpu action
(line 53) with duration 25. The action therefore has to start in the interval [0, 5] and and in
the interval [25, 30]. The corresponding observation holds for the UpgradeMem action.

Now, consider the same change plan design process, but with an additional qualitative
ordering constraint between the two UpgradeHardware sup tasks. The sequential execution
of the UpgradeMemAndCpu and the UpgradeMem actions with a total duration of 40 is
incompatible with the deadline 35 of the second sub task. Therefore the STP and thus the
change plan are inconsistent3 (see Listing C.7).

5.3.2. Additional ordering constraints due to CI dependencies

ChangeRefinery output: Listings C.8
Domain: VerySimpleJ2eeScenario, Listing C.2
Goal tasks: UpgradeHardware(machine ← id1, mem ← 1000) and SetupServer(server ←
id1, mem ≥ 2000) without ordering constraint

This example shows how mutual CI dependencies between preconditions and effects of op-
erators enforce additional qualitative ordering constraints in the resulting plan (see Sections
3.4 and 5.2 for more detailed explanations why this is necessary). The HTN algorithm is
called with an initial task network comprising the tasks UpgradeHardware and SetupServer
without any ordering constraint. Furthermore, the server and machine variables are initially
bound to the MiscDbServer CI with ID 1. The MiscDbServer is initially equipped with
memorySize=1000. In the planning process (Listing C.8), first the UpgradeHardware task
is accomplished by the UpgradeMem operator with mem ← 1000. Its effect is to increase
the memorySize property of the MiscDbServer CI from 1000 to 2000. Then, the UseExist-
ingServer operator with the condition mem geq 2000 was chosen to refine the SetupServer
task; it is applicable because the precondition MiscDbServer.memorySize ≥ 2000 is satisfied
by the MiscDBServer CI.

Note that the HTN plan [UpgradeMem → UseLowEndServer] is valid, while the inverse
plan [UseExistingServer → UpgradeMem] is invalid because the precondition of the Use-
ExistingServer operator is not satisfied by the MiscDbServer CI with memorySize=1000.
Without the special dependency detection mechanism explained in Sections 3.4 and 5.2 the
STP would not include a qualitative ordering constraint between the two actions and would
thus temporally allow a plan which is invalid with respect to the HTN semantics. Table 5.1
lists resulting temporal constraints, which are illustrated by Figure 5.3.

5.3.3. A complex example

This section exemplifies two different more complex change plan designs for the goal task
SpeedUpWebApplication. The first plan introduces load balancing for the J2EE container,
3A constraint satisfaction problem is inconsistent, iff it is has an empty constraint. Here, the duration
constraint [15, 10] of the UpgradeMemory action (line 5 in Listing C.7) is empty, as 15 > 10.

60



5.3. Evaluation of ChangeRefinery’s advanced capabilities

Actions

Time

deadline

Mem
15

Server
5

0 10 20 30 40 50

Server Mem

Figure 5.3: Graphical representation of the temporal relations between actions in the “Addi-
tional ordering constraints due to CI dependencies” change plan (Section 5.3.2).
The top figure shows the temporal constraints from the STP: Every action has
to be accomplished within its allowed time window (dashed lines) and has a
duration (solid lines). Arrows between actions indicate qualitative ordering con-
straints, i.e. the UpgradeMem and UseExistingServer actions are sequentially
ordered in this example. The bottom figure shows the corresponding workflow
representation of the actions and their qualitative ordering constraints.

61



5. Towards an advanced prototype

Table 5.1: STP constraints for the “Additional ordering constraints due to CI dependencies”
change plan.

Action Start End Duration
UpgradeMem (Mem) [0, 30] [15, 45] 15
UseExistingServer (Server) [15, 45] [20, 50] 5

and the second plan migrates the database server. For both plans, the resulting STP is shown
as a table and visualised in a graphical representation highlighting the temporal constraints
between actions. The graphical representation is then translated to a workflow diagram of
the change plan.

5.3.3.1. Solution plan 1: Migrate database server

ChangeRefinery output: Listings C.11
Domain: VerySimpleJ2eeScenario, Listing C.2
Goal task: SpeedUpWebApplication

In this change plan, the SpeedUpWebApplication goal task is refined into a change plan
that migrates the Wiki web application’s database to a new database server using an Oracle
database. The final plan comprises backing up the old database, setting up a new database
server as a virtual server, installing the Oracle database software, and finally copying the
content of the old database to the new database. Table 5.2 lists the involved actions and their
respective variable bindings to knowledge base CIs. Table 5.3 lists the resulting temporal
constraints for the change plan, which are visualised in Figure 5.4. It turns out that all
actions have to be accomplished in a sequential fashion. The STP also contains information
about the estimated total implementation time of the change, which is between 120 and 150.

Table 5.2: Actions in the “migrate database” change plan.
Action Variable bindings
RunBackupScript (Backup) db ← Database (id=5)
InstallVirtualServerByScript (VS) server ← DbServer (id=16)
InstallOracleDbScript (DB) db ← Database (id=17)

dbserver ← DbServer (id=16)
CopyDbScript (Copy) fromDb ← Database (id=5)

toDb ← Database (id=17)

Table 5.3: STP constraints for the “migrate database” change plan.
Action Start End Duration
RunBackupScript (Backup) [0, 30] [50, 80] 50
InstallVirtualServerByScript (VS) [50, 80] [60, 90] 10
InstallOracleDbScript (DB) [60, 90] [80, 110] 20
CopyDbScript (Copy) [80, 110] [120, 150] 40
Task SpeedUpWebApplication [0, 30] [120, 150] [120, 150]

62



5.3. Evaluation of ChangeRefinery’s advanced capabilities

Actions

Time

deadline

Backup 50

VS
10

DB
20

Copy 40

0 10 20 30 40 50

Backup VS DB Copy

Figure 5.4: Graphical representation of the temporal relations between actions in the “mi-
grate database” change plan (Section 5.3.3.1). The top figure shows the temporal
constraints from the STP: Every action has to be accomplished within its allowed
time window (dashed lines) and has a duration (solid lines). Arrows between ac-
tions indicate qualitative ordering constraints, i.e. all actions are sequentially
ordered in this example. The bottom figure shows the corresponding workflow
representation of the actions and their qualitative ordering constraints.

63



5. Towards an advanced prototype

5.3.3.2. Solution plan 2: Enable load balancing

ChangeRefinery output: Listings C.10
Domain: VerySimpleJ2eeScenario, Listing C.2
Goal task: SpeedUpWebApplication

In this change plan, the SpeedUpWebApplication goal task is refined into a change plan
that enables load balancing for the Wiki web application container. To accomplish this,
the J2EE container holding the Wiki application is replicated to a freshly installed virtual
server, a load balancer system is installed, and finally the J2EE container is added to the
load balancer. Table 5.4 lists the involved actions and their respective variable bindings to
knowledge base CIs. Table 5.5 lists the resulting temporal constraints for the change plan,
which are visualised in Figure 5.5. The resulting change plan has a mixed sequential and
parallel structure.

Figure 5.6 shows a graphical representation of the stepwise change plan refinement pro-
cess. The upper figures depict the decomposition methods, the lower figures show the four
decomposition steps from the initial goal task (step 1) to the final workflow (step 4). The
planning process starts with the workflow from step 1, which consists of the single goal task,
SpeedUpWebApplication. Applying the EnableLoadbalancing method decomposes the goal
task into the workflow shown in step 2. The InstallJ2eeServer sub task is then further refined
by the DefaultJ2eeServerInstallation method, which results in the workflow shown in step
3. Finally, in step 4 all tasks can by accomplished by their respective operators.

Table 5.4: Actions in the “enable load balancing” change plan.
Action Variable bindings
InstallVirtualServerByScript (VS) server ← WebServer (id=17)
InstallJ2eeContainerSoftware-Script (Cont) webserver ← WebServer (id=17)

cont ← J2eeContainer (id=18)
InstallJ2eeApplication-Script (App) app ← J2eeApplication (id=8)

cont ← J2eeContainer (id=18)
AddContainerToLoadBalancer-Script (AddContLb) container ← J2eeContainer (id=18)

lb ← LoadBalancer (id=16)
InstallLoadBalancer-Script (Lb) lb ← LoadBalancer (id=16)

Table 5.5: STP constraints for the “enable load balancing” change plan.
Action Start End Duration
InstallVirtualServerByScript (VS) [0, 15] [10, 25] 10
InstallJ2eeContainerSoftware-Script (Cont) [10, 25] [20, 35] 10
InstallJ2eeApplication-Script (App) [20, 35] [30, 45] 10
AddContainerToLoadBalancer-Script (AddContLb) [30, 45] [35, 50] 5
InstallLoadBalancer-Script (Lb) [0, 35] [10, 45] 10
Task SpeedUpWebApplication [0, 15] [35, 50] [35, 50]

64



5.3. Evaluation of ChangeRefinery’s advanced capabilities

Actions

Time

deadline

VS
10

Cont
10

App 10

AddContLb
5

Lb
10

0 10 20 30 40 50

VS Cont App

Lb

AddContLb

Figure 5.5: Graphical representation of the temporal relations between actions in the “enable
load balancing” change plan (Section 5.3.3.2). The top figure shows the temporal
constraints from the STP: Every action has to be accomplished within its allowed
time window (dashed lines) and has a duration (solid lines). Arrows between
actions indicate qualitative ordering constraints, e.g. the Lb action has to finish
before the AddContLb action starts. The bottom figure shows the corresponding
workflow representation of the actions and their qualitative ordering constraints.

65



5. Towards an advanced prototype

EnableLoadbalancing method for
task SpeedUpWebApplication

Install-
LoadBalancer

InstallJ2eeServer

Install-
J2eeApplication

AddContainerToLoadbalancer

DefaultJ2eeServerInstallation
method for task InstallJ2eeServer

SetupServer

InstallJ2eeContainerSoftware

1

SpeedUpWebApplication

2

Install-
LoadBalancer

InstallJ2eeServer

InstallJ2ee-
Application

AddContainerToLoadbalancer

3

Install-
LoadBalancer

SetupServer

InstallJ2ee-
ContainerSoftware

Install-
J2eeApplication

AddContainerToLoadbalancer

4

Lb

VS

Cont

App

AddContApp

Figure 5.6: Graphical representation of the stepwise change plan refinement process. The
upper and lower figures depict the decomposition methods, and the four decom-
position steps, respectively.

66



5.4. Additional ideas for future extensions

5.4. Additional ideas for future extensions

5.4.1. Dependency resolution: The ChangeLedge approach to change planning

Figure 5.7: CIM-based IT infrastructure model of the ChangeLedge system [4].

The ChangeLedge [4,41] system for change plan refinement is based on a CIM-compliant
IT infrastructure model (see Figure 5.7) that includes dependencies between configuration
items. Every CI can exist in different states, and transitions between states are guarded
by checks. Every failed check generates an action that is to be executed in order to satisfy
the check. This model allows to express dependencies between configuration items and to
refine a given workflow of CI transitions by chasing the depending actions of failed checks
and including them in the workflow.

One of the drawbacks of ChangeLedge is that the design of the preliminary change
plan which is input to the refinement system requires a highly skilled IT technician. A
possible integration would use the ChangeRefinery approach to design such a preliminary
change plan, and pass it on to ChangeLedge in order to further resolve configuration item
dependencies.

5.4.2. Advanced decision support through change plan metrics

While we still want to leave decisions on different options for change plan refinement to
the human operator, we would like to assist her in making the best choices by presenting
her metrics, such as time, cost or risk, and to help her understand the trade-offs of various
possibly very different change designs. These metrics might be displayed along with possible
options at every user choice point. For example, choosing decomposition method a to refine
a given task could be expensive but well-studied and proven to work by past changes in
which it was used, whereas method b can be quickly and cheaply implementated but was
never deployed before and thus seems to be quite risky.

67



5. Towards an advanced prototype

One possible way of integrating metrics into the mixed-initiative planning concept is to
annotate the available choices at every choice point (i.e. choice of bindings or refinements).
The algorithm would look ahead (see Section 5.4.3) in the HTN planning space to be able
to anticipate the future effect of every choice and to compute the metrics.

5.4.3. Advanced decision support through pre-compiled HTN planning trees

The current ChangeRefinery implementation offers user interaction at every choice point
(i.e. at every non-deterministic choice of a task, refinement or binding). The user is only
presented those choices that make sense in the current state of the planning process. For
example, only methods and operations that are applicable in the current state of the know-
ledge base are presented. However, the continued planning process might reveal that a
certain refinement can never lead to a valid solution plan and should thus not be offered
to a user. Such a filter requires the look-ahead evaluation of the planning space, which is
in general computationally infeasible. In our case however, early binding of variables to
configuration items significantly prunes the search space and thus makes pre-compilation or
background-compilation of HTN plans a considerable option.

In an extreme case, the whole HTN search space with respect to existing variable bindings
in high-level tasks can be pre-compiled, and the user effectively browses the tree of known
HTN decompositions. This concept would also allow for powerful decision support mecha-
nism, as change plan metrics used to evaluate the quality of different change plans can easily
be computed for different alternatives, once all possible HTN plans are known.

As mentioned in Section 4.2.2 an the knowledge base component of the ChangeRefinery
prototype, the current implementation suffers from poor rollback() and assert() performance.
For example, the computation of all 132 HTN plans for the goal task SpeedUpWebApplica-
tion on the scenario VerySimpleJ2eeScenario takes 174 seconds, out of which 167 seconds
are used for assert() and rollback() operations, 4 seconds for query() computation, and 3
seconds the remaining parts of the algorithm.

5.4.4. Policies on infrastructure and change plans

In Section 2.3, we identified two classes of IT policies which impose constraints on change
plans: The first type of policies constrains the allowed states of the IT infrastructure, and
the second type prescribes conditions on the logical structure of the change plan itself. A
straightforward integration of a policy engine component can be accomplished analogously
to that of the temporal reasoner component: At every HTN planning step (i.e. choosing a
method or an operator), the policy engine is asked to validate the preliminary plan and the
intermediate state of the infrastructure with respect to all policies in the policy repository.
A failed policy signalises that the chosen refinement is invalid and triggers backtracking.

It would of course be desirable to integrate an existing policy engine such as RuleML [13],
Drools [14]. However, the feasibility of this concept can be shown without them: In the
ChangeRefinery prototype, IT infrastructure policies can be specified in the same HQL
formalism as refinement preconditions. The policy stating that “all databases that are

68



5.4. Additional ideas for future extensions

used by web applications need to run on MySQL database management systems” can be
expressed as SELECT db FROM OracleDb as db, J2eeJdbcResource as res, J2eeApplication
as app WHERE res in elements(app.j2eeJdbcResources) AND res.database=db. If this query
has a non-empty number of result tuples, the policy is violated.

5.4.5. Richer temporal information

Timed initial literals were introduced in the Planning Domain Definition Language 2.2
(PDDL) [42] and “are a way of expressing a certain restricted form of exogenous events:
Facts that will become TRUE or FALSE at time points that are known to the planner in
advance, independently of the actions that the planner chooses to execute. Timed initial
literals are thus deterministic unconditional exogenous events” [42]. In principle, the STP
temporal reasoner component is able to reason over timed initial literals [33].

They might be useful to model certain states of the infrastructure, for example regular
known server downtimes or backup cycles.

5.4.6. Hybrid state-space and HTN planning

The assumption of correct change template information (see Section 4.1) is very strong and
also quite likely to be unsatisfied in real-world scenarios. Our idea is to use interleaved (hy-
brid) state-space and HTN planning in situations where the available methods and operators
are incomplete and thus cannot be assembled to a valid plan. This might for example be
the case when the designer of a change template forgot to include a sub task that provides
some effect which is required by a precondition of a subsequent operator. Whenever such
a problem is encountered, a state-space planner is invoked to find a sequence of operators
that fix the deficient method.

This hybrid approach is also applicable to a second use case: Let planning time and execu-
tion time be the time points in which a change plan is designed and executed, respectively.
If other change plans are implemented between planning time and execution time, the actual
state of the IT infrastructure at execution time differs from the simulation environment at
planning time, which can render the change plan invalid. If, for example, a change plan relies
on a certain library to be installed at some specific version (which was the case at planning
time), and another change upgrades the library to a newer version between planning and
execution time, the former change plan becomes invalid. Invoking a state-space planner in
this situation can help to fix the change plan by finding a sequence of states that repairs the
preconditions of subsequent operators in the plan.

For both use cases, the problem statement is: Given a (failed) precondition p and a
current IT infrastructure state s, find a sequence of operators, π = 〈o1, ...,on〉, such that
p is satisfied in the state γ(s, π). Every naive, undirected state-space search is of course
infeasible due to the large branching factor. Existing heuristic search algorithms like hill-
climbing and A* [43, 44] rely on a heuristic function that assigns cost values to states. A
domain independent heuristic usually compares the proximity of a given state with the goal
state by counting the number of logical atoms that are missing to reach the goal state; the

69



5. Towards an advanced prototype

smaller this number is, the closer the inspected state is to the goal state. Assessing the
proximity of states in this way is not possible in our framework for a number of reasons4, so
that we propose the use of a heuristic that rates operators instead of states: Given a set of
operators O, a state s and a precondition p, we define an operator heuristic as a function

H : p× s×O → [0, 1],

that assigns a cost value between 0 and 1 to every operator in O. Intuitively, the cost value
of an operator describes the inverse probability for this operator to be helpful in reaching a
state that satisfies p.

Using an arbitrary operator heuristic, Algorithm 7 is a depth-first, heuristically guided
algorithm for state-space search. It tries to find a repair plan by selecting at every branching
point the cheapest applicable operator. The search is cut off by a maximum search depth
and a maximum cost.

Algorithm 7 State-space forward search controlled by a heuristic on operators.
1: function OH-Forward(State s, Goal g, Float maxCost, Int maxDepth)
2: if s satisfies g then
3: return true
4: if maxDepth= 0 then
5: return false
6:
7: active ← {Operator o | o applicable in s and o.cost<maxCost}
8: queue ← Min-Heap(active)
9: while (queue 6= ∅) ∧ (Operator q ← queue.next) do

10: s.apply(q.effects)
11: π.add(o)
12: OH-Forward(s, g, maxCost − o.cost, maxDepth − 1)
13: π.remove(o)
14: s.rollback()

The following two sections describe alternative approaches for calculating the operator
heuristic5.

5.4.6.1. Property-based operator heuristic

Preconditions usually express properties and relations between CIs, e.g. dbServer.memory ≥
10 AND dbServer.cpu = 1 AND dbServer.hasDatabases ≤ 2 AND wikiDb ∈ dbServer.data-
bases. Similarly, effects of operators tweak such properties or connect different CIs. A simple
heuristic might collect all properties (in this case memory, cpu, hasDatabases, databases)
of a precondition, and assign the cost value 1 to every operator that modifies one of these
4One of them being that we do not use logical atoms and thus cannot count them.
5Note that both concepts do not make use of the state s. This obviously leaves much space for further
improvement.

70



5.4. Additional ideas for future extensions

properties in its effects, and 0 otherwise.

HPB(p = {prop1, ..., propn}, s, o) =
{

1 if any propi is modified by the effects of o
0 otherwise

The ChangeRefinery prototype is prepared for this kind of computation, as the classes
for query building and effects in da.planner.htn.query and da.planner.htn.effects offer access
to the names of properties explicitly.

5.4.6.2. Neural network approach to operator heuristics

The second approach uses a neural network to compute the heuristic function. The input
to the neural network is a binary pattern that indicates which properties are present in the
failed precondition and its output is the heuristic HNN that assigns a value in [0, 1] to every
operator. Let P be the set of all properties of the IT infrastructure that may be part of
precondition queries and O the set of all defined operators; then the neural net computes
the function

HNN : {0, 1}|P | → [0, 1]|O|,

which is a variation of the above-mentioned general operator heuristic. The neural network
can be trained in different ways:

• Using test sets from the property-based heuristic (Section 5.4.6.1)

• By training sets explicitly provided by IT operators

• Automatically, i.e. by using successful past repair plans as training sets

5.4.7. Advanced detection of precondition and effect interference

The dependency detection mechanism presented in Section 5.2 is quite simplistic and orders
actions by a pessimistic locking scheme: Whenever preconditions and effects depend on or
modify the same CI, the actions are ordered sequentially. A more sophisticated concept
could follow one of the following two approaches:

1. A more fined-grained model of configuration items and their properties would allow to
make smarter decisions on the interplay of preconditions and effects.

2. In order to find out whether preconditions and effects interfere or not, one could simu-
late different orderings and check which are forbidden, i.e. which ordering constraints
have to be imposed.

71



5. Towards an advanced prototype

5.4.8. Managing multiple and concurrent changes

So far we assumed that there is only one change that is being planned for. In reality though,
hundreds of RFCs must be dealt with concurrently. An incoming RFC runs through the
change management process and after it was refined into an implementable workflow it is
scheduled in some change window. However, many other changes will be implemented in
the same change window. These changes also alter the IT infrastructure which thus differs
from the knowledge base infrastructure simulation environment at planning time. Handling
these concurrent changes turns out to be a highly non-trivial problem to solve.

5.4.9. Semantic web technology based knowledge base component

One of the primary goals of this thesis was to investigate the applicability of HTN planning
to the prevailing object-oriented data models used in IT configuration management systems.
While our framework and its prototypical implementation clearly shows that this is indeed
a feasible approach, we discovered some drawbacks of our CIM/Hibernate based knowledge
base implementation: Because the knowledge base state is not defined by a set of logical
atoms, the implementation of the rollback functionality is non-trivial. Furthermore, reason-
ing on policies and state-based planning would be vastly facilitated by a set based knowledge
representation.

Semantic web languages and technologies such as RDF [45], OWL [46] and Jena [38]
appear to be a promising basis for such a knowledge base component: They offer a set
based knowledge representation together with powerful query languages such as SPARQL,
and provide expressive object-oriented modeling concepts [47]. Listing 5.3 gives a trivial
example of a RDF/OWL definition of a sub class relationship between two classes, Server
and DatabaseServer.

Listing 5.3: Sub class modeling in OWL
1 <owl :C la s s rd f : abou t=" Server ">
2 <rd f s : subC la s sO f r d f : r e s o u r c e=" DatabaseServer " />
3 </ owl :C la s s>

72



6. Conclusion and outlook

We have proposed a generic architecture for integrating various information sources necessary
for IT change design. The Hierarchical Task Network planning paradigm augmented with
temporal constraints is used to model and hierarchically refine change tasks into consistent
change plans, considering the involved IT infrastructure and policies or constraints on such
plans.

By building a prototype and evaluating it with real-life examples, we have demonstrated
the viability of the approach. To substitute the IT operations model of our prototype
with real IT operations data sources (CMDB, service management, or asset management
products) would require to solve several information management problems, such as model
mapping and integration, and the ability to have a knowledge base that scales to large data
sets. Because of the mixed-initiative nature of the solution, measuring the efficiency of the
tool (i.e. its speed for generating plans) is not the most significant metric. Further validation
would require to deploy the tool in a live environment, and to measure its effectiveness,
i.e. the improvement of productivity of IT practitioners in designing IT changes and the
improvement of the quality of IT plans.

Some ideas for possible future work objectives were already sketched in Section 5.4. Im-
mediate next steps could be to introduce decision-support features in our mixed-initiative
scenario. In this thesis, an IT practitioner guides the design of the change plans by choosing
refinements and variable bindings. While we still want to leave the decision to the human
operator, we would like to assist her in making the best choices by presenting her metrics,
such as time, cost or risk, and to help her understand the trade-offs of various change designs.

Straightforward extensions to the presented framework include the implementation of
richer temporal information like timed initial literals (compare PDDL 2.2 [42]), which can
be handled by the already introduced STP data structure [33].

The integration of established CMDB products is supported by our architecture and would
offer the user a powerful tool for infrastructure knowledge editing and template based query
building. On the other hand, evaluating the use of logic programming and semantic web
techniques for CMDB knowledge representation promises advanced inference capabilities for
the interdependencies of configuration items, as previously targeted by ChangeLedge [4].
The applicability of semantic web technology to IT configuration management systems is
part of ongoing research at HP Labs.

Finally, we also intend to expand the proposed solution in two ways. First we will in-
vestigate the feasibility of the aforementioned hybrid planning approach (Section 5.4.6), i.e.
interleaved state-space and HTN planning, to be able to reason on incomplete domain know-
ledge and repair ill-defined change plans. We also plan to study how our solution can be
combined with proposed change scheduling solutions ( e.g. [18,19] and Section 1.4), and how
to resolve temporal and resource constraints into implementation schedules.

73





A. Automated planning and constraint
satisfaction problems

This chapter depicts the basic definitions, notations and algorithms used in automated plan-
ning in order to introduce the reader to the planning concepts concepts used in this thesis.
The presentation generally follows the syntax and definitions introduced in [5] and [35], but
also borrows from original publications. Several examples illustrate the definitions of every
section.

Automated planning as an area of artificial intelligence (AP) studies reasoning processes
that find and organise actions by anticipating their expected results. Several everyday activ-
ities (such as routing, logistics, business decisions, land use planning, urban planning, etc.)
imply such planning processes, although they are rarely experienced explicitly.

With its (recent) extensions like for example temporal planning [32,33], interleaved plan-
ning/scheduling/resource allocation, etc., automated planning overlaps with related fields
such as scheduling, constraint programming, and graph algorithms.

The remainder of this chapter is organised as follows: Section A.1 defines basic notions
used in automated planning and presents the commonly used Dock-Worker-Robots planning
domain. Section A.2 and A.3 cover state-space and HTN planning and illustrate examples
for both concepts. Section A.4 on constraint satisfaction problems sets up the vocabulary
for temporal constraints which are introduced in Section A.5.

A.1. Representations for classical planning

Before one can use automated planning algorithms to solve real life problems, these problem
statements need to be encoded into machine-readable languages, so called planning domains.
As it is obviously impossible to encode the entire world and as the computational complexity
of planning problems increases with increasing richness of detail of the problem statement,
the task of formalising the planning domain focusses on finding an abstraction that is both
detailed enough to support expressing problems adequately, and sufficiently simple to be
computably feasible. Although there exist different representations for classical planning
(e.g. set-theoretic (based on propositional logic), classical representation (based on first-
order logic without function symbols) and state variable representation (based on first-order
logic with function symbols)), this thesis will only make use of the classical representation.

75



A. Automated planning and constraint satisfaction problems

A.1.1. Classical representation

The classical representation comprises states as the description of the status of the world, and
operators inducing transitions between states. In the following let L be a first-order language
with finitely many predicate symbols and constant symbols and no function symbols. In
the definitions, the explicit reference to L is usually omitted. The choice of the language L
obviously depends on the domain, and, as above-mentioned, influences the class of expressible
planning problems and the computational complexity of these problems.
Definition 1 (State). A state is a set of ground atoms of L.
Definition 2 (Operator, Action). An operator as a triple o = (name(o),precond(o),effects(o))
where name(o) is the name of the operator and precond(o) and effects(o) are sets of literals
(i.e. atoms or negated of atoms). The semantics of preconditions and effects are:

• For any set of literals L, let L+ be the set of all atoms in L and L− be the set of
all atoms whose negations are in L. An action is a ground instance of an operator.
An action a is applicable to a state s, iff precond+(a) ⊆ s and precond−(a) ∩ s = ∅.
Preconditions restrict the applicability of operators to specific properties of states.

• The result of applying an action a to a state s is the state

γ(s, a) = (s− effects−(a)) ∪ effects+(a).

Effects describe how operators change the state of the world.
Definition 3 (Planning Domain). A classical planning domain in L is a restricted state-
transition system Σ = (S,A, γ) with

• S ⊆ P(all ground atoms of L)

• A is the set of ground instances of a set O of operators

• γ(s, a) = (s− effects−(a))∪ effects+(a) if a ∈ A is applicable to s and otherwise γ(s, a)
is undefined

• S is closed under γ
Definition 4 (Planning Problem). A classical planning problem is a triple P = (Σ, s0, g),
where

• s0, the initial state, is any state in S

• g, the goal, is any set of ground literals

The statement P is the syntactic specification of a planning problem, P = (O, s0, g).
Definition 5 (Plan). A plan is sequence of actions π = 〈a1, ..., ak〉 where k = |π| >= 0
is the length of π. The effect of applying a plan π to a state s is recursively defined as an
extension of the state-transition function γ:

γ(s, π) =


s if k = 0
γ(γ(s, a1), 〈a2, ...ak〉) if k > 0 and a1 is applicable to s
undefined otherwise

Definition 6 (Solution). A plan π is a solution to a planning problem P = (Σ, s0, g) iff
g ⊆ γ(s0, π).

76



A.2. State-space planning

A.1.2. Example: The Dock-Worker-Robots domain

Figure A.1: The Dock-Worker-Robots planning domain [5]

As an example, consider the Dock-Worker-Robots (DWR) domain, see Figure A.1. The
world consists of locations, robots, cranes, piles and containers. Planning problems are about
moving containers between different piles and/or locations by using cranes and robots. Oper-
ators capture atomic actions on the objects in the domain: A crane can take or put containers
and load or unload containers on/from robots. Robots can move between locations. The
state in Figure A.1 could be described by the set of ground atoms s1 = {in(c1,p1), in(c3,
p1), top(c3,p1), on(c3,p1), on(c1,pallet), in(c2,p2), top(c2,p2), on(c2,pallet), empty(crane1),
at(r1,loc2), occupied(loc2), unloaded(r1)}.

The operator take(k, l, c, d, p) makes the crane k in location l take container c off container
d in pile p. The preconditions for take are {empty(k), top(c,p), on(c,d)} and the effects are
{holding(k,c) ¬ empty(k), ¬in(c,p), ¬top(c,p), ¬on(c,d), top(d,p)}. Figure A.2 illustrates
the action take(crane1, loc1, c3, c1, p1).

take(crane1, loc1, c3, c1, p1)

Figure A.2: Actions in the DWR domain [5]

A.2. State-space planning

State-space planning is the problem of finding a solution plan for a given planning problem
statement P = (O, s0, g). State-space planning is the simplest classical planning algorithm

77



A. Automated planning and constraint satisfaction problems

Algorithm 8 Non-deterministic state-space forward-search
1: function Forward-search(O, s0, g)
2: s← s0
3: π ← the empty plan
4: while true do
5: if s satisfies g then
6: return π
7: applicable ← {a | a is a ground instance of an operator in O
8: and precond(a) is true in s}
9: if applicable = ∅ then

10: return failure
11: non-deterministically choose an action a ∈ applicable
12: s← γ(s, a)
13: π ← π.a

and is usually implemented as forward or backward search in the finite space of all reachable
states.

A.2.1. State-space planning algorithms

A sound and complete forward-search method for state-space planning is given by Algorithm
8. The non-deterministic algorithm starts with the initial state s0 and picks applicable
actions until eventually a state satisfying the goal formula g is found. A deterministic
implementation usually uses backtracking to perform a depth-first exploration of all possible
paths in the state space.

Similarly, a backwards-search algorithm starts with the goal state and constructs a solu-
tion plan by applying reverse state transitions γ−1 until the initial state is reached. The
naive forward and backward-search methods struggle when opposed to real-world problems,
because the search space is growing exponentially. The STRIPS algorithm [48] was an early
attempt to reduce the search space, but is incomplete (i.e. does not guarantee to find a
solution if there is one).

A.2.2. Guiding the planning algorithm

The naive forward-search can be regarded the brute-force method to find a list of actions that
connect an initial state with a goal state. With increasing domain size this method quickly
becomes unfeasible as the branching factor for every non-deterministic choice explodes and
one has to consider strategies to guide the planning algorithm in order to find solutions
more quickly. One such strategy is to use Heuristics, “a way of ranking a set of nodes in
order of their relative desirability” [5]. Instead of choosing the next action and hence the
next state randomly (Algorithm 8, line 13), the planner picks from the list of candidate
states the state that minimises the heuristic function h. Designing good heuristics is a very
complicated task and usually requires precise knowledge on the structure of both the domain
and possible solutions to common planning problems. As an example, imagine the planning

78



A.3. HTN planning

task of finding inner-city public transport connections between two locations. Instead of
searching the whole space of possible connections, the heuristics might guide the search by
favouring those buses and trains that are directed towards the goal location. Note that
the use of heuristics does not guarantee to find solutions more quickly or even to find good
solutions at all. In this example, the planner might disregard the possibility of taking a bus
in opposite direction and therefore being able to use a quick train for the rest of the trip.

A.3. HTN planning

An alternative strategy to guide the planning algorithms is deployed in Hierarchical Task
Network (HTN) planning. The idea is to provide the planner as additional input with a set
of hierarchical refinement recipes. The HTN formalism is well suited to scenarios in which
solutions are known to display hierarchical structures and in which hierarchical refinement
recipes are available, or easily constructable.

Although [5] distinguishes between Simple Task Network (STN) and Hierarchical Task
Network (HTN) planning and as we only need the STN approach in this work, we are going
to speak of HTN planning when we actually mean STN planning. This is to avoid confusion
with the notion of Simple Temporal Problems (STP) and temporal networks which will be
introduced later in this chapter.

The following definition introduce the fundamental concepts of HTN planning. The pre-
vious definitions of operators, actions, plan, the state-transition function γ(s, a) in classical
planning remain the same.

Definition 7 (Task). Every operator symbol is a task symbol and we introduce non-primitive
task symbols as task symbols. A task is an expression of the form t(r1, ..., rn) where t is a
task symbol and all ri are terms. A task is called a primitive task if its task symbol is an
operator symbol, and is called a non-primitive task otherwise. A task is ground if all terms
are ground. An action a = (name(a),precond(a), effects(a)) accomplishes a ground primitive
task t in a state s iff name(a) = t and a is applicable to s.

Definition 8 (Task Network). A task network is an acyclic digraph w = (U,E) in which
each node u ∈ U contains a task tu. w is ground (primitive) if all tasks {tu |u ∈ U} are
ground (primitive).

The edges in E define a partial order in the tasks tu in w. If w is totally ordered, we also
write w as the sequence of its tasks, 〈t1, ..., tk〉.

By exploring the space of possible decompositions for the list of tasks in a given state,
an HTN algorithm continuously decomposes tasks by replacing them by their sub tasks as
defined in the decomposition methods, until the initial set of goal tasks is transformed into
a list of atomic operators. Primitive tasks are accomplished by actions and non-primitive
tasks are decomposed by so-called methods.

Definition 9 (HTN method). An HTN method is 4-tuple

m = (name(m), task(m), precond(m),network(m))

in which the elements are described as follows.

79



A. Automated planning and constraint satisfaction problems

• name(m), the name of the method, is a syntactic expression of the form n(x1, ..., xk),
where n is a unique method symbol and xi are all of the variable symbols that occur
anywhere in m.

• task(m) is a non-primitive task.

• precond(m) is a set of literals.

• network(m) is a task network whose tasks are called the sub tasks of m, subtasks(m).

A method m is totally ordered, iff network(m) is totally ordered. A method has the purpose
to decompose a non-primitive task into sub tasks given by network(m); task(m) specifies the
kind of task that is decomposable by m, and precond(m) restricts the applicability of m to
certain states.

Definition 10 (Applicability and relevance of methods). A method instance m is applicable
to a state s, if precond+(m) ⊆ s and precond−(m) ∩ s = ∅.

A method instance m is relevant for a task t, if there is a substitution σ such that
σ(t) =task(m). The decomposition of t under m is network(m).

The following Definition 11 is the key concept for the semantics of HTN planning prob-
lems. We define how the decomposition of a task tu in a task network w under a method
m performed. Intuitively, merging w with the sub task network comprises replacing the
decomposed task node u by the nodes of network(m) and adding constraints between nodes
in the original network w and the new nodes in subtasks(m). The HTN formalism presented
here (called Simple Task Network (STN) planning in [5]) is easy in that it incrementally
builds linear plans in positive time: The algorithm chooses a node without predecessors and
decomposes it. This ensures that the plan is build incrementally, starting from the empty
plan and linearly adding action in positive time.

Definition 11 (Decomposition of task networks). Let w = (U,E) be a task network, u
be a node in w that has no predecessors in w, and m be a method that is relevant for tu
under some substitution σ. Let succ(u) be the set of all immediate successors of u, i.e.
succ(u) = {u′ ∈ U | (u, u′) ∈ E}. Let (U ′, E′) bet the result of removing from w the node u
and all edges that contain u and let U ′1 ⊆ U ′ be the set of nodes in without predecessors in
(U ′, E′). Let (Um, Em) be a copy of network(m) and Um,1 ⊆ Um be the set of nodes without
predecessors in (Um, Em). If (Um, Em) is nonempty, then the result of decomposing u in w
by m under σ is this set of task networks:

δ(w, u,m, σ) = {(σ(U ′ ∪ Um), σ(Ev)) | v ∈ Um,1}

where
Ev = Em ∪ (Um × succ(u)) ∪ {(v, u′1) |u′1 ∈ U ′1}

Otherwise, δ(w, u,m, σ) = {(σ(U ′), σ(E′))}.

Note that δ(w, u,mσ) is a set of task networks, one for each node without predecessors in
network(m). The new task network contains 3 kinds of edges:

1. Em are the edges of the sub task network, network(m)

80



A.3. HTN planning

2. Um×succ(u) are edges from every node in network(m) to every node without predeces-
sor in the original task network. These edges ensure that all task in the sub network
will occur before all remaining tasks in the original task network. (Remember that
plans are built incrementally and linearly from the beginning to the end.)

3. {(v, u′1) |u′1 ∈ U ′1} for some v ∈ Um,1 are edges from the node v without predecessor
in the sub task network Um to all nodes without predecessor in the original network,
u′1 ∈ U ′1. These edges enforce that at least one task of network(m) will enter the plan
before any of the remaining possible first tasks in the original network which ensures
that the method’s precondition is true in the correct place in the resulting task network,
namely before the first task in network(m). Without these edges, the decomposition
of a task in U ′1 might enter the plan before the first task in network(m) and corrupt
m’s preconditions.

Note: This definition consciously differs from the respective Definition 11.5 in [5]
which is faulty for the following reason: With v ∈ Um and succ1(u) ⊆ succ(u) it
follows {(v, u′) |u′ ∈ succ1(u)} ⊆ (Um× succ(u)) and thus all Ev are identical. Our
revised Definition 11 captures the intent described in the two paragraphs before
definition 11.5 in [5] and in the lecture slides [49]. Furthermore, variable passing
to sub tasks is not defined properly in [5] and Definition 11. See Appendices B for
further explanations on both issues.

Definition 12 (HTN planning domain). An HTN planning domain is a pair D = (O,M)
where O (M) is set of operators (methods).
Definition 13 (HTN planning problem). An HTN planning problem is a 4-tuple P =
(s0, w,O,M) where s0 is the initial state, w a task network called initial task network or
goal task network and D = (O,M) is an HTN planning domain.

We now define what it means for a plan π = 〈a1, ..., ak〉 to be a solution for a planning
problem P = (s0, w,O,M). Intuitively, it means that there is a way to decompose w into π
such that π is executable (i.e. every action ai+1 ∈ π is applicable in the respective state si)
and each decomposition is applicable in the appropriate state of the world.
Definition 14 (HTN plans and solutions). Let P = (s0, w,O,M) be a planning problem.
Here are the cases in which a plan π = 〈a1, ..., ak〉 is a solution for P.

• Case 1: w is empty. Then π is a solution for P iff π is empty.

• Case 2: There is a primitive task node u ∈ w that has no predecessors in w. Then
π is a solution for P iff a1 is applicable to tu in s0 and the plan π = 〈a2, ..., ak〉 is a
solution for this planning problem:

P ′ = (γ(s0, a1), w \ {u}, O,M).

Intuitively, P ′ is the planning problem produced by executing the first action in π and
removing the corresponding task node from w.

• Case 3: There is a non-primitive task node u ∈ w that has no predecessors in w and an
instance of m of some method in M that is relevant for tu under a substitution σ and
applicable in s0. Then π is a solution for P if there is a task network w′ ∈ δ(w, u,m, σ)
such that π is a solution for the planning problem (s0, w

′, O,M).

81



A. Automated planning and constraint satisfaction problems

A.3.1. Partial-order HTN planning

Algorithm 9 Partial-order HTN planning
1: function PFD(s, w,O,M)
2: if w = ∅ then
3: return the empty plan
4: non-deterministically choose any task u ∈ w that has no predecessors in w
5: if tu is a primitive task then
6: active← {(a, σ) | a is a ground instance of an operator in O,
7: σ is a substitution such that name(a) = σ(tu),
8: and a is applicable to s}
9: if active = ∅ then

10: return failure
11: non-deterministically choose any (a, σ) ∈ active
12: π ← PFD(γ(s, a), σ(w − {u}), O,M)
13: if π = failure then
14: return failure
15: else
16: return a.π
17: else
18: active← {(m,σ) | m is a ground instance of a method in M,
19: σ is a substitution such that name(m) = σ(tu),
20: and m is applicable to s}
21: if active = ∅ then
22: return failure
23: non-deterministically choose any (m,σ) ∈ active
24: non-deterministically choose any task network w′ ∈ δ(w, u,m, σ)
25: return PFD(s, w′, O,M)

Algorithm 9 is a direct non-deterministic, provably sound and complete implementation
of Definition 14. Lines 5-16 handle case 2 from Definition 14, where a primitive task is
accomplished by an action. The action is added to the plan and the algorithm is recursively
called on the remaining task network. Lines 17-25 cover case 3 from Definition 14: An
applicable and relevant method decomposes the chosen task and the algorithm is called
on the decomposed new task network. A deterministic implementation of Algorithm 9 has
to make sure that all possible choices are considered (lines 4, 11, 23, 24). This is usually
accomplished by a backtracking implementation.

A.3.2. Comparison of HTN and state-space planning

The possibility to call methods recursively allows to encode planning problems whose so-
lution set is a context-free language, whereas state-space planning domains and problems
are by definition finite and can therefore encode only regular languages. From the above
it follows that HTN planning is more expressive than state-space planning [50]. However,

82



A.3. HTN planning

when restricting the formally undecidable HTN model to make it decidable and hence use-
ful for practical applications by e.g. limiting the plan length or excluding cyclic methods,
HTN and state-space planning feature equivalent expressiveness [51]. Example 2 in sec-
tion A.3.3.2 illustrates the encoding of state-space planning problems in HTN planning as
proposed by [50]. The converse encoding is described in [51].

For many domains and problems, obviously especially those with a hierarchic structure,
HTN planning offers a user-friendly way of providing heuristics to guide the planning algo-
rithm. Additionally, HTN planning allows for mixed-initiative planning and can be extended
with temporal reasoning capabilities (see Section 3.3.1).

A.3.3. HTN planning examples

The following two examples are HTN problem statements written for the SHOP2 plan-
ner [52]. The format of the files is defined in [53] and is similar to the Planning Domain
Definition Language (PDDL, [42]). The SHOP2 planner implements the partial-order algo-
rithm presented in section A.3.1 and features a couple of extensions to the classical HTN
model (e.g. axioms, mathematical calculations, call-expressions, eval expressions, implica-
tions, quantifiers, ...).

The planning problem is described by two files, the domain definition file and the problem
definition file. The domain file contains definitions for operators, methods and axioms in
a straightforward fashion: Every operator is specified by its name including the variables
and lists of preconditions, delete effects (effect−) and add effects (effect+). Every method is
specified by its name including the variables, a list of preconditions and a sub task network.
The network is not specified as a partially ordered set, but by nested lists of ordered and
unordered sub tasks (for an example, consider the drive-kids-around method in listing
A.1).

The problem file defines a HTN planning problem by the associated domain, a set of
ground atoms describing the initial state, and a goal task network.

A.3.3.1. How to spend a day

This example defines two planning problems: spend-a-lazy-day and spend-a-busy-day.
Although spend-a-lazy-day is an extremely easy example without variables, preconditions
and effects, the solutions offer a surprise: The SHOP2 algorithm finds all four solution plans
and the second solution shows that unordered (i.e. partial-order) task specification enables
interleaved plans.

Problem SPEND-A-LAZY-DAY with :WHICH = :ALL, :VERBOSE = :LONG-PLANS
Totals: Plans Mincost Maxcost Expansions Inferences CPU time Real time

4 3.0 4.0 20 7 0.112 0.351
Plans:
(((!BRUSH-TEETH) 1.0 (!BRUSH-TEETH) 1.0 (!LIE-DOWN) 1.0)
((!BRUSH-TEETH) 1.0 (!WATCH-TV) 1.0 (!BRUSH-TEETH) 1.0 (!LIE-DOWN) 1.0)

83



A. Automated planning and constraint satisfaction problems

((!BRUSH-TEETH) 1.0 (!BRUSH-TEETH) 1.0 (!WATCH-TV) 1.0 (!LIE-DOWN) 1.0)
((!BRUSH-TEETH) 1.0 (!BRUSH-TEETH) 1.0 (!LIE-DOWN) 1.0 (!WATCH-TV) 1.0))

The spend-a-busy-day example is much more complicated and solutions are not obvious
at first glance. The problem is to organise a day with duties such as driving kids to different
locations and eating lunch. Resource allocation (choosing different cars with different fuel
consumptions for different ways) as well as routing decisions have to be made. The kids have
different requirements on the car, Peggy for example wants the audi in the morning and the
ferrari in the afternoon, Kevin wants the truck in the morning but has no preference in
the afternoon. The solutions include an estimate on the cost (fuel consumption × distance)
of every solution plan.

SHOP2 returns the following four solutions, the cheapest one costs 13904 units, the most
expensive one 19304 units.

---------------------------------------------------------------------------
Problem SPEND-A-BUSY-DAY with :WHICH = :ALL, :VERBOSE = :LONG-PLANS
Totals: Plans Mincost Maxcost Expansions Inferences CPU time Real time

4 13904.0 19304.0 963 4037 0.204 0.816
Plans:
(((!BRUSH-TEETH) 1.0 (!DRIVE MYSELF FERRARI HOME CITY) 1400

(!DRIVE KEVIN TRUCK CITY SPORT) 4800 (!DRIVE MYSELF TRUCK SPORT HOME) 4200
(!DRIVE PEGGY AUDI HOME CITY) 600 (!EAT-LUNCH) 1.0
(!DRIVE MYSELF AUDI CITY SPORT) 480 (!DRIVE MYSELF AUDI SPORT SPORT) 0
(!DRIVE KEVIN AUDI SPORT HOME) 420 (!DRIVE MYSELF TRUCK HOME CITY) 6000
(!DRIVE PEGGY FERRARI CITY HOME) 1400 (!BRUSH-TEETH) 1.0 (!LIE-DOWN) 1.0)

((!BRUSH-TEETH) 1.0 (!DRIVE MYSELF FERRARI HOME CITY) 1400
(!DRIVE KEVIN TRUCK CITY SPORT) 4800 (!DRIVE MYSELF TRUCK SPORT HOME) 4200
(!DRIVE PEGGY AUDI HOME CITY) 600 (!EAT-LUNCH) 1.0
(!DRIVE MYSELF AUDI CITY SPORT) 480 (!DRIVE MYSELF AUDI SPORT SPORT) 0
(!DRIVE KEVIN AUDI SPORT HOME) 420 (!DRIVE MYSELF AUDI HOME CITY) 600
(!DRIVE PEGGY FERRARI CITY HOME) 1400 (!BRUSH-TEETH) 1.0 (!LIE-DOWN) 1.0)

((!BRUSH-TEETH) 1.0 (!DRIVE MYSELF FERRARI HOME CITY) 1400
(!DRIVE KEVIN TRUCK CITY SPORT) 4800 (!DRIVE MYSELF TRUCK SPORT HOME) 4200
(!DRIVE PEGGY AUDI HOME CITY) 600 (!DRIVE MYSELF AUDI CITY SPORT) 480
(!EAT-LUNCH) 1.0 (!DRIVE MYSELF AUDI SPORT SPORT) 0
(!DRIVE KEVIN AUDI SPORT HOME) 420 (!DRIVE MYSELF TRUCK HOME CITY) 6000
(!DRIVE PEGGY FERRARI CITY HOME) 1400 (!BRUSH-TEETH) 1.0 (!LIE-DOWN) 1.0)

((!BRUSH-TEETH) 1.0 (!DRIVE MYSELF FERRARI HOME CITY) 1400
(!DRIVE KEVIN TRUCK CITY SPORT) 4800 (!DRIVE MYSELF TRUCK SPORT HOME) 4200
(!DRIVE PEGGY AUDI HOME CITY) 600 (!DRIVE MYSELF AUDI CITY SPORT) 480
(!EAT-LUNCH) 1.0 (!DRIVE MYSELF AUDI SPORT SPORT) 0
(!DRIVE KEVIN AUDI SPORT HOME) 420 (!DRIVE MYSELF AUDI HOME CITY) 600
(!DRIVE PEGGY FERRARI CITY HOME) 1400 (!BRUSH-TEETH) 1.0 (!LIE-DOWN) 1.0))

84



A.3. HTN planning

Listing A.1: “How to spend a day” domain definition

1 ( in−package : shop2−user )
2

3 ( defdomain spend−a−day
4 (
5

6 ( : operator ( ! brush−t ee th )
7 ( )
8 ( ) )
9

10 ( : operator ( ! l i e−down)
11 ( )
12 ( ) )
13

14 ( : operator ( ! watch−tv )
15 ( )
16 ( ) )
17

18 ( : operator ( ! eat−lunch )
19 ( )
20 ( ) )
21

22 ( : operator ( ! d r i v e ? person ? car ? from ? to )
23 ( ( at ? from ) ( carAt ? car ? from ) ( fu e l−co s t ? car ? co s t ) (

d i s t ance ? from ? to ? d i s t ) )
24 ( ( at ? from ) ( carAt ? car ? from ) )
25 ( ( at ? to ) ( carAt ? car ? to ) )
26 ( c a l l ∗ ? co s t ? d i s t )
27 )
28

29 ( : method ( spend−a−lazy−day )
30 ( ( ) )
31 ( (morning ) ( evening ) )
32 )
33

34 ( : method ( spend−a−busy−day )
35 ( ( ) )
36 ( (morning ) ( dr ive−kids−around ) ( go−to−bed ) )
37 )
38

39 ( : method ( dr ive−kids−around )
40 ( ( car ? car ) )
41 ( : ordered
42 ( : unordered
43 ( br ing peggy audi home c i t y )
44 ( br ing kevin truck c i t y spor t )
45 )
46

47 ( lunch )
48

49 ( : unordered
50 ( br ing kevin ? car spor t home)

85



A. Automated planning and constraint satisfaction problems

51 ( br ing peggy f e r r a r i c i t y home)
52 )
53 )
54 )
55

56 ( : method ( br ing ? kid ? car ? from ? to )
57 ( ( at ? currentPos ) ( carAt ? f i r s tC a r ? currentPos ) ( carAt ? car ? from ) )
58 ( : unordered ( ! d r i v e myse l f ? f i r s tC a r ? currentPos ? from )
59 ( ! d r i v e ? kid ? car ? from ? to ) )
60 )
61

62 ( : method ( lunch )
63 ( ( at ? currentPos ) ( carAt ? car ? currentPos ) ( p lace ?someWhere ) )
64 ( : unordered ( ! eat−lunch ) ( ! d r i v e myse l f ? car ? currentPos ?someWhere ) )
65 )
66

67

68

69

70 ( : method (morning )
71 ( ( ) )
72 ( ( ! brush−t ee th ) )
73 )
74

75 ( : method ( evening )
76 ( ( ) )
77 ( ( go−to−bed ) )
78 )
79

80 ( : method ( evening )
81 ( ( ) )
82 ( : unordered ( ! watch−tv ) ( go−to−bed ) )
83 )
84

85 ( : method ( go−to−bed )
86 ( ( ) )
87 ( ( ! brush−t ee th ) ( ! l i e−down) )
88 )
89

90

91 ; axioms
92 (:− ( same ?x ?x ) n i l )
93 (:− ( d i s t anc e ?x ?x 0) n i l )
94 (:− ( d i s t anc e ?x ?y ?d) ( d i s t anc e ?y ?x ?d) )
95 ) )

Listing A.2: “How to spend a day” problem statement
1 ( in−package : shop2−user )
2

3 (make−problem ’ spend−a−lazy−day ’ spend−a−day
4 ’ ( )
5 ’ ( ( spend−a−lazy−day ) )

86



A.3. HTN planning

6 )
7

8 (make−problem ’ spend−a−busy−day ’ spend−a−day
9 ’ ( ( p lace home) ( p lace c i t y ) ( p lace spor t ) ( car audi ) ( car truck ) ( car

f e r r a r i )
10 ( at home)
11 ( carAt audi home) ( carAt truck c i t y ) ( carAt f e r r a r i home)
12 ( f u e l−co s t audi 6) ( fu e l−co s t f e r r a r i 14) ( fu e l−co s t truck 60)
13 ( d i s t anc e home c i t y 100) ( d i s t ance home spor t 70) ( d i s t ance spor t

c i t y 80) )
14 ’ ( ( spend−a−busy−day ) )
15 )
16

17

18

19 (make−problem−s e t ’ spend−a−day−problems ’ (
20 spend−a−lazy−day spend−a−busy−day
21 ) )

A.3.3.2. HTN-encoded state-space planning problem Tower of Hanoi

The second example (Listings A.3 and A.4) illustrates the HTN encoding of the renowned
state-space planning problem Tower of Hanoi. The state-space formulation is straightfor-
ward: The operator (!move ?from ?to ) moves a disk from one pile to another and has
preconditions which enforce the rules of the game.

SHOP2 returns the following solution to the 3-disk Tower of Hanoi planning problem:

Problem HANOI-PROBLEM with :WHICH = :ID-FIRST, :VERBOSE = :LONG-PLANS
Depth Plans Mincost Maxcost Expansions Inferences CPU time Real time

0 0 - - 1 0 0.012 0.047
1 0 - - 11 5 0.056 0.225
2 0 - - 14 37 0.052 0.210
3 0 - - 35 48 0.004 0.013
4 0 - - 44 121 0.000 0.002
5 0 - - 106 154 0.004 0.016
6 0 - - 128 370 0.008 0.031
7 0 - - 292 456 0.012 0.047
8 0 - - 356 1034 0.020 0.082
9 0 - - 826 1282 0.032 0.129

10 0 - - 1004 2952 0.080 0.319
11 0 - - 2326 3650 0.108 0.432
12 0 - - 2840 8374 0.244 0.975
13 0 - - 6656 10392 0.344 1.377
14 0 - - 8132 24086 0.696 2.780
15 0 - - 19130 29906 1.072 4.289
16 0 - - 23420 69488 2.176 8.705

87



A. Automated planning and constraint satisfaction problems

17 0 - - 55406 86426 3.405 13.616
18 0 - - 67880 201782 6.760 27.042
19 0 - - 161017 251120 10.657 42.617
20 0 - - 197446 587487 21.749 86.992
21 1 13.0 13.0 42704 66417 3.072 12.283

Totals: Plans Mincost Maxcost Expansions Inferences CPU time Real time
1 13.0 13.0 589774 1345587 50.587 202.332

Plans:
(((!MOVE PILE1 PILE2) 1.0 (!MOVE PILE1 PILE3) 1.0 (!MOVE PILE2 PILE3) 1.0

(!MOVE PILE1 PILE2) 1.0 (!MOVE PILE3 PILE1) 1.0 (!MOVE PILE3 PILE2) 1.0
(!MOVE PILE1 PILE2) 1.0 (!MOVE-DUMMY) 1.0

(!ACHIEVE (ON BLOCK2 BLOCK3)) 1.0
(!ACHIEVE (ON BLOCK1 BLOCK2)) 1.0 (!ACHIEVE (TOP BLOCK1 PILE2)) 1.0
(!ACHIEVE (TOP TABLE PILE1)) 1.0 (!ACHIEVE (TOP TABLE PILE3)) 1.0))

Listing A.3: Tower of Hanoi domain definition
1 ( in−package : shop2−user )
2

3

4 ( defdomain hanoi (
5 ( : operator ( ! move ? from ? to )
6 ; precond
7 (
8 ( top ?b1 ? from )
9 ( top ?b2 ? to )

10 ( on ?b1 ?underB1 )
11 ( sma l l e r ?b1 ?b2 )
12 )
13

14 ; d e l e t e
15 (
16 ( top ?b2 ? to )
17 ( top ?b1 ? from )
18 ( on ?b1 ?underB1 )
19 )
20 ; add
21 (
22 ( top ?b1 ? to )
23 ( top ?underB1 ? from )
24 ( on ?b1 ?b2 )
25 )
26 )
27

28 ( : operator ( ! move−dummy)
29 ( )
30 ( )
31 ( )
32 )
33

34 ( : operator ( ! ach i eve ? goa l )

88



A.3. HTN planning

35 (? goa l )
36 ( )
37 ( )
38 )
39

40 ( : method (move−method )
41 ( ( p i l e ? from ) ( p i l e ? to ) )
42 ( ( ! move ? from ? to ) (move−method ) )
43 )
44

45 ( : method (move−method )
46 ( ( ) )
47 ( ( ! move−dummy) )
48 )
49

50

51

52 ; axioms
53 (:− ( sma l l e r b lock1 block2 ) ( ) )
54 (:− ( sma l l e r b lock1 block3 ) ( ) )
55 (:− ( sma l l e r b lock1 block4 ) ( ) )
56 (:− ( sma l l e r b lock1 block5 ) ( ) )
57 (:− ( sma l l e r b lock2 block3 ) ( ) )
58 (:− ( sma l l e r b lock2 block4 ) ( ) )
59 (:− ( sma l l e r b lock2 block5 ) ( ) )
60 (:− ( sma l l e r b lock3 block4 ) ( ) )
61 (:− ( sma l l e r b lock3 block5 ) ( ) )
62 (:− ( sma l l e r b lock4 block5 ) ( ) )
63 (:− ( sma l l e r ?b tab l e ) ( ) )
64

65 )
66 )

Listing A.4: Tower of Hanoi problem statement
1 ( in−package : shop2−user )
2

3 (make−problem ’ hanoi−problem ’ hanoi
4 ; i n i t i a l s t a t e
5 ’ (
6 ( b lock block1 ) ( b lock block2 ) ( b lock block3 ) ( b lock block4 )
7 ( p i l e p i l e 1 ) ( p i l e p i l e 2 ) ( p i l e p i l e 3 )
8

9 ( on block4 tab l e ) ( on block3 block4 ) ( on block2 block3 ) ( on block1
block2 ) ( top block1 p i l e 1 )

10 ( top tab l e p i l e 2 )
11 ( top tab l e p i l e 3 )
12 )
13

14 ; task network
15 ’ (
16 (move−method )
17 ( ! ach i eve ( on block4 tab l e ) )

89



A. Automated planning and constraint satisfaction problems

18 ( ! ach i eve ( on block3 block4 ) )
19 ( ! ach i eve ( on block2 block3 ) )
20 ( ! ach i eve ( on block1 block2 ) )
21 ( ! ach i eve ( top block1 p i l e 2 ) )
22 ( ! ach i eve ( top tab l e p i l e 1 ) )
23 ( ! ach i eve ( top tab l e p i l e 3 ) )
24 )
25 )

A.4. Constraint satisfaction problems

Given a set of variables and their respective domains and a set of constraints specifying
the compatible values that the variables may take, constraint satisfaction is the problem of
finding a value for each variable such that all values are consistent with the constraints. It is
a very general and powerful problem-solving paradigm that is applicable to a broad variety
of computational problems. The following sections introduce the basic definitions, a general
but naive and in most cases infeasible algorithm to solve arbitrary constraint networks, and
the concept of constraint propagation.

A.4.1. Basic definitions

Definition 15 (Constraint satisfaction problem). A Constraint satisfaction problem (CSP)
is a triple P = (X,D, C) where:

• X = {x1, ..., xn} is a finite set of n variables.

• D = {D1, ..., Dn} is a set of finite domains of the variables, xi ∈ Di.

• C = {c1, ..., cm} is a set of constraints. A constraint ci is a relation Ri defined on a
subset of variables Si with Si ⊆ X and denotes the variables’ legal simultaneous value
assignments. If the scope Si of a constraint is clear, we will identify the constraint ci
with its relation Ri or (if the the scope is for example Si = {x, y, z}) with Rxyz or cxyz.

Definition 16 (Solution of a CSP). A solution of a CSP P = (X,D, C) is an instantiation
σ = (v1, ..., vn) of all its variables such that all constraints are satisfied. P is consistent, iff
it has a solution.

Definition 17 (Binary constraint network). A CSP P = (X,D, C) is binary iff all con-
straints Ci are binary relations. Binary CSP can be represented as a graph in which every
node is a CSP variable xi labelled by its domain Di and each edge (xi, xj) is labelled by the
corresponding constraint cij. A binary CSP is for this reason also called constraint network.

The symmetrical relation to a binary relation c is defined as c̄ = {(a, b) | (b, a) ∈ c}. A
constraint network is symmetrical if for every constraint cij the symmetrical relation is also
in C.

90



A.4. Constraint satisfaction problems

Algorithm 10 Backtracking search algorithm for binary CSPs
1: function BacktrackCsp(σ,P = (X,D, C))
2: if X = ∅ then
3: return σ
4: select any xi ∈ X
5: for all vj ∈ σ do
6: Di ← Di ∩ {v ∈ Di | (v, vj) ∈ cij}
7: if Di = ∅ then
8: return failure
9: non-deterministically choose vi ∈ Di

10: BacktrackCsp(σ.(vi), (X \ {xi},D, C))

The complete and sound non-deterministic Algorithm 10 solves arbitrary binary constraint
networks and returns all solutions.

Definition 18 (Redundant values and constraints). A value v in a domain Di is redundant
iff does not appear in any solution, a tuple in a constraint cj is redundant iff it is not an
element of any solution.

A.4.2. Constraint propagation

Algorithm 10 runs in O(nd) for n = |X| and d = maxi{|Di|} and – being a large com-
binatorial problem – is thus generally not suitable to solve real world problems with large
domains. Constraint propagation is a filtering technique to reduce the size of the search
space by removing redundant values from domains and redundant constraints. Propagating
a constraint on a variable xi consists of accounting for the local effects of constraints between
xi and adjacent nodes in the constraint network by removing redundant values and tuples.

A.4.2.1. Arc-consistency

Definition 19 (Arc-consistency). Given a constraint network P = (X,D, C) with Rij ∈ C,
a variable xi is arc-consistent to xj iff for every value vi ∈ Di there exists a value vj ∈ Dj
such that (vi, vj) ∈ Rij. An arc {xi, xj} is arc-consistent iff xi is arc-consistent to xj, and
xj is arc-consistent to xi. P is arc-consistent iff all of its arcs are arc-consistent.

A simple algorithm for arc-consistency is to perform an iteration over all pairs (xi, xj) of
a constraint network and filter the domains Di and Dj by:

Di ← {vi ∈ Di | ∃vj ∈ Dj such that (vi, vj) ∈ Rij}

Dj ← {vj ∈ Dj | ∃vi ∈ Di such that (vi, vj) ∈ Rij}

Arc-consistent constraint networks are not necessarily consistent.

The task networks in Figure A.3 consists of three variables A,B,C with two values each.
The arc-consistency algorithm filters the domains to DA = {a1}, DB = {b1}, DC = {c1, c2}.

91



A. Automated planning and constraint satisfaction problems

a1, a2 b1, b2

c1, c2

RAB = A×B

RAC = {(a1, c1), (a1, c2)} RCB = {(c2, b1), (c1, b1)}

Figure A.3: Illustration of a binary constraint network

A.4.2.2. Path-consistency

The path-consistency filter tests all triples of variables xi, xj , xk by checking that they have
values that meet the three constraints cij , cik, cik. A pair of values (vi, vj) can only be part
of a solution, if it meets the constraint cij and if there is a value vk for xk such that (vi, vk)
meets cik and (vk, vj) meets ckj . The two constraints cik and ckj entail by transitivity a
constraint on xi and xj , called the composition cik • ckj :

cik • ckj = {(vi, vj), vi ∈ Di, vj ∈ Dj | ∃vk ∈ Dk : (vi, vk) ∈ cik and (vk, vj) ∈ ckj}

A pair (vi, vj) has to meet cij as well as the composition cik • ckj for every k, otherwise it is
redundant. Hence the filtering operation is:

cij ← cij ∩ [cik • ckj ], for every k 6= i, j

Algorithm 11 is the straightforward algorithm for path-consistency.

In the example of Figure A.3, the composition cAC • cCB is {(a1, b1)} and the constraint
cAB = A× B can be replaced by cAB ← [A× B] ∩ {(a1, b1)} = {(a1, b1)} without changing
the solutions of the constraint network.

Algorithm 11 Path-consistency in a constraint network
1: function PathConsistency(C)
2: while not all constraints in C are stabilized do
3: for all k: 1 ≤ k ≤ n do
4: for all pairs (i, j): 1 ≤ i < j ≤ n; i, j 6= k do
5: cij ← cij ∩ [cik • ckj ]
6: if cij = ∅ then
7: fail(inconsistent)

The notion of path-consistency can be extended to checking the consistency of all k-tuples
in the constraint network. For k = n, k-consistency is obviously equivalent to consistency of
the entire network.

92



A.5. Quantitative temporal constraints

A.5. Quantitative temporal constraints

Constraint satisfaction techniques can be applied to temporal reasoning which comprises
temporal knowledge bases, consistency checking and inference capabilities to discover new
temporal information from existing. For qualitative temporal reasoning there exist two major
approaches: Interval algebra [54] and point algebra [55] use time intervals and time points as
temporal objects, respectively. The temporal constraint satisfaction problem (TCSP) [34,35]
is a special constraint satisfaction problem where variables are time points and temporal
information is represented by a set of unary and binary constraints.

Definition 20 (Temporal constraint satisfaction problem [34, 35]). A temporal constraint
satisfaction problem (TCSP) involves a set of variables {x1, ..., xn} having continuous do-
mains; each variable represents a time point. Each constraint is represented by a set of
intervals {I1, ..., Ik} = {[a1, b1], ..., [ak, bk]}. An unary constraint Ti restricts the domain of
variable xi to the given set of intervals; that is, it represents the disjunction

(a1 ≤ xi ≤ b1) ∨ ... ∨ (ak ≤ xi ≤ bk)

A binary constraint Tij constraints the permissible values for the distance xj−xi; it represents
the disjunction

(a1 ≤ xj − xi ≤ b1) ∨ ... ∨ (ak ≤ xj − xi ≤ bk)

A network of binary constraint (a binary TCSP) consists of a set of variables {x1, ..., xn}
and a set of unary and binary constraints. Such a network can be represented by a directed
constraint graph G, where nodes represent variables and an edge i → j indicates that
a constraint Tij is specified between xi and xj ; it is labelled by the interval set. Each
constraint Tij implies an equivalent symmetrical constraint Tji. However, only one of these
is usually shown in the constraint graph. A special time point, x0, is introduced to represent
the “beginning of the world”. All times are relative to x0; thus, we may treat each unary
constraint Ti as a binary constraint T0i.

Definition 21 (Minimal and binary decomposable networks). Given a TCSP, a value v is a
feasible value for variable xi if there exists a solution in which xi = v. The set of all feasible
values of a variable is called the minimal domain. A minimal constraint Tij between xi and
xj is the set of all feasible values for xj − xi. A network is minimal iff its domains and
constraints are minimal. A network is binary decomposable if every consistent assignment
of values to a set of variables S can be extended to a solution.

Definition 22 (Simple temporal problem). A TCSP in which all constraints specify a single
interval is called a simple temporal problem (STP). In such a network, each edge i → j is
labelled by a single interval [aij , bij ] that represents the constraint

aij ≤ xj − xi ≤ bij .

An STP can be associated with a directed edge-weighted graph Gd = (V,Ed), called a
distance graph. It has the same node set as the constraint graph G, and each edge i→ j ∈ Ed
is labelled by a weight aij representing the linear inequality xj − xi ≤ aij . The d-Graph is

93



A. Automated planning and constraint satisfaction problems

similar to the distance graph in that is has the same node set, but each edge i→ j is defined
to be labelled by the shortest path length, dij , from node i to node j in Gd.

Simple temporal problems feature especially nice algorithmic properties, as formalised by
the following theorems [34,35,56].

Theorem 1 (Consistency of STPs [35]). An STP is consistent iff its distance graph Gd has
no negative cycles.

Theorem 2 (Decomposability). Any consistent STP is decomposable relative to the con-
straints in its d-graph.

Theorem 3 (Minimal representation of STPs). Given a consistent STP, T , and its d-graph,
the equivalent STP, M, defined by the edges dij in T ’s d-graph,

∀i, j : Mij = {[−dji, dij ]}

is the minimal network representation of T .

Algorithm 12 Floyd-Warshall’s all-pairs-shortest-path algorithm
1: function Floyd-Warshall((V,E))
2: for all i, j ∈ V do
3: if (i, j) ∈ E then
4: d(i, j)← lij . lij is the label of the edge i→ j
5: else
6: d(i, j)←∞
7: d(i, i)← 0
8: for all i, j, k ∈ V do . Time complexity O(|V |3)
9: d(i, j)← min{d(i, j), d(i, k) + d(k, j)}

The d-graph of an STP can be constructed by applying Floyd-Warshall’s all-pairs-shortest-
path algorithm (see Algorithm 12) to the distance graph. The algorithm provides a consis-
tency check of the STP (it is consistent iff all diagonal distances dii are non-negative) and
computes the minimal domains and constraints in O(n3) time. Due to Theorem 2, assem-
bling a solution from the d-graph doesn’t not require backtracking and can be accomplished
in O(n2).

An alternative and equivalent method for checking consistency and finding the minimal
network makes use of the path-consistency algorithm. It turns out [34, 56] that path-
consistency is equivalent to consistency for STPs and that the path-consistency Algorithm
11 reaches a fixed point after a single iteration and that the fixed point corresponds to
the minimal network. The composition and intersection operations for STPs are defined as
follows:

• Composition: rij • rjk = [aij + ajk, bij + bjk]

• Intersection: rij ∩ r′ij = [max{aij , a′ij},max{bij , b′ij}]

94



A.5. Quantitative temporal constraints

t

i j[aij , bij ]
aij ≤ j − i < bij

k[ajk, bjk]
ajk ≤ k − j < bjk

Composition: [aij , bij ] • [ajk, bjk]
aij + ajk ≤ k − i < bij + bjk

Figure A.4: The composition operation for STPs

i j[aij , bij ]
aij ≤ j − i < bij

i j[a′mn, b′mn]

a′ij ≤ j − i < b′ij

Intersection: [aij , bij ] ∩ [a′ij , b′ij ]

max{aij , a′ij} ≤ j − i < max{bij , b′ij}

Figure A.5: The intersection operation for STPs

In analogy to the general CSP case, composition corresponds to entailed constraints between
three time points and intersection corresponds to enforcing two different constraints on a
pair of time points, see Figures A.4 and A.5.

Theorem 4 (Path-consistency for STPs). Given an STP T , the path-consistency algorithm
is sound and complete for deciding the consistency problem and reaches a fixed point in one
iteration. The fixed point corresponds to the minimal network of T . Thus, for STPs, path-
consistency and the all-pairs-shortest-path algorithm have equivalent properties with respect
to consistency checking and minimal network computation.

In contrast to the network-based approach, the path-consistency algorithm allows for more
efficient consistency checking if temporal information is added incrementally to the STP.
The incremental version of Algorithm 11 can be used to efficiently propagate new temporal
information, check consistency and compute the minimal STP.

95





B. Revised semantics of partial-order forward
decomposition HTN planning

B.1. Ordering of sub tasks

In [5], the semantics of HTN planning are specified by the recursive Definition 11.8 of a
solution plan for an HTN planning problem. Case 1 defines an empty plan to be the solution
for the empty task network, and cases 2 and 3 define the semantics of actions and methods,
respectively. A method decomposes a given task by its sub tasks and includes ordering
constraints to ensure the consistency of the resulting task network with respect to qualitative
orderings. The decomposition is formalised by Definition 11.5:

Original Definition 11.5
Let w = (U,E) be a task network, u be a node in w that has no predecessors
in w, and m be a method that is relevant for tu under some substitution σ.
Let succ(u) be the set of all immediate successors of u, i.e. succ(u) = {u′ ∈
U | (u, u′) ∈ E}. Let succ1(u) be the set of all immediate successors of u for
which u is the only predecessor. Let (U ′, E′) be the result of removing u and
all edges that contain u. Let (Um, Em) be a copy of network(m). If (Um, Em)
is nonempty, then the result of decomposing u in w by m under σ is this set
of task networks:

δ(w, u,m, σ) = {(σ(U ′ ∪ Um), σ(Ev)) | v ∈ subtasks(m)}

where
Ev = Em ∪ (Um × succ(u)) ∪ {(v, u′) |u′ ∈ succ1(u)}

Otherwise, δ(w, u,m, σ) = {(σ(U ′), σ(E′))}.

I would like to argue that Definition 11.5 does not capture the intent of the explanations
in the first two paragraphs on page 235 in [5] and in slide 25 in [49]. The set of edges in δ,
Ev consists of three different types of edges:

1. Em is the partial order on the sub tasks, as defined by the method m.

2. The edges Um×succ(u) order every sub task before all successors succ(u) of the decom-
posed task u. By definition, there are no predecessors of u.

97



B. Revised semantics of partial-order forward decomposition HTN planning

3. The third class of edges has the following justification: In the resulting plan, the
preconditions of method m shall be satisfied right before the first action which accom-
plishes a sub tasks of m. If network(m) is partially ordered, there can be more than
one such possible first task node v in network(m) and the algorithm has to decide for
one of them which consequently must be ordered before all possible first tasks of the
original task network, w. Thus, the decomposition results in different task networks,
one for every possible first task in network(m). However, Definition 11.5 does not
provide these ordering constraints. Furthermore, Definition 11.5 looks faulty for the
following formal reason:

v ∈ Um ∧ succ1(u) ⊆ succ(u) =⇒ {(v, u′) |u′ ∈ succ1(u)} ⊆ (Um × succ(u))

The above is true for all v ∈ subtasks(m) and therefore all sets Ev are identical.

While the edges of type 1 and 2 are intuitively clear, those of type 3 need more justification.
One could even argue that the semantic of preconditions of methods is irrelevant in solution
plans and that the correct ordering is enforced by the preconditions of actions.

Trying to capture the semantics intended by the first two paragraphs on page 235 and by
the above-mentioned slide 25, I propose the following definition instead:

Revised Definition 11.5
Let w = (U,E) be a task network, u be a node in w that has no predecessors
in w, and m be a method that is relevant for tu under some substitution σ.
Let succ(u) be the set of all immediate successors of u, i.e. succ(u) = {u′ ∈
U | (u, u′) ∈ E}. Let (U ′, E′) bet the result of removing u and all edges that
contain u and U ′1 ⊆ U ′ be the set of nodes without predecessors in (U ′, E′).
Let (Um, Em) be a copy of network(m) and Um,1 ⊆ Um be the set of nodes
without predecessors in (Um, Em). If (Um, Em) is nonempty, then the result
of decomposing u in w be m under σ is this set of task networks:

δ(w, u,m, σ) = {(σ(U ′ ∪ Um), σ(Ev)) | v ∈ Um,1}

where
Ev = Em ∪ (Um × succ(u)) ∪ {(v, u′1) |u′1 ∈ U ′1}

Otherwise, δ(w, u,m, σ) = {(σ(U ′), σ(E′))}.

The definition ensures that δ is a set of task networks, one for each possible first task in
network(m). Ev contains ordering constraints from the possible first node v in network(m)
to a all possible first task nodes in the original task network, ensuring that task v is chosen
before them and that precond(m) is valid before the action accomplishing the first task in
network(m).

B.2. Variable backwards passing

98



B.2. Variable backwards passing

Listing B.1: Variable passing in HTN: exemplarily domain definition
1 ( defdomain binding (
2 ( : operator ( ! op1 ?x ) ( e x i s t ?x ) ( ) ( ) )
3 ( : operator ( ! op2 ?x ) ( e x i s t ?x ) ( ) ( ) )
4

5 ( : method ( do )
6 ; p r e cond i t i on
7 ( )
8

9 ; sub ta sk s
10 ( ( ! op1 ?x ) ( ! op2 ?y ) )
11 )
12 ) )

Listing B.2: Variable passing in HTN: exemplarily problem definition
1 ( defproblem problem binding
2 ; i n i t i a l s t a t e
3 ( ( e x i s t a ) ( e x i s t b) )
4

5 ; goa l task
6 ( ( do ) )
7 )

Consider the HTN planning problem defined by Listings B.1 and B.2 in SHOP syntax.
The method do decomposes into two sub tasks, !op1 ?x and !op2 ?y. The initial state
consists of two atoms, (exist a) and (exist b) and the JSHOP HTN planner [53,57], not
surprisingly, finds the four solution plans

1. !op1 a, !op2 a

2. !op1 a, !op2 b

3. !op1 b, !op2 a

4. !op1 b, !op2 b

Listing B.3: Variable passing in HTN: exemplarily domain definition
1 ( defdomain binding (
2 ( : operator ( ! op1 ?x ) ( e x i s t ?x ) ( ) ( ) )
3 ( : operator ( ! op2 ?x ) ( e x i s t ?x ) ( ) ( ) )
4

5 ( : method ( do )
6 ; p r e cond i t i on 1
7 ( )
8

9 ; p r e cond i t i on 2
10 ; ( ( e x i s t ?x ) )
11

12 ; sub ta sk s
13 ( ( ! op1 ?x ) ( ! op2 ?x ) )
14 )
15 ) )

99



B. Revised semantics of partial-order forward decomposition HTN planning

Next, consider the same problem B.2 with the domain specified by B.3. With the empty
precondition 1 this is exactly the same planning problem, except for the variable specification
of the method’s sub tasks: Now the same variable identifier is used for both sub tasks.
Intuitively, one expects all plans to reflect this choice in that the variable bindings for ?x
should be the same for !op1 ?x and !op2 ?x. However, both the HTN formulation given
in [5]1, and the JSHOP implementation treat variables differently: As ?x is unbound in
the do method, the method is applicable with the empty substitution, σ = ∅. After the
decomposition, the variables x in op1 and op2 are local to their respective operators and
thus independent; the substitutions are not passed backwards to the method. The counter-
intuitive solution plans are thus

1. !op1 a, !op2 a

2. !op1 a, !op2 b

3. !op1 b, !op2 a

4. !op1 b, !op2 b

This problem vanishes if all variables occurring in sub tasks are previously bound by a
precondition, as in case 2 of Listing B.3. Here, the solution plans are

1. !op1 a, !op2 a

2. !op1 b, !op2 b

To demonstrate the different semantic of variables in HTN and classical logic programming,
consider Listing B.4 which shows a Prolog program which is analogous to the previous HTN
examples. The solutions to ?method(X) are as expected:

?- method(X).
X = a ;
X = b.

The solutions correspond to the proof

1. op1(a) ← exist(a), op2(a) ← exist(a)

2. op1(a) ← exist(a), op2(a) ← exist(a)

Changing the definition of the method predicate to method(X,Y) :- op1(X), op2(Y)
adds the two other solutions corresponding to

1. op1(a) ← exist(a), op2(b) ← exist(b)

2. op1(b) ← exist(b), op2(a) ← exist(a)

1The exact semantics of variable passing in [5] depends on the notion of substitutions, which is not clearly
formalised in the book. Since relevancy of a method m for a task m under some substitution σ is also
defined for unground methods (see Definition 11.4 in [5]), a task may be decomposed into sub tasks
containing variables with the same name which can be assigned different values in the ongoing planning
process. This is exactly the counter-intuitive handling of variables with the same identifier.

100



B.2. Variable backwards passing

?- method(X,Y).
X = a,
Y = a ;
X = a,
Y = b ;
X = b,
Y = a ;
X = b,
Y = b.

Listing B.4: Variable passing in Prolog
1 % Database
2 e x i s t ( a ) . e x i s t (b) .
3

4 % De f i n i t i o n o f method and ope ra to r s
5 method (X) :− op1 (X) , op2 (X) .
6 op1 (X) :− e x i s t (X) .
7 op2 (X) :− e x i s t (X) .

101





C. Additional listings and UML diagrams

C.1. ChangeRefinery HTN algorithm

Listing C.1: Java code of the ChangeRefinery HTN implementation
1 package da . p lanner . htn ;
2

3 import java . u t i l . ArrayList ;
4 import java . u t i l . Co l l e c t i on ;
5 import java . u t i l . Date ;
6 import java . u t i l . HashMap ;
7 import java . u t i l . HashSet ;
8 import java . u t i l . L i s t ;
9 import java . u t i l .Map;

10 import java . u t i l . Set ;
11

12 import da . knowledgebase . core . KnowledgeBase ;
13 import da . p lanner . s tp . StpHtnConnector ;
14 import da . u t i l . Log ;
15

16 public class Htn {
17 private KnowledgeBase kb ;
18 private Plan currentPlan ;
19 private StpHtnConnector stpHtn = new StpHtnConnector ( ) ;
20 private HtnS t a t i s t i c s s t a t s = new HtnS t a t i s t i c s ( ) ;
21 private ChoicePointFactory<Task> taskCPF = new

SimpleChoicePointFactory<Task>() ;
22 private ChoicePointFactory<Refinement> refinementCPF = new

SimpleChoicePointFactory<Refinement >() ;
23 private ChoicePointFactory<Binding> bindingCPF = new

SimpleChoicePointFactory<Binding >() ;
24 public void setTaskCPF ( ChoicePointFactory<Task> c ) { this . taskCPF = c ; }
25 public void setRefinementCPF ( ChoicePointFactory<Refinement> c ) { this .

refinementCPF = c ; }
26 public void setBindingCPF ( ChoicePointFactory<Binding> c ) { this .

bindingCPF = c ; }
27 private TaskModif ier ta skMod i f i e r = new TaskModif ier ( fa l se ) ;
28 public void se tTaskModi f i e r ( TaskModif ier t ) { this . t a skMod i f i e r = t ; }
29

30 public Htn(KnowledgeBase kb ) {
31 this . kb = kb ;
32 }
33

34 public HtnS t a t i s t i c s f indP lans (TaskNetwork tn ) {

103



C. Additional listings and UML diagrams

35 Long t = new Date ( ) . getTime ( ) ;
36 this . currentPlan = new Plan ( ) ;
37 this . stpHtn . add ( tn . getNodes ( ) , tn . getEdges ( ) ) ;
38 this . pfd ( tn ) ;
39 this . s t a t s . totalTime = new Date ( ) . getTime ( ) − t ;
40 return this . s t a t s ;
41 }
42

43

44 public boolean pfd (TaskNetwork tn ) {
45 i f ( tn . getNodes ( ) . s i z e ( ) == 0) {
46 /∗
47 ∗ the base case o f the r e cu r s i v e p fd invoca t i on s :
48 ∗ the empty p lan accompl ished an empty t a s k network .
49 ∗/
50 Plan foundplan = this . currentPlan . c l one ( ) ;
51 foundplan . setStpHtn ( this . stpHtn . c l one ( ) ) ;
52 this . s t a t s . addPlan ( foundplan ) ;
53 Log . l ( "Found new plan  ( " + this . s t a t s . p lans . s i z e ( ) + " ) :  " +

foundplan . t oS t r i ng ( ) , 1) ;
54 return true ;
55 }
56

57 Log . l ( " Remaining task  network :  \n "
58 + " \ tPre l iminary  plan :  " + this . currentPlan + " \n "
59 + " \tRemaining ta sk s :  " + tn . ge tTaskL i s tS t r ing ( )
60 , 16) ;
61

62 /∗
63 ∗ f i n d a l l t a s k s t ha t have no predeces sor in the t a s k network .
64 ∗ a l l o f t hose are cand ida te s f o r the next t a s k to be r e f i n e d .
65 ∗/
66 List<Task> f i r s tNode s = new ArrayList<Task>() ;
67 for (Task t : tn . getNodesWithoutPredecessor ( ) )
68 f i r s tNode s . add ( t ) ;
69

70 St r ing msg = "Nodes without  p r edec e s s o r :  " ; for (Task task :
f i r s tNode s ) {msg+=task . ge tTaskDe f in i t i on ( ) . getName ( ) ; msg+=" , " ; }

71 Log . l (msg , 32) ;
72

73 // choose one o f the t a s k s wi thou t p redece s so r s to be r e f i n e d
74 for (Task task : this . taskCPF . get ( f i r s tNodes , "FIRST TASK" ) ) {
75

76

77 // f i nd a l l r e f inements f o r <task> tha t have a s a t i s f i e d
precond i t i on

78 List<Refinement> ac t i v e = task . ge tTaskDe f in i t i on ( ) .
getAct iveRef inements (kb , task . getBinding ( ) ) ;

79 for ( Refinement per former : this . refinementCPF . get ( ac t ive , "
REFINEMENT OPERATION" ) ) {

80

81 Log . l ( " Ca l cu l a t ing  b ind ings  f o r  task  " + task . getName ( ) + "  
and re f inement  " + per former . getName ( ) , 16) ;

104



C.1. ChangeRefinery HTN algorithm

82 List<Binding> bind ings = per former . computeBindings ( this . kb ,
task . getBinding ( ) ) ;

83 for ( Binding b : this . bindingCPF . get ( bindings , "BINDING" ) ) {
84

85 // save the knowledge base i d s which are par t o f the query
86 Set<Long> queryDependencies = new HashSet<Long>() ;
87 for ( Var iab le v : b . va lue s ( ) )
88 i f ( v . ge tC la s s ( ) == KbElementVariable . class ) {
89 KbElementVariable k = (KbElementVariable ) v ;
90 i f ( k . getValue ( ) != null )
91 queryDependencies . add (k . getValue ( ) ) ;
92 }
93

94

95

96 /∗
97 ∗ add ta s k ’ s b ind ing to the b ind ing s re turned by the

re f inement query .
98 ∗ t h i s i s necessary because the re f inement query might not

conta in
99 ∗ a l l v a r i a b l e s t h a t may be used in a decomposi t ion method .

ie , a method
100 ∗ can use the t a s k ’ s v a r i a b l e s as w e l l as those v a r i a b l e

from i t s
101 ∗ precond i t i on .
102 ∗/
103 b . add ( task . getBinding ( ) ) ;
104

105

106 // deep c lone the t a s k network , a l l the t a s k s and v a r i a b l e s .
107 Long t = new Date ( ) . getTime ( ) ;
108 Map<Task , Task> taskMapping = new HashMap<Task , Task>() ;
109 Map<Variable , Variable> variableMapping = new HashMap<

Variable , Var iable >() ;
110 TaskNetwork tnCopy = tn . c l one ( taskMapping , variableMapping ) ;
111 Binding bCopy = b . c l one ( variableMapping ) ;
112 this . s t a t s . taskNetworkCopyTime += new Date ( ) . getTime ( ) − t ;
113

114

115

116 i f ( per former . i sOperator ( ) ) {
117 Operator o = ( Operator ) per former ;
118 Log . l ( " Applying operator  " + o . getName ( ) + "  to  task  " +

task . ge tTaskDe f in i t i on ( ) . getName ( ) , 16) ;
119

120

121 // app ly opera tor wi th s e l e c t e d b ind ing
122 Set<Long> e f f e c tDependenc i e s = this . kb . assertToKb ( o .

g e tE f f e c t s ( ) , bCopy) ;
123 // crea t e an ac t i on o b j e c t from the opera tor o
124 Action a = new Action (o , queryDependencies ,

e f f e c tDependenc i e s , bCopy) ;
125

105



C. Additional listings and UML diagrams

126

127 /∗
128 ∗ f i n d a d d i t i o n a l order ing c on s t r a i n t s between the
129 ∗ curren t ac t i on a and prev ious ac t i on s ap . i f the
130 ∗ precond i t i on or e f f e c t o f a prev ious ac t i on ap depend

on
131 ∗ a CI which i s modi f ied by the e f f e c t o f the curren t
132 ∗ ac t i on a or par t o f the query o f the curren t act ion ,
133 ∗ we add the order ing con s t r a i n t ap −> a
134 ∗ to ensure t ha t e f f e c t s do not i n v a l i d a t e o ther
135 ∗ ac t i on s p r e cond i t i on s
136 ∗/
137 List<Order ingConstra int> add i t i ona lOrde r ingCons t ra in t s =

new ArrayList<Order ingConstra int >() ;
138 for ( Action prev iousAct ion : this . currentPlan )
139 i f ( a . precondit ionDependsOnOtherAct ionsEf fects (

prev iousAct ion )
140 | | p rev iousAct ion .

precondit ionDependsOnOtherAct ionsEf fects ( a ) )
141 add i t i ona lOrde r ingCons t ra in t s . add (new

Order ingConstra int ( prev iousAct ion , a ) ) ;
142

143

144 // add a to the current HTN plan
145 this . currentPlan . add ( a ) ;
146 // maintain temporal c on s t r a i n t s in the HTN by decomposing

t a s k t i n t o ac t i on a
147 this . stpHtn . decomposeTo ( taskMapping . get ( task ) , a ,

add i t i ona lOrde r ingCons t ra in t s ) ;
148

149

150 // copy chosen v a r i a b l e b ind ing s to the accompl ished t a s k
151 Task newTask = taskMapping . get ( task ) ;
152 for ( S t r ing vName : newTask . getBinding ( ) . keySet ( ) ) {
153 i f (b . containsKey (vName) ) {
154 newTask . getBinding ( ) . get (vName) . assignFrom (bCopy . get (

vName) ) ;
155 }
156 }
157

158

159 /∗ i f the curren t p lan i s t empora l l y cons i s t en t ,
160 ∗ r e c u r s i v e l y c a l l p fd wi th a copy o f the
161 ∗ t a s k network minus the ach ieved ta s k
162 ∗/
163 i f ( this . stpHtn .PC( ) ) {
164 tnCopy . removeNodeWithEdges ( newTask ) ;
165 this . pfd ( tnCopy ) ;
166 } else
167 Log . l ( " Pa r t i a l  plan  i s  tempora l ly  i n c on s i s t en t ,  STP:\ n "

+ this . stpHtn , 16) ;
168

169

106



C.1. ChangeRefinery HTN algorithm

170

171 // back t rack ing comprises . . .
172 Log . l ( " Backtracking " , 16) ;
173 // . . . removing o from the plan . . .
174 this . currentPlan . removeLast ( ) ;
175 // . . . r o l l i n g back the knowledge base . . .
176 this . kb . r o l l b a c k ( ) ;
177 // . . . and the STP.
178 this . stpHtn . r o l l b a c k ( ) ;
179

180

181 } else {
182 // method hand l ing
183 Method m = (Method ) per former ;
184 Log . l ( " Applying method " + m. getName ( ) + "  to  task  " +

task . ge tTaskDe f in i t i on ( ) . getName ( ) , 16) ;
185

186

187 // app ly the method to the t a s k network .
188 Co l l e c t i on<Order ingConstra int> newEdges = m. perform ( tnCopy

, taskMapping . get ( task ) , bCopy) ;
189 TaskNetwork subNetwork = m. getSubNetwork (bCopy) ;
190 this . t a skMod i f i e r . modify ( subNetwork . getNodes ( ) ) ;
191

192 // decompose the t a s k in t o i t s sub t a s k s in the STP
193 this . stpHtn . decomposeTo ( taskMapping . get ( task ) , subNetwork .

getNodes ( ) , newEdges ) ;
194

195

196

197 /∗ i f the curren t p lan i s t empora l l y cons i s t en t ,
198 ∗ r e c u r s i v e l y c a l l p fd on a copy o f the decomposed
199 ∗ t a s k network
200 ∗/
201 i f ( this . stpHtn .PC( ) )
202 this . pfd ( tnCopy ) ;
203 else
204 Log . l ( " Pa r t i a l  plan  i s  tempora l ly  i n c on s i s t en t ,  STP:\ n "

+ this . stpHtn , 16) ;
205 Log . l ( " Backtracking " , 16) ;
206

207

208 // no r o l l b a c k r equ i r ed on HTN s i d e because the new branch
209 // opera tor s on a copy o f the t a s k net work . on ly r o l l b a c k

STP.
210 this . stpHtn . r o l l b a ck ( ) ;
211 }
212 }
213 }
214

215 }
216

217 return fa l se ;

107



C. Additional listings and UML diagrams

218 }
219 }

C.2. Example scenarios

Listing C.2: JAVA code for the example domain VerySimpleJ2eeScenario
1 package da . s c e n a r i o s . j 2 e e . kb ;
2

3 import org . h ibe rnate . Se s s i on ;
4

5 import da . knowledgebase . core . As s e r tab l e ;
6 import da . knowledgebase . model . Database ;
7 import da . knowledgebase . model . DatabaseDesign ;
8 import da . knowledgebase . model . DbServer ;
9 import da . knowledgebase . model . ECommerceJ2eeApplication ;

10 import da . knowledgebase . model . Hardware ;
11 import da . knowledgebase . model .Human ;
12 import da . knowledgebase . model . J2eeAppl i cat ion ;
13 import da . knowledgebase . model . J2eeContainer ;
14 import da . knowledgebase . model . J2eeJdbcResource ;
15 import da . knowledgebase . model . S k i l l ;
16 import da . knowledgebase . model . WebServer ;
17 import da . knowledgebase . model . WebserverConf igurat ion ;
18 import da . p lanner . htn . Binding ;
19

20 public class VerySimpleJ2eeScenar io implements Asse r tab l e {
21 public void doAssert ( Se s s i on d , Binding b) {
22

23

24

25 // DbServer f o r a l l a p p l i c a t i o n s
26 DbServer dbserver = new DbServer ( " MiscDbServer " ) ;
27 dbserver . setCpuSpeed (1000) ;
28 dbserver . setMemorySize (1000) ;
29 d . save ( dbserver ) ;
30

31

32 // Setup Server f o r Wiki
33 {
34 WebServer ws = new WebServer ( " WikiServer " ) ;
35 ws . setCpuSpeed (1000) ;
36 ws . setMemorySize (1000) ;
37 d . save (ws ) ;
38 Database wikidb = new Database ( "WikiDb" ) ;
39 dbserver . getDatabases ( ) . add ( wikidb ) ;
40 J2eeContainer j c = new J2eeContainer ( "WikiContainer " ) ;
41 ws . getJ2eeConta iner s ( ) . add ( j c ) ;
42

43 J2eeAppl i ca t ion ja = new J2eeAppl i ca t ion ( "Wiki Appl i ca t ion " ) ;
44 j c . g e tJ2eeApp l i ca t i on s ( ) . add ( ja ) ;

108



C.2. Example scenarios

45 J2eeJdbcResource jdbcr = new J2eeJdbcResource ( "WikiJdbcResource " ) ;
46 j a . getJ2eeJdbcResources ( ) . add ( jdbcr ) ;
47 jdbcr . setDatabase ( wikidb ) ;
48 }
49

50 // Setup Server f o r E−Commerce a p p l i c a t i o n
51 {
52 WebServer ws = new WebServer ( " ECommerceServer " ) ;
53 ws . setCpuSpeed (1000) ;
54 ws . setMemorySize (1000) ;
55 d . save (ws ) ;
56 Database wikidb = new Database ( "ECommerceDb" ) ;
57 dbserver . getDatabases ( ) . add ( wikidb ) ;
58 J2eeContainer j c = new J2eeContainer ( " ECommerceContainer " ) ;
59 ws . getJ2eeConta iner s ( ) . add ( j c ) ;
60

61 J2eeAppl i ca t ion ja = new ECommerceJ2eeApplication ( "ECommerce 
Appl i ca t ion " ) ;

62 j c . g e tJ2eeApp l i ca t i on s ( ) . add ( ja ) ;
63 J2eeJdbcResource jdbcr = new J2eeJdbcResource ( "

ECommerceJdbcResource " ) ;
64 j a . getJ2eeJdbcResources ( ) . add ( jdbcr ) ;
65 jdbcr . setDatabase ( wikidb ) ;
66 }
67

68

69

70

71 // People and s k i l l s
72 {
73 Human mandyloreen = new Human( "Mandy−Loreen " , 10) ; d . save (

mandyloreen ) ;
74 S k i l l s41 = new DatabaseDesign (100) ;
75 S k i l l s42 = new Hardware (95) ;
76 S k i l l s43 = new WebserverConf igurat ion (90) ;
77 mandyloreen . g e t S k i l l s ( ) . add ( s41 ) ;
78 mandyloreen . g e t S k i l l s ( ) . add ( s42 ) ;
79 mandyloreen . g e t S k i l l s ( ) . add ( s43 ) ;
80 }
81

82 }
83 }

Listing C.3: JAVA code for the example domain J2eeScenario
1 package da . s c e n a r i o s . j 2 e e . kb ;
2

3 import org . h ibe rnate . Se s s i on ;
4

5 import da . knowledgebase . core . As s e r tab l e ;
6 import da . knowledgebase . model . Database ;
7 import da . knowledgebase . model . DatabaseDesign ;
8 import da . knowledgebase . model . DbServer ;

109



C. Additional listings and UML diagrams

9 import da . knowledgebase . model . Hardware ;
10 import da . knowledgebase . model .Human ;
11 import da . knowledgebase . model . J2eeAppl i cat ion ;
12 import da . knowledgebase . model . J2eeContainer ;
13 import da . knowledgebase . model . J2eeJdbcResource ;
14 import da . knowledgebase . model . J2eeModule ;
15 import da . knowledgebase . model .JVM;
16 import da . knowledgebase . model . LoadBalancer ;
17 import da . knowledgebase . model .MySqlDb ;
18 import da . knowledgebase . model . S k i l l ;
19 import da . knowledgebase . model . WebServer ;
20 import da . knowledgebase . model . WebserverConf igurat ion ;
21 import da . p lanner . htn . Binding ;
22

23 public class J2eeScenar io implements Asse r tab l e {
24 private int num;
25 public J2eeScenar io ( int num){
26 this . num = num;
27 }
28

29 public void doAssert ( Se s s i on d , Binding b) {
30

31 // Webshop I n f r a s t r u c t u r e
32 {
33 LoadBalancer webshoplb = new LoadBalancer ( "WebshopLoadBalancer " ) ;
34 d . save ( webshoplb ) ;
35 Database webshopdb = new MySqlDb( "WebShopDb" ) ;
36 DbServer dbserver = new DbServer ( "WebshopDbServer " ) ;
37 dbserver . setCpuSpeed (1000) ;
38 dbserver . setMemorySize (2000) ;
39 dbserver . getDatabases ( ) . add (webshopdb ) ;
40 d . save ( dbserver ) ;
41

42

43 for ( int i =1; i<=num; i++) {
44 WebServer ws = new WebServer ( "WebshopServer " + i ) ;
45 ws . setCpuSpeed (1000) ;
46 ws . setMemorySize (2000) ;
47 d . save (ws ) ;
48

49 J2eeContainer j c = new J2eeContainer ( "WebshopContainer " + i ) ;
50 ws . getJ2eeConta iner s ( ) . add ( j c ) ;
51 webshoplb . getBalancedConta iners ( ) . add ( j c ) ;
52 JVM jvm = new JVM( " jvm1.5− " + i , " 1 . 5 " ) ;
53 j c . setJvm ( jvm) ;
54 J2eeModule jma = new J2eeModule ( " dom4j Module " + i ) ;
55 j c . getJ2eeModules ( ) . add ( jma ) ;
56 J2eeModule jmb = new J2eeModule ( " l o g 4 j  Module " + i ) ;
57 j c . getJ2eeModules ( ) . add ( jmb) ;
58 J2eeAppl i ca t ion ja = new J2eeAppl i ca t ion ( "Webshop Appl i ca t ion " +

i ) ;
59 j c . g e tJ2eeApp l i ca t i on s ( ) . add ( ja ) ;

110



C.2. Example scenarios

60 J2eeJdbcResource jdbcr1 = new J2eeJdbcResource ( "
WebshopJdbcResource " + i ) ;

61 j a . getJ2eeJdbcResources ( ) . add ( jdbcr1 ) ;
62 jdbcr1 . setDatabase (webshopdb ) ;
63

64

65 }
66 }
67

68

69

70 // DbServer f o r a l l o ther a p p l i c a t i o n
71 DbServer dbserver = new DbServer ( " MiscDbServer " ) ;
72 dbserver . setCpuSpeed (1000) ;
73 dbserver . setMemorySize (1000) ;
74 d . save ( dbserver ) ;
75

76

77

78

79 // Setup Server f o r Wiki , Expense Management and Calendar
80 {
81 WebServer ws = new WebServer ( " MiscServer " ) ;
82 ws . setCpuSpeed (1000) ;
83 ws . setMemorySize (1000) ;
84 d . save (ws ) ;
85 Database wikidb = new Database ( "WikiDb" ) ;
86 Database expensedb = new Database ( "ExpenseDb " ) ;
87 Database calendardb = new Database ( " CalendarDb " ) ;
88 dbserver . getDatabases ( ) . add ( wikidb ) ;
89 dbserver . getDatabases ( ) . add ( expensedb ) ;
90 dbserver . getDatabases ( ) . add ( calendardb ) ;
91 J2eeContainer j c = new J2eeContainer ( "WebshopContainer " ) ;
92 ws . getJ2eeConta iner s ( ) . add ( j c ) ;
93 JVM jvm = new JVM( " jvm1 . 5 " , " 1 . 4 " ) ;
94 j c . setJvm ( jvm) ;
95 J2eeModule jma = new J2eeModule ( " Ajax Module " ) ;
96 j c . getJ2eeModules ( ) . add ( jma ) ;
97

98

99 J2eeAppl i ca t ion ja = new J2eeAppl i ca t ion ( " Calendar  Appl i ca t ion " ) ;
100 j c . g e tJ2eeApp l i ca t i on s ( ) . add ( ja ) ;
101 J2eeJdbcResource jdbcr = new J2eeJdbcResource ( "

CalendarJdbcResource " ) ;
102 j a . getJ2eeJdbcResources ( ) . add ( jdbcr ) ;
103 jdbcr . setDatabase ( calendardb ) ;
104

105 j a = new J2eeAppl i ca t ion ( "Wiki Appl i ca t ion " ) ;
106 j c . g e tJ2eeApp l i ca t i on s ( ) . add ( ja ) ;
107 jdbcr = new J2eeJdbcResource ( "WikiJdbcResource " ) ;
108 j a . getJ2eeJdbcResources ( ) . add ( jdbcr ) ;
109 jdbcr . setDatabase ( wikidb ) ;
110 jdbcr = new J2eeJdbcResource ( "Wiki−Foreign−Cal−JdbcResource " ) ;

111



C. Additional listings and UML diagrams

111 j a . getJ2eeJdbcResources ( ) . add ( jdbcr ) ;
112 jdbcr . setDatabase ( calendardb ) ;
113

114 j a = new J2eeAppl i ca t ion ( " Expense Management Appl i ca t ion " ) ;
115 j c . g e tJ2eeApp l i ca t i on s ( ) . add ( ja ) ;
116 jdbcr = new J2eeJdbcResource ( " ExpenseJdbcResource " ) ;
117 j a . getJ2eeJdbcResources ( ) . add ( jdbcr ) ;
118 jdbcr . setDatabase ( expensedb ) ;
119 }
120

121

122 // Setup Server f o r Webmail
123 {
124 WebServer ws = new WebServer ( "WebmailServer " ) ;
125 ws . setCpuSpeed (1000) ;
126 ws . setMemorySize (1000) ;
127 d . save (ws ) ;
128 J2eeContainer j c = new J2eeContainer ( "WebmailContainer " ) ;
129 ws . getJ2eeConta iner s ( ) . add ( j c ) ;
130 JVM jvm = new JVM( " jvm1 . 5 " , " 1 . 4 " ) ;
131 j c . setJvm ( jvm) ;
132 J2eeModule jma = new J2eeModule ( "IMAP Module " ) ;
133 j c . getJ2eeModules ( ) . add ( jma ) ;
134 jma = new J2eeModule ( "POP3 Module " ) ;
135 j c . getJ2eeModules ( ) . add ( jma ) ;
136 jma = new J2eeModule ( " Ajax Module " ) ;
137 j c . getJ2eeModules ( ) . add ( jma ) ;
138

139

140 J2eeAppl i ca t ion ja = new J2eeAppl i ca t ion ( "Webmail App l i ca t ion " ) ;
141 j c . g e tJ2eeApp l i ca t i on s ( ) . add ( ja ) ;
142 }
143

144

145 // Setup Server f o r Ticke t System and Document Management
146 {
147 WebServer ws = new WebServer ( "Doc+TicketServer " ) ;
148 ws . setCpuSpeed (1000) ;
149 ws . setMemorySize (1000) ;
150 d . save (ws ) ;
151 J2eeContainer j c 1 = new J2eeContainer ( " DocumentManagementContainer

" ) ;
152 ws . getJ2eeConta iner s ( ) . add ( j c 1 ) ;
153 J2eeContainer j c 2 = new J2eeContainer ( " TicketSystemContainer " ) ;
154 ws . getJ2eeConta iner s ( ) . add ( j c 2 ) ;
155

156 JVM jvm = new JVM( " jvm1 . 5 " , " 1 . 4 " ) ; j c 1 . setJvm ( jvm) ;
157 jvm = new JVM( " jvm1 . 5 " , " 1 . 5 " ) ; j c 2 . setJvm ( jvm) ;
158 J2eeModule jma = new J2eeModule ( "SMB Module " ) ;
159 j c 1 . getJ2eeModules ( ) . add ( jma ) ;
160 jma = new J2eeModule ( "WebFTP Module " ) ;
161 j c 1 . getJ2eeModules ( ) . add ( jma ) ;
162

112



C.2. Example scenarios

163 jma = new J2eeModule ( "POP3 Module " ) ;
164 j c 1 . getJ2eeModules ( ) . add ( jma ) ;
165 jma = new J2eeModule ( " Ajax Module " ) ;
166 j c 1 . getJ2eeModules ( ) . add ( jma ) ;
167

168 J2eeAppl i ca t ion ja1 = new J2eeAppl i ca t ion ( "Document Management 
Appl i ca t ion " ) ;

169 j c 1 . g e tJ2eeApp l i c a t i on s ( ) . add ( ja1 ) ;
170 J2eeAppl i ca t ion ja2 = new J2eeAppl i ca t ion ( " Ticket  System 

Appl i ca t ion " ) ;
171 j c 1 . g e tJ2eeApp l i c a t i on s ( ) . add ( ja2 ) ;
172

173 Database db = new MySqlDb( " TicketSystemDatabase " ) ;
174 J2eeJdbcResource jdbcr = new J2eeJdbcResource ( "

TicketSystemJdbcResource " ) ;
175 j a2 . getJ2eeJdbcResources ( ) . add ( jdbcr ) ;
176 jdbcr . setDatabase (db) ;
177 dbserver . getDatabases ( ) . add (db) ;
178 }
179

180

181 // People and s k i l l s
182 {
183 Human usch i = new Human( " Uschi " , 10) ; d . save ( usch i ) ;
184 S k i l l s11 = new DatabaseDesign (10) ;
185 S k i l l s12 = new Hardware (9 ) ;
186 S k i l l s13 = new WebserverConf igurat ion (3 ) ;
187 usch i . g e t S k i l l s ( ) . add ( s11 ) ;
188 usch i . g e t S k i l l s ( ) . add ( s12 ) ;
189 usch i . g e t S k i l l s ( ) . add ( s13 ) ;
190

191 Human char l ene = new Human( " Charlene " , 10) ; d . save ( char l ene ) ;
192 S k i l l s21 = new DatabaseDesign (60) ;
193 S k i l l s22 = new Hardware (90) ;
194 char l ene . g e t S k i l l s ( ) . add ( s21 ) ;
195 char l ene . g e t S k i l l s ( ) . add ( s22 ) ;
196

197 Human markkevin = new Human( "Mark−Kevin " , 10) ; d . save (markkevin ) ;
198 S k i l l s31 = new DatabaseDesign (100) ;
199 S k i l l s32 = new Hardware (15) ;
200 S k i l l s33 = new WebserverConf igurat ion (5 ) ;
201 markkevin . g e t S k i l l s ( ) . add ( s31 ) ;
202 markkevin . g e t S k i l l s ( ) . add ( s32 ) ;
203 markkevin . g e t S k i l l s ( ) . add ( s33 ) ;
204

205

206 Human mandyloreen = new Human( "Mandy−Loreen " , 10) ; d . save (
mandyloreen ) ;

207 S k i l l s41 = new DatabaseDesign (100) ;
208 S k i l l s42 = new Hardware (95) ;
209 S k i l l s43 = new WebserverConf igurat ion (90) ;
210 mandyloreen . g e t S k i l l s ( ) . add ( s41 ) ;
211 mandyloreen . g e t S k i l l s ( ) . add ( s42 ) ;

113



C. Additional listings and UML diagrams

212 mandyloreen . g e t S k i l l s ( ) . add ( s43 ) ;
213

214 }
215 }
216 }

C.3. Example task, method and operator definitions

Listing C.4: JAVA code the SpeedUpWebApplication task definition
1 package da . s c e n a r i o s . j 2 e e . domain ;
2

3 import da . knowledgebase . model . Database ;
4 import da . knowledgebase . model . DbServer ;
5 import da . p lanner . htn . Binding ;
6 import da . p lanner . htn . KbElementVariable ;
7 import da . p lanner . htn .Method ;
8 import da . p lanner . htn . Operator ;
9 import da . p lanner . htn . Order ingConstra int ;

10 import da . p lanner . htn . PropertyVar iab le ;
11 import da . p lanner . htn . Task ;
12 import da . p lanner . htn . TaskDe f in i t i on ;
13 import da . p lanner . htn . TaskNetwork ;
14 import da . p lanner . htn . query .And ;
15 import da . p lanner . htn . query . KbPrecondition ;
16 import da . p lanner . htn . query . Not ;
17 import da . p lanner . htn . query . Object InSetConstra int ;
18 import da . p lanner . htn . query . Objec tProper ty Ident i tyConst ra in t ;
19

20 public class SpeedUpWebApplication extends TaskDef in i t i on {
21 public SpeedUpWebApplication ( ) {
22

23 this . addPerformer (
24 new Method( " EnableLoadbalancing " , this )
25 {{
26 KbPrecondition p = new KbPrecondition ( ) ;
27 this . se tBindingGenerator (p) ;
28 p . addKbElementConstraint ( " app l i c a t i o n " ) ;
29 }
30

31

32 protected TaskNetwork getSubNetwork ( Binding b) {
33 TaskNetwork tn = new TaskNetwork ( ) ;
34

35 Task lbNode = new Task (new In s ta l lLoadBa lance r ( ) , new Binding
( )

36 . _put ( " lb " , b . get ( " lb " ) )
37 ) ;
38 Task serverNode = new Task ( new I n s t a l l J 2 e e S e r v e r ( ) , new

Binding ( )
39 . _put ( " s e r v e r " , b . get ( "newws " ) )

114



C.3. Example task, method and operator definitions

40 . _put ( " conta ine r " , b . get ( " j c " ) )
41 ) ;
42

43 Task appNode = new Task (new I n s t a l l J 2 e eApp l i c a t i o n ( ) , new
Binding ( )

44 . _put ( " cont " , b . get ( " j c " ) )
45 . _put ( " app " , b . get ( " app l i c a t i o n " ) )
46 ) ;
47

48 Task addthemNode = new Task (new AddContainerToLoadbalancer ( ) ,
new Binding ( )

49 . _put ( " conta ine r " , b . get ( " j c " ) )
50 . _put ( " lb " , b . get ( " lb " ) )
51 ) ;
52

53 tn . addNode ( lbNode ) ;
54 tn . addNode ( serverNode ) ;
55 tn . addNode ( appNode ) ;
56 tn . addNode ( addthemNode ) ;
57 tn . addOrder ingConstraint (new Order ingConstra int ( serverNode ,

appNode ) ) ;
58 tn . addOrder ingConstraint (new Order ingConstra int ( appNode ,

addthemNode ) ) ;
59 tn . addOrder ingConstraint (new Order ingConstra int ( lbNode ,

addthemNode ) ) ;
60 return tn ;
61 }
62 }) ;
63

64

65

66 this . addPerformer (
67 new Method( " MigrateDatabase " , this )
68 {{
69 KbPrecondition p = new KbPrecondition ( ) ;
70 this . se tBindingGenerator (p) ;
71 p . addKbElementConstraint ( " app l i c a t i o n " ) ;
72 p . addKbElementConstraint ( " olddb " ) ;
73 p . addKbElementConstraint ( " dbresource " ) ;
74 p . se tAddi t iona lQueryConst ra int s (new And(
75 new Object InSetConstra int ( " dbresource " , " app l i c a t i o n " , "

j2eeJdbcResources " ) ,
76 new Objec tProper ty Ident i tyConst ra in t ( " dbresource " , "

database " , " olddb " )
77 ) ) ;
78 }
79

80 protected TaskNetwork getSubNetwork ( Binding b) {
81 TaskNetwork tn = new TaskNetwork ( ) ;
82 KbElementVariable newdb = new KbElementVariable ( Database . class

, null , null ) ;
83 KbElementVariable newdbserver = new KbElementVariable ( DbServer

. class , null , null ) ;

115



C. Additional listings and UML diagrams

84

85 Task backupNode = new Task (new BackupDatabase ( ) , new Binding ( )
86 . _put ( "db " , b . get ( " olddb " ) )
87 ) ;
88 Task ins ta l ldbNode = new Task ( new In s t a l lDa taba s e ( ) , new

Binding ( )
89 . _put ( " dbServer " , newdbserver )
90 . _put ( "db " , newdb)
91 ) ;
92 Task copyNode = new Task (new CopyDatabaseContent ( ) , new

Binding ( )
93 . _put ( " fromDb" , b . get ( " olddb " ) )
94 . _put ( " toDb " , newdb)
95 ) ;
96

97 //TODO: connect newdb and app l i c a t i o n v ia resource
98

99

100 tn . addNode ( ins ta l ldbNode ) ;
101 tn . addNode ( backupNode ) ;
102 tn . addNode ( copyNode ) ;
103 tn . addOrder ingConstraint (new Order ingConstra int ( backupNode ,

in s ta l ldbNode ) ) ;
104 tn . addOrder ingConstraint (new Order ingConstra int ( insta l ldbNode ,

copyNode ) ) ;
105 return tn ;
106 }
107

108 }
109

110

111 ) ;
112

113

114 this . addPerformer (
115 new Operator ( " AskWebApplicationExpert " , this , 10)
116 {{
117 KbPrecondition p = new KbPrecondition ( ) ;
118 this . se tBindingGenerator (p) ;
119 p . addKbElementConstraint ( " app l i c a t i o n " ) ;
120 p . addKbElementConstraint ( " expert " ) ;
121 p . addKbElementConstraint ( " s k i l l " ) ;
122 p . se tAddi t iona lQueryConst ra int s (new Not (new

Object InSetConstra int ( " s k i l l " , " expert " , " s k i l l s " ) ) ) ;
123 }
124 }
125 ) ;
126

127

128

129 this . addPerformer (
130 new Method( " UpgradeWebServerHardware " , this )
131 {{

116



C.3. Example task, method and operator definitions

132 KbPrecondition p = new KbPrecondition ( ) ;
133 this . se tBindingGenerator (p) ;
134 p . addKbElementConstraint ( " app l i c a t i o n " ) ;
135 p . addKbElementConstraint ( "ws " ) ;
136 p . addKbElementConstraint ( " j c " ) ;
137 p . se tAddi t iona lQueryConst ra int s (new And(
138 new Object InSetConstra int ( " j c " , "ws " , " j 2 e eConta ine r s " ) ,
139 new Object InSetConstra int ( " app l i c a t i o n " , " j c " , "

j 2 e eApp l i c a t i on s " )
140 ) ) ;
141

142 }
143 protected TaskNetwork getSubNetwork ( Binding b) {
144 TaskNetwork tn = new TaskNetwork ( ) ;
145 PropertyVar iab le mem = new PropertyVar iab le ( In t eg e r . class ,

1000) ;
146 PropertyVar iab le cpu = new PropertyVar iab le ( In t eg e r . class , 1) ;
147 Task upgrade = new Task (new UpgradeHardware ( ) , new Binding ( )
148 . _put ( " machine " , b . get ( "ws " ) )
149 . _put ( "mem" , mem)
150 . _put ( " cpu " , cpu )
151 ) ;
152 tn . addNode ( upgrade ) ;
153

154 return tn ;
155 }
156 }
157 ) ;
158

159

160 this . addPerformer (
161 new Method( " UpgradeDatabaseServerHardware " , this )
162 {{
163 KbPrecondition p = new KbPrecondition ( ) ;
164 this . se tBindingGenerator (p) ;
165 p . addKbElementConstraint ( " app l i c a t i o n " ) ;
166 p . addKbElementConstraint ( " dbserver " ) ;
167 p . addKbElementConstraint ( " olddb " ) ;
168 p . addKbElementConstraint ( " dbresource " ) ;
169 p . se tAddi t iona lQueryConst ra int s (new And(new And(
170 new Object InSetConstra int ( " dbresource " , " app l i c a t i o n " , "

j2eeJdbcResources " ) ,
171 new Objec tProper ty Ident i tyConst ra in t ( " dbresource " , "

database " , " olddb " ) ) ,
172 new Object InSetConstra int ( " olddb " , " dbserver " , " databases "

)
173 ) ) ;
174

175 }
176 protected TaskNetwork getSubNetwork ( Binding b) {
177 TaskNetwork tn = new TaskNetwork ( ) ;
178 PropertyVar iab le mem = new PropertyVar iab le ( In t eg e r . class ,

1000) ;

117



C. Additional listings and UML diagrams

179 PropertyVar iab le cpu = new PropertyVar iab le ( In t eg e r . class , 1) ;
180

181 Task upgrade = new Task (new UpgradeHardware ( ) , new Binding ( )
182 . _put ( " machine " , b . get ( " dbserver " ) )
183 . _put ( "mem" , mem)
184 . _put ( " cpu " , cpu )
185 ) ;
186 tn . addNode ( upgrade ) ;
187

188 return tn ;
189 }
190 }
191 ) ;
192

193

194 this . addPerformer (
195 new Method( " UpgradeDatabaseServerAndWebServerHardware " , this )
196 {{
197 KbPrecondition p = new KbPrecondition ( ) ;
198 this . se tBindingGenerator (p) ;
199 p . addKbElementConstraint ( " app l i c a t i o n " ) ;
200 p . addKbElementConstraint ( "ws " ) ;
201 p . addKbElementConstraint ( " j c " ) ;
202

203 p . addKbElementConstraint ( " dbserver " ) ;
204 p . addKbElementConstraint ( " olddb " ) ;
205 p . addKbElementConstraint ( " dbresource " ) ;
206 p . se tAddi t iona lQueryConst ra int s (new And(
207 new And(new And(
208 new Object InSetConstra int ( " dbresource " , " app l i c a t i o n " ,

" j2eeJdbcResources " ) ,
209 new Objec tProper ty Ident i tyConst ra in t ( " dbresource " , "

database " , " olddb " ) ) ,
210 new Object InSetConstra int ( " olddb " , " dbserver " , "

databases " ) ) ,
211

212 new And(
213 new Object InSetConstra int ( " j c " , "ws " , "

j 2 e eConta ine r s " ) ,
214 new Object InSetConstra int ( " app l i c a t i o n " , " j c " , "

j 2 e eApp l i c a t i on s " ) )
215 ) ) ;
216 }
217 protected TaskNetwork getSubNetwork ( Binding b) {
218 TaskNetwork tn = new TaskNetwork ( ) ;
219 PropertyVar iab le mem = new PropertyVar iab le ( In t eg e r . class ,

1000) ;
220 PropertyVar iab le cpu = new PropertyVar iab le ( In t eg e r . class , 1) ;
221

222 Task upgradeDb = new Task (new UpgradeHardware ( ) , new Binding ( )
223 . _put ( " machine " , b . get ( " dbserver " ) )
224 . _put ( "mem" , mem)
225 . _put ( " cpu " , cpu )

118



C.4. ChangeRefinery outputs for examples in Sections 4.4 and 5.3

226 ) ;
227 tn . addNode ( upgradeDb ) ;
228

229 Task upgradeWs = new Task (new UpgradeHardware ( ) , new Binding ( )
230 . _put ( " machine " , b . get ( "ws " ) )
231 . _put ( "mem" , mem)
232 . _put ( " cpu " , cpu )
233 ) ;
234 tn . addNode ( upgradeWs ) ;
235 // tn . addOrderingConstraint (new Order ingConstra int ( upgradeDb ,

upgradeWs ) ) ;
236 return tn ;
237 }
238 }
239 ) ;
240 }
241 }

C.4. ChangeRefinery outputs for examples in Sections 4.4 and 5.3

Listing C.5: ChangeRefinery output for Section 4.4.1
1 Remaining task network :
2 Pre l iminary plan :
3 Remaining ta sk s : SpeedUpWebApplication ,
4 Ava i l ab l e REFINEMENT OPERATION:
5 [ 0 ] EnableLoadbalancing
6 [ 1 ] MigrateDatabase
7 [ 2 ] UpgradeWebServerHardware
8 [ 3 ] AskWebApplicationExpert
9 [ 4 ] UpgradeDatabaseServerHardware

10 Choose a REFINEMENT OPERATION: 2
11 Backtrack over remaining REFINEMENT OPERATION? (y/n) ? n
12 Ca lcu la t ing b ind ings f o r task SpeedUpWebApplication and re f inement

UpgradeWebServerHardware
13 Ava i l ab l e BINDING:
14 [ 0 ] J2eeContainer : j c=18=WebshopContainer5 , J2eeAppl i cat ion : app l i c a t i o n

=21=Webshop Appl icat ion5 , WebServer : ws=8=WebshopServer5
15 [ 1 ] J2eeContainer : j c=24=WebshopContainer3 , J2eeAppl i cat ion : app l i c a t i o n

=27=Webshop Appl icat ion3 , WebServer : ws=6=WebshopServer3
16 [ 2 ] J2eeContainer : j c=30=WebshopContainer4 , J2eeAppl i cat ion : app l i c a t i o n

=33=Webshop Appl icat ion4 , WebServer : ws=7=WebshopServer4
17 [ 3 ] J2eeContainer : j c=36=WebshopContainer2 , J2eeAppl i cat ion : app l i c a t i o n

=39=Webshop Appl icat ion2 , WebServer : ws=5=WebshopServer2
18 [ 4 ] J2eeContainer : j c=42=WebshopContainer1 , J2eeAppl i cat ion : app l i c a t i o n

=45=Webshop Appl icat ion1 , WebServer : ws=4=WebshopServer1
19 [ 5 ] J2eeContainer : j c=52=WebshopContainer , J2eeAppl i cat ion : app l i c a t i o n

=54=Wiki Appl icat ion , WebServer : ws=10=MiscServer
20 [ 6 ] J2eeContainer : j c=52=WebshopContainer , J2eeAppl i cat ion : app l i c a t i o n

=57=Expense Management Appl icat ion , WebServer : ws=10=MiscServer

119



C. Additional listings and UML diagrams

21 [ 7 ] J2eeContainer : j c=52=WebshopContainer , J2eeAppl i cat ion : app l i c a t i o n
=59=Calendar Appl icat ion , WebServer : ws=10=MiscServer

22 [ 8 ] J2eeContainer : j c=62=WebmailContainer , J2eeAppl i ca t ion : app l i c a t i o n
=66=Webmail Appl icat ion , WebServer : ws=11=WebmailServer

23 [ 9 ] J2eeContainer : j c=68=DocumentManagementContainer , J2eeAppl i ca t ion :
app l i c a t i o n=73=Ticket System Appl icat ion , WebServer : ws=12=Doc+
TicketServer

24 [ 1 0 ] J2eeContainer : j c=68=DocumentManagementContainer , J2eeAppl i ca t ion :
app l i c a t i o n=75=Document Management Appl icat ion , WebServer : ws=12=Doc+
TicketServer

25 Choose a BINDING: ? 0
26 Backtrack over remaining BINDING? (y/n) ? n
27 Applying method UpgradeWebServerHardware to task SpeedUpWebApplication
28 Enter temporal dead l ine f o r sub task UpgradeHardware (−1 f o r no dead l ine

) : ? 40
29 Remaining task network :
30 Pre l iminary plan :
31 Remaining ta sk s : UpgradeHardware ,
32 Ava i l ab l e REFINEMENT OPERATION:
33 [ 0 ] UpgradeCpu
34 [ 1 ] UpgradeMem
35 [ 2 ] UpgradeMemAndCpu
36 Choose a REFINEMENT OPERATION: ? 2
37 Backtrack over remaining REFINEMENT OPERATION? (y/n) ? n
38 Ca lcu la t ing b ind ings f o r task UpgradeHardware and re f inement

UpgradeMemAndCpu
39 Applying operator UpgradeMemAndCpu to task UpgradeHardware
40 Found new plan (1 ) : UpgradeMemAndCpu( cpu <−− [ I n t eg e r =1] ,mem <−− [

I n t eg e r =1000] ,machine <−− [ WebServer=8=WebshopServer5 ] )
41 Backtracking
42 Backtracking
43

44

45 Found plans ( t o t a l 1)
46 (0 ) UpgradeMemAndCpu( cpu <−− [ I n t eg e r =1] ,mem <−− [ I n t eg e r =1000] ,machine

<−− [ WebServer=8=WebshopServer5 ] )
47 Action UpgradeMemAndCpu : s t a r t s [ 0 . 0 , 1 5 . 0 ] end [ 2 5 . 0 , 4 0 . 0 ] durat ion

[ 2 5 . 0 , 2 5 . 0 ]
48 Task SpeedUpWebApplication : s t a r t s [ 0 . 0 , 1 5 . 0 ] end [ 2 5 . 0 , 5 0 . 0 ]

durat ion [ 2 5 . 0 , 5 0 . 0 ]
49 Task UpgradeHardware : s t a r t s [ 0 . 0 , 1 5 . 0 ] end [ 2 5 . 0 , 4 0 . 0 ] durat ion

[ 2 5 . 0 , 4 0 . 0 ]

Listing C.6: ChangeRefinery output for Section 5.3.1
1 Remaining task network :
2 Pre l iminary plan :
3 Remaining ta sk s : SpeedUpWebApplication ,
4 Ava i l ab l e REFINEMENT OPERATION:
5 [ 0 ] UpgradeDatabaseServerHardware
6 [ 1 ] UpgradeDatabaseServerAndWebServerHardware
7 [ 2 ] EnableLoadbalancing
8 [ 3 ] MigrateDatabase

120



C.4. ChangeRefinery outputs for examples in Sections 4.4 and 5.3

9 [ 4 ] UpgradeWebServerHardware
10 Choose a REFINEMENT OPERATION: 1
11 Backtrack over remaining REFINEMENT OPERATION? (y/n) ? n
12 Ca lcu la t ing b ind ings f o r task SpeedUpWebApplication and re f inement

UpgradeDatabaseServerAndWebServerHardware
13 Applying method UpgradeDatabaseServerAndWebServerHardware to task

SpeedUpWebApplication
14 Enter temporal dead l ine f o r sub task UpgradeHardware (−1 f o r no dead l ine

) : ? 30
15 Enter temporal dead l ine f o r sub task UpgradeHardware (−1 f o r no dead l ine

) : ? 35
16 Remaining task network :
17 Pre l iminary plan :
18 Remaining ta sk s : UpgradeHardware , UpgradeHardware ,
19 Ava i l ab l e FIRST TASK:
20 [ 0 ] Task : UpgradeHardware
21 [ 1 ] Task : UpgradeHardware
22 Choose a FIRST TASK: ? 0
23 Ava i l ab l e REFINEMENT OPERATION:
24 [ 0 ] UpgradeMemAndCpu
25 [ 1 ] UpgradeCpu
26 [ 2 ] UpgradeMem
27 Choose a REFINEMENT OPERATION: ? 0
28 Backtrack over remaining REFINEMENT OPERATION? (y/n) ? n
29 Ca lcu la t ing b ind ings f o r task UpgradeHardware and re f inement

UpgradeMemAndCpu
30 Applying operator UpgradeMemAndCpu to task UpgradeHardware
31 Remaining task network :
32 Pre l iminary plan : UpgradeMemAndCpu( cpu <−− [ I n t eg e r =1] ,mem <−− [

I n t eg e r =1000] ,machine <−− [ DbServer=1=MiscDbServer ] )
33 Remaining ta sk s : UpgradeHardware ,
34 Ava i l ab l e REFINEMENT OPERATION:
35 [ 0 ] UpgradeMem
36 [ 1 ] UpgradeMemAndCpu
37 [ 2 ] UpgradeCpu
38 Choose a REFINEMENT OPERATION: ? 0
39 Backtrack over remaining REFINEMENT OPERATION? (y/n) ? n
40 Ca lcu la t ing b ind ings f o r task UpgradeHardware and re f inement UpgradeMem
41 Applying operator UpgradeMem to task UpgradeHardware
42 Found new plan (1 ) : UpgradeMemAndCpu( cpu <−− [ I n t eg e r =1] ,mem <−− [

I n t eg e r =1000] ,machine <−− [ DbServer=1=MiscDbServer ] ) ,UpgradeMem(mem
<−− [ I n t eg e r =1000] , cpu <−− [ I n t eg e r =1] ,machine <−− [ WebServer=2=
MiscServer ] )

43 Backtracking
44 Backtracking
45 Backtracking
46

47

48 Found plans ( t o t a l 1)
49 (0 ) UpgradeMemAndCpu( cpu <−− [ I n t eg e r =1] ,mem <−− [ I n t eg e r =1000] ,machine

<−− [ DbServer=1=MiscDbServer ] ) ,UpgradeMem(mem <−− [ I n t eg e r =1000] , cpu
<−− [ I n t eg e r =1] ,machine <−− [ WebServer=2=MiscServer ] )

121



C. Additional listings and UML diagrams

50 Task UpgradeHardware : s t a r t s [ 0 . 0 , 5 . 0 ] end [ 2 5 . 0 , 3 0 . 0 ] durat ion
[ 2 5 . 0 , 3 0 . 0 ]

51 Task UpgradeHardware : s t a r t s [ 0 . 0 , 2 0 . 0 ] end [ 1 5 . 0 , 3 5 . 0 ] durat ion
[ 1 5 . 0 , 3 5 . 0 ]

52 Task SpeedUpWebApplication : s t a r t s [ 0 . 0 , 5 . 0 ] end [ 2 5 . 0 , 5 0 . 0 ]
durat ion [ 2 5 . 0 , 5 0 . 0 ]

53 Action UpgradeMemAndCpu : s t a r t s [ 0 . 0 , 5 . 0 ] end [ 2 5 . 0 , 3 0 . 0 ] durat ion
[ 2 5 . 0 , 2 5 . 0 ]

54 Action UpgradeMem : s t a r t s [ 0 . 0 , 2 0 . 0 ] end [ 1 5 . 0 , 3 5 . 0 ] durat ion [ 1 5 . 0
, 1 5 . 0 ]

Listing C.7: Example of an inconsistent STP
1 Task UpgradeHardware : s t a r t s [ 0 . 0 , 5 . 0 ] end [ 2 5 . 0 , 3 0 . 0 ] durat ion

[ 2 5 . 0 , 3 0 . 0 ]
2 Task UpgradeHardware : s t a r t s [ 2 5 . 0 , 3 5 . 0 ] end [ 2 5 . 0 , 3 5 . 0 ] durat ion

[ 0 . 0 , 1 0 . 0 ]
3 Task SpeedUpWebApplication : s t a r t s [ 0 . 0 , 5 . 0 ] end [ 2 5 . 0 , 5 0 . 0 ]

durat ion [ 2 5 . 0 , 5 0 . 0 ]
4 Action UpgradeMemAndCpu : s t a r t s [ 0 . 0 , 5 . 0 ] end [ 2 5 . 0 , 3 0 . 0 ] durat ion

[ 2 5 . 0 , 2 5 . 0 ]
5 Action UpgradeMem : s t a r t s [ 2 5 . 0 , 1 000 . 0 ] end [ 0 . 0 , 3 5 . 0 ] durat ion

[ 1 5 . 0 , 1 0 . 0 ]

Listing C.8: Example of additional ordering constraints due to mutual dependencies of effects
and preconditions

1 Remaining task network :
2 Pre l iminary plan :
3 Remaining ta sk s : UpgradeHardware , SetupServer ,
4 Ava i l ab l e FIRST TASK:
5 [ 0 ] Task : UpgradeHardware
6 [ 1 ] Task : SetupServer
7 Choose a FIRST TASK: 0
8 Ava i l ab l e REFINEMENT OPERATION:
9 [ 0 ] UpgradeCpu

10 [ 1 ] UpgradeMem
11 [ 2 ] UpgradeMemAndCpu
12 Choose a REFINEMENT OPERATION: ? 1
13 Backtrack over remaining REFINEMENT OPERATION? (y/n) ? n
14 Ca lcu la t ing b ind ings f o r task UpgradeHardware and re f inement UpgradeMem
15 Applying operator UpgradeMem to task UpgradeHardware
16 Remaining task network :
17 Pre l iminary plan : UpgradeMem( cpu <−− [ I n t eg e r =1000] ,mem <−− [ I n t eg e r

=1000] ,machine <−− [ DbServer=1=MiscDbServer ] ; QueryDependencies
={1})

18 Remaining ta sk s : SetupServer ,
19 Ava i l ab l e REFINEMENT OPERATION:
20 [ 0 ] UseLowEndServer
21 [ 1 ] UseEx i s t ingServer
22 Choose a REFINEMENT OPERATION: ? 1
23 Backtrack over remaining REFINEMENT OPERATION? (y/n) ? n
24 Ca lcu la t ing b ind ings f o r task SetupServer and re f inement

UseEx i s t ingServer

122



C.4. ChangeRefinery outputs for examples in Sections 4.4 and 5.3

25 Applying operator UseEx i s t ingServer to task SetupServer
26 Found new plan (1 ) : UpgradeMem( cpu <−− [ I n t eg e r =1000] ,mem <−− [ I n t eg e r

=1000] ,machine <−− [ DbServer=1=MiscDbServer ] ; QueryDependencies={1}) ,
UseEx i s t ingServer (mem <−− [ I n t eg e r =2000] , s e r v e r <−− [ DbServer=1=
MiscDbServer ] ; QueryDependencies={1})

27 Backtracking
28 Backtracking
29

30

31 Found plans ( t o t a l 1)
32 (0 ) UpgradeMem( cpu <−− [ I n t eg e r =1000] ,mem <−− [ I n t eg e r =1000] ,machine <−−

[ DbServer=1=MiscDbServer ] ; QueryDependencies={1}) , UseEx i s t ingServer (
mem <−− [ I n t eg e r =2000] , s e r v e r <−− [ DbServer=1=MiscDbServer ] ;
QueryDependencies={1})

33 Action UseEx i s t ingServer : s t a r t s [ 1 5 . 0 , 4 5 . 0 ] ends [ 2 0 . 0 , 5 0 . 0 ] durat ion
[ 5 . 0 , 5 . 0 ]

34 Task SetupServer : s t a r t s [ 0 . 0 , 4 5 . 0 ] ends [ 2 0 . 0 , 5 0 . 0 ] durat ion [ 5 . 0 ,
5 0 . 0 ]

35 Task UpgradeHardware : s t a r t s [ 0 . 0 , 3 0 . 0 ] ends [ 1 5 . 0 , 5 0 . 0 ] durat ion
[ 1 5 . 0 , 5 0 . 0 ]

36 Action UpgradeMem : s t a r t s [ 0 . 0 , 3 0 . 0 ] ends [ 1 5 . 0 , 4 5 . 0 ] durat ion [ 1 5 . 0 ,
1 5 . 0 ]

Listing C.9: Example of additional ordering constraints due to failed preconditions
1 (0 ) UpgradeMemAndCpu( cpu <−− [ I n t eg e r =1] ,mem <−− [ I n t eg e r =1000] ,machine

<−− [ WebServer=3=ECommerceServer ] ) , Insta l lJ2eeModule−Sc r i p t (module
<−− [ Log4jJ2eeModule=16=n i l ] , c on ta ine r <−− [ J2eeContainer=10=
ECommerceContainer ] ) , Instal lECommerceAppl icat ionVers ion5−Sc r i p t ( app
<−− [ ECommerceJ2eeApplication=17=n i l ] , log4jmodule <−− [
Log4jJ2eeModule=16=n i l ] , cont <−− [ J2eeContainer=10=ECommerceContainer
] )

2 (1 ) UpgradeCpu ( cpu <−− [ I n t eg e r =1] ,mem <−− [ I n t eg e r =1000] ,machine <−− [
WebServer=3=ECommerceServer ] ) , Insta l lJ2eeModule−Sc r i p t (module <−− [
Log4jJ2eeModule=16=n i l ] , c on ta ine r <−− [ J2eeContainer=10=
ECommerceContainer ] ) , Instal lECommerceAppl icat ionVers ion5−Sc r i p t ( app
<−− [ ECommerceJ2eeApplication=17=n i l ] , log4jmodule <−− [
Log4jJ2eeModule=16=n i l ] , cont <−− [ J2eeContainer=10=ECommerceContainer
] )

3 (2 ) UpgradeMem( cpu <−− [ I n t eg e r =1] ,mem <−− [ I n t eg e r =1000] ,machine <−− [
WebServer=3=ECommerceServer ] ) , Insta l lJ2eeModule−Sc r i p t (module <−− [
Log4jJ2eeModule=16=n i l ] , c on ta ine r <−− [ J2eeContainer=10=
ECommerceContainer ] ) , Instal lECommerceAppl icat ionVers ion5−Sc r i p t ( app
<−− [ ECommerceJ2eeApplication=17=n i l ] , log4jmodule <−− [
Log4jJ2eeModule=16=n i l ] , cont <−− [ J2eeContainer=10=ECommerceContainer
] )

4 (3 ) Insta l lJ2eeModule−Sc r i p t (module <−− [ Log4jJ2eeModule=16=n i l ] ,
c on ta ine r <−− [ J2eeContainer=10=ECommerceContainer ] ) ,
Insta l lECommerceAppl icat ionVers ion5−Sc r i p t ( app <−− [
ECommerceJ2eeApplication=17=n i l ] , log4jmodule <−− [ Log4jJ2eeModule=16=
n i l ] , cont <−− [ J2eeContainer=10=ECommerceContainer ] ) ,UpgradeMemAndCpu
( cpu <−− [ I n t eg e r =1] ,mem <−− [ I n t eg e r =1000] ,machine <−− [ WebServer=3=
ECommerceServer ] )

123



C. Additional listings and UML diagrams

5 (4 ) Insta l lJ2eeModule−Sc r i p t (module <−− [ Log4jJ2eeModule=16=n i l ] ,
c on ta ine r <−− [ J2eeContainer=10=ECommerceContainer ] ) ,
Insta l lECommerceAppl icat ionVers ion5−Sc r i p t ( app <−− [
ECommerceJ2eeApplication=17=n i l ] , log4jmodule <−− [ Log4jJ2eeModule=16=
n i l ] , cont <−− [ J2eeContainer=10=ECommerceContainer ] ) ,UpgradeCpu ( cpu
<−− [ I n t eg e r =1] ,mem <−− [ I n t eg e r =1000] ,machine <−− [ WebServer=3=
ECommerceServer ] )

6 (5 ) Insta l lJ2eeModule−Sc r i p t (module <−− [ Log4jJ2eeModule=16=n i l ] ,
c on ta ine r <−− [ J2eeContainer=10=ECommerceContainer ] ) ,
Insta l lECommerceAppl icat ionVers ion5−Sc r i p t ( app <−− [
ECommerceJ2eeApplication=17=n i l ] , log4jmodule <−− [ Log4jJ2eeModule=16=
n i l ] , cont <−− [ J2eeContainer=10=ECommerceContainer ] ) ,UpgradeMem( cpu
<−− [ I n t eg e r =1] ,mem <−− [ I n t eg e r =1000] ,machine <−− [ WebServer=3=
ECommerceServer ] )

7 (6 ) Insta l lJ2eeModule−Sc r i p t (module <−− [ Log4jJ2eeModule=16=n i l ] ,
c on ta ine r <−− [ J2eeContainer=10=ECommerceContainer ] ) ,UpgradeMemAndCpu
(mem <−− [ I n t eg e r =1000] , cpu <−− [ I n t eg e r =1] ,machine <−− [ WebServer=3=
ECommerceServer ] ) , Instal lECommerceAppl icat ionVers ion5−Sc r i p t ( app <−−
[ ECommerceJ2eeApplication=17=n i l ] , log4jmodule <−− [ Log4jJ2eeModule
=16=n i l ] , cont <−− [ J2eeContainer=10=ECommerceContainer ] )

8 (7 ) Insta l lJ2eeModule−Sc r i p t (module <−− [ Log4jJ2eeModule=16=n i l ] ,
c on ta ine r <−− [ J2eeContainer=10=ECommerceContainer ] ) ,UpgradeCpu (mem
<−− [ I n t eg e r =1000] , cpu <−− [ I n t eg e r =1] ,machine <−− [ WebServer=3=
ECommerceServer ] ) , Instal lECommerceAppl icat ionVers ion5−Sc r i p t ( app <−−
[ ECommerceJ2eeApplication=17=n i l ] , log4jmodule <−− [ Log4jJ2eeModule
=16=n i l ] , cont <−− [ J2eeContainer=10=ECommerceContainer ] )

9 (8 ) Insta l lJ2eeModule−Sc r i p t (module <−− [ Log4jJ2eeModule=16=n i l ] ,
c on ta ine r <−− [ J2eeContainer=10=ECommerceContainer ] ) ,UpgradeMem(mem
<−− [ I n t eg e r =1000] , cpu <−− [ I n t eg e r =1] ,machine <−− [ WebServer=3=
ECommerceServer ] ) , Instal lECommerceAppl icat ionVers ion5−Sc r i p t ( app <−−
[ ECommerceJ2eeApplication=17=n i l ] , log4jmodule <−− [ Log4jJ2eeModule
=16=n i l ] , cont <−− [ J2eeContainer=10=ECommerceContainer ] )

Listing C.10: “Enable load balancing” change plan for complex example (for Section 5.3.3)
1 Remaining task network :
2 Pre l iminary plan :
3 Remaining ta sk s : SpeedUpWebApplication ,
4 Ava i l ab l e REFINEMENT OPERATION:
5 [ 0 ] UpgradeDatabaseServerHardware
6 [ 1 ] UpgradeWebServerHardware
7 [ 2 ] MigrateDatabase
8 [ 3 ] EnableLoadbalancing
9 [ 4 ] UpgradeDatabaseServerAndWebServerHardware

10 Choose a REFINEMENT OPERATION: 3
11 Backtrack over remaining REFINEMENT OPERATION? (y/n) ? n
12 Ca lcu la t ing b ind ings f o r task SpeedUpWebApplication and re f inement

EnableLoadbalancing
13 Ava i l ab l e BINDING:
14 [ 0 ] J2eeAppl i cat ion : app l i c a t i o n=8=Wiki App l i ca t ion
15 [ 1 ] ECommerceJ2eeApplication : app l i c a t i o n=11=ECommerce Appl i ca t ion
16 Choose a BINDING: ? 0
17 Backtrack over remaining BINDING? (y/n) ? n

124



C.4. ChangeRefinery outputs for examples in Sections 4.4 and 5.3

18 Applying method EnableLoadbalancing to task SpeedUpWebApplication
19 Enter temporal dead l ine f o r sub task Ins ta l lLoadBa lance r (−1 f o r no

dead l ine ) : ? −1
20 Enter temporal dead l ine f o r sub task I n s t a l l J 2 e eApp l i c a t i o n (−1 f o r no

dead l ine ) : ? −1
21 Enter temporal dead l ine f o r sub task AddContainerToLoadbalancer (−1 f o r

no dead l ine ) : ? −1
22 Enter temporal dead l ine f o r sub task I n s t a l l J 2 e e S e r v e r (−1 f o r no

dead l ine ) : ? −1
23 Remaining task network :
24 Pre l iminary plan :
25 Remaining ta sk s : Ins ta l lLoadBa lancer , I n s t a l l J 2 e eApp l i c a t i on ,

I n s t a l l J 2 e eS e r v e r , AddContainerToLoadbalancer ,
26 Ava i l ab l e FIRST TASK:
27 [ 0 ] Task : In s ta l lLoadBa lance r
28 [ 1 ] Task : I n s t a l l J 2 e e S e r v e r
29 Choose a FIRST TASK: ? 0
30 Ava i l ab l e REFINEMENT OPERATION:
31 [ 0 ] Ins ta l lLoadBalancer−Sc r i p t
32 [ 1 ] LoadbalancerOnServer
33 Choose a REFINEMENT OPERATION: ? 0
34 Backtrack over remaining REFINEMENT OPERATION? (y/n) ? n
35 Ca lcu la t ing b ind ings f o r task Ins ta l lLoadBa lance r and re f inement

Ins ta l lLoadBa lancer−Sc r i p t
36 Applying operator Ins ta l lLoadBa lancer−Sc r i p t to task Ins ta l lLoadBa lance r
37 Remaining task network :
38 Pre l iminary plan : Ins ta l lLoadBa lancer−Sc r i p t ( lb <−− [ LoadBalancer=16=

n i l ] )
39 Remaining ta sk s : I n s t a l l J 2 e eApp l i c a t i on , I n s t a l l J 2 e eS e r v e r ,

AddContainerToLoadbalancer ,
40 Ca lcu la t ing b ind ings f o r task I n s t a l l J 2 e e S e r v e r and re f inement

De f au l t J 2 e eS e r v e r I n s t a l l a t i o n
41 Applying method De f au l t J 2 e eS e r v e r I n s t a l l a t i o n to task I n s t a l l J 2 e e S e r v e r
42 Enter temporal dead l ine f o r sub task SetupServer (−1 f o r no dead l ine ) : ?

−1
43 Enter temporal dead l ine f o r sub task In s t a l l J 2 e eConta in e rSo f twar e (−1

f o r no dead l ine ) : ? −1
44 Remaining task network :
45 Pre l iminary plan : Ins ta l lLoadBa lancer−Sc r i p t ( lb <−− [ LoadBalancer=16=

n i l ] )
46 Remaining ta sk s : SetupServer , I n s t a l l J 2 e eApp l i c a t i on ,

In s ta l l J2eeConta ine rSo f tware , AddContainerToLoadbalancer ,
47 Ava i l ab l e FIRST TASK:
48 [ 0 ] Task : SetupServer
49 [ 1 ] Task : I n s t a l l J 2 e eApp l i c a t i o n
50 Choose a FIRST TASK: ? 0
51 Ava i l ab l e REFINEMENT OPERATION:
52 [ 0 ] UseEx i s t ingServer
53 [ 1 ] I n s t a l lV i r t u a l S e r v e rBySc r i p t
54 Choose a REFINEMENT OPERATION: ? 1
55 Backtrack over remaining REFINEMENT OPERATION? (y/n) ? n
56 Ca lcu la t ing b ind ings f o r task SetupServer and re f inement

I n s t a l lV i r t u a l S e r v e rBySc r i p t

125



C. Additional listings and UML diagrams

57 Applying operator I n s t a l lV i r t u a l S e r v e rBySc r i p t to task SetupServer
58 Remaining task network :
59 Pre l iminary plan : Ins ta l lLoadBa lancer−Sc r i p t ( lb <−− [ LoadBalancer=16=

n i l ] ) , I n s t a l lV i r t u a l S e r v e rBySc r i p t (mem <−− [ I n t eg e r =1000] , s e r v e r
<−− [ WebServer=17=n i l ] )

60 Remaining ta sk s : In s ta l l J2eeConta ine rSo f tware ,
AddContainerToLoadbalancer , I n s t a l l J 2 e eApp l i c a t i on ,

61 Ava i l ab l e FIRST TASK:
62 [ 0 ] Task : In s t a l l J2 e eConta in e rSo f twar e
63 [ 1 ] Task : I n s t a l l J 2 e eApp l i c a t i o n
64 Choose a FIRST TASK: ? 0
65 Ca lcu la t ing b ind ings f o r task In s t a l l J 2 e eConta in e rSo f twar e and

re f inement In s ta l l J2eeConta ine rSo f tware−Sc r i p t
66 Applying operator In s ta l l J2eeConta ine rSo f tware−Sc r i p t to task

In s t a l l J 2 e eConta in e rSo f twar e
67 Remaining task network :
68 Pre l iminary plan : Ins ta l lLoadBa lancer−Sc r i p t ( lb <−− [ LoadBalancer=16=

n i l ] ) , I n s t a l lV i r t u a l S e r v e rBySc r i p t (mem <−− [ I n t eg e r =1000] , s e r v e r
<−− [ WebServer=17=n i l ] ) , In s ta l l J2eeConta ine rSo f tware−Sc r i p t (
webserver <−− [ WebServer=17=n i l ] , cont <−− [ J2eeContainer=18=n i l ] )

69 Remaining ta sk s : AddContainerToLoadbalancer , I n s t a l l J 2 e eApp l i c a t i on ,
70 Ca lcu la t ing b ind ings f o r task I n s t a l l J 2 e eApp l i c a t i o n and re f inement

In s t a l l J 2 e eApp l i c a t i on−Sc r i p t
71 Applying operator I n s t a l l J 2 e eApp l i c a t i on−Sc r i p t to task

I n s t a l l J 2 e eApp l i c a t i o n
72 Remaining task network :
73 Pre l iminary plan : Ins ta l lLoadBa lancer−Sc r i p t ( lb <−− [ LoadBalancer=16=

n i l ] ) , I n s t a l lV i r t u a l S e r v e rBySc r i p t (mem <−− [ I n t eg e r =1000] , s e r v e r
<−− [ WebServer=17=n i l ] ) , In s ta l l J2eeConta ine rSo f tware−Sc r i p t (
webserver <−− [ WebServer=17=n i l ] , cont <−− [ J2eeContainer=18=n i l ] ) ,
I n s t a l l J 2 e eApp l i c a t i on−Sc r i p t ( app <−− [ J2eeAppl i ca t ion=8=Wiki
App l i ca t ion ] , cont <−− [ J2eeContainer=18=n i l ] )

74 Remaining ta sk s : AddContainerToLoadbalancer ,
75 Ca lcu la t ing b ind ings f o r task AddContainerToLoadbalancer and re f inement

AddContainerToLoadBalancer−Sc r i p t
76 Applying operator AddContainerToLoadBalancer−Sc r i p t to task

AddContainerToLoadbalancer
77 Found new plan (1 ) : Ins ta l lLoadBa lancer−Sc r i p t ( lb <−− [ LoadBalancer=16=

n i l ] ) , I n s t a l lV i r t u a l S e r v e rBySc r i p t (mem <−− [ I n t eg e r =1000] , s e r v e r <−−
[ WebServer=17=n i l ] ) , In s ta l l J2eeConta ine rSo f tware−Sc r i p t ( webserver <−−
[ WebServer=17=n i l ] , cont <−− [ J2eeContainer=18=n i l ] ) ,

I n s t a l l J 2 e eApp l i c a t i on−Sc r i p t ( app <−− [ J2eeAppl i ca t ion=8=Wiki
App l i ca t ion ] , cont <−− [ J2eeContainer=18=n i l ] ) ,
AddContainerToLoadBalancer−Sc r i p t ( conta ine r <−− [ J2eeContainer=18=n i l
] , lb <−− [ LoadBalancer=16=n i l ] )

78 Backtracking
79 Backtracking
80 Backtracking
81 Backtracking
82 Backtracking
83 Backtracking
84 Backtracking
85

126



C.4. ChangeRefinery outputs for examples in Sections 4.4 and 5.3

86

87 Found plans ( t o t a l 1)
88 (0 ) Ins ta l lLoadBa lancer−Sc r i p t ( lb <−− [ LoadBalancer=16=n i l ] ) ,

I n s t a l lV i r t u a l S e r v e rBySc r i p t (mem <−− [ I n t eg e r =1000] , s e r v e r <−− [
WebServer=17=n i l ] ) , In s ta l l J2eeConta ine rSo f tware−Sc r i p t ( webserver <−−
[ WebServer=17=n i l ] , cont <−− [ J2eeContainer=18=n i l ] ) ,
I n s t a l l J 2 e eApp l i c a t i on−Sc r i p t ( app <−− [ J2eeAppl i ca t ion=8=Wiki
App l i ca t ion ] , cont <−− [ J2eeContainer=18=n i l ] ) ,
AddContainerToLoadBalancer−Sc r i p t ( conta ine r <−− [ J2eeContainer=18=n i l
] , lb <−− [ LoadBalancer=16=n i l ] )

89 Task Ins ta l lLoadBa lance r : s t a r t s [ 0 . 0 , 3 5 . 0 ] end [ 1 0 . 0 , 4 5 . 0 ] durat ion
[ 1 0 . 0 , 4 5 . 0 ]

90 Task I n s t a l l J 2 e e S e r v e r : s t a r t s [ 0 . 0 , 1 5 . 0 ] end [ 2 0 . 0 , 3 5 . 0 ] durat ion
[ 2 0 . 0 , 3 5 . 0 ]

91 Action I n s t a l lV i r t u a l S e r v e rBySc r i p t : s t a r t s [ 0 . 0 , 1 5 . 0 ] end [ 1 0 . 0 ,
2 5 . 0 ] durat ion [ 1 0 . 0 , 1 0 . 0 ]

92 Action Ins ta l l J2eeConta ine rSo f tware−Sc r i p t : s t a r t s [ 1 0 . 0 , 2 5 . 0 ] end
[ 2 0 . 0 , 3 5 . 0 ] durat ion [ 1 0 . 0 , 1 0 . 0 ]

93 Task I n s t a l l J 2 e eApp l i c a t i o n : s t a r t s [ 2 0 . 0 , 3 5 . 0 ] end [ 3 0 . 0 , 4 5 . 0 ]
durat ion [ 1 0 . 0 , 2 5 . 0 ]

94 Task AddContainerToLoadbalancer : s t a r t s [ 3 0 . 0 , 4 5 . 0 ] end [ 3 5 . 0 , 5 0 . 0 ]
durat ion [ 5 . 0 , 2 0 . 0 ]

95 Task SpeedUpWebApplication : s t a r t s [ 0 . 0 , 1 5 . 0 ] end [ 3 5 . 0 , 5 0 . 0 ]
durat ion [ 3 5 . 0 , 5 0 . 0 ]

96 Task In s t a l l J 2 e eConta in e rSo f twar e : s t a r t s [ 1 0 . 0 , 2 5 . 0 ] end [ 2 0 . 0 ,
3 5 . 0 ] durat ion [ 1 0 . 0 , 2 5 . 0 ]

97 Action In s t a l l J 2 e eApp l i c a t i on−Sc r i p t : s t a r t s [ 2 0 . 0 , 3 5 . 0 ] end [ 3 0 . 0 ,
4 5 . 0 ] durat ion [ 1 0 . 0 , 1 0 . 0 ]

98 Task SetupServer : s t a r t s [ 0 . 0 , 1 5 . 0 ] end [ 1 0 . 0 , 2 5 . 0 ] durat ion [ 1 0 . 0 ,
2 5 . 0 ]

99 Action AddContainerToLoadBalancer−Sc r i p t : s t a r t s [ 3 0 . 0 , 4 5 . 0 ] end [ 3 5 . 0
, 5 0 . 0 ] durat ion [ 5 . 0 , 5 . 0 ]

100 Action Ins ta l lLoadBa lancer−Sc r i p t : s t a r t s [ 0 . 0 , 3 5 . 0 ] end [ 1 0 . 0 , 4 5 . 0 ]
durat ion [ 1 0 . 0 , 1 0 . 0 ]

101

102

103

104

105 Total time consumed f o r HTN planning : 57796ms
106 Total time consumed f o r task network copying : 0ms (0%)
107

108

109

110 Total time consumed f o r knowledge base r o l l b a c k s : 735ms
111 Total time consumed f o r knowledge base a s s e r t i o n s : 1172ms
112 Total time consumed f o r knowledge base qu e r i e s : 281ms
113 Total time consumed f o r knowledge base ope ra t i on s : 2188ms

Listing C.11: “Migrate database” change plan for complex example (for Section 5.3.3)
1 Remaining task network :
2 Pre l iminary plan :
3 Remaining ta sk s : SpeedUpWebApplication ,

127



C. Additional listings and UML diagrams

4 Ava i l ab l e REFINEMENT OPERATION:
5 [ 0 ] UpgradeDatabaseServerHardware
6 [ 1 ] EnableLoadbalancing
7 [ 2 ] UpgradeWebServerHardware
8 [ 3 ] UpgradeDatabaseServerAndWebServerHardware
9 [ 4 ] MigrateDatabase

10 Choose a REFINEMENT OPERATION: 4
11 Backtrack over remaining REFINEMENT OPERATION? (y/n) ? n
12 Ca lcu la t ing b ind ings f o r task SpeedUpWebApplication and re f inement

MigrateDatabase
13 Ava i l ab l e BINDING:
14 [ 0 ] J2eeAppl i cat ion : app l i c a t i o n=8=Wiki Appl icat ion , J2eeJdbcResource :

dbresource=9=WikiJdbcResource , Database : olddb=5=WikiDb
15 [ 1 ] ECommerceJ2eeApplication : app l i c a t i o n=11=ECommerce Appl icat ion ,

J2eeJdbcResource : dbresource=12=ECommerceJdbcResource , Database : olddb
=6=ECommerceDb

16 Choose a BINDING: ? 0
17 Backtrack over remaining BINDING? (y/n) ? n
18 Applying method MigrateDatabase to task SpeedUpWebApplication
19 Enter temporal dead l ine f o r sub task CopyDatabaseContent (−1 f o r no

dead l ine ) : ? −1
20 Enter temporal dead l ine f o r sub task BackupDatabase (−1 f o r no dead l ine )

: ? −1
21 Enter temporal dead l ine f o r sub task In s ta l lDa taba s e (−1 f o r no dead l ine

) : ? −1
22 Remaining task network :
23 Pre l iminary plan :
24 Remaining ta sk s : CopyDatabaseContent , BackupDatabase , In s ta l lDatabase ,
25 Ca lcu la t ing b ind ings f o r task BackupDatabase and re f inement

RunBackupScript
26 Applying operator RunBackupScript to task BackupDatabase
27 Remaining task network :
28 Pre l iminary plan : RunBackupScript (db <−− [ Database=5=WikiDb ] )
29 Remaining ta sk s : CopyDatabaseContent , In s ta l lDatabase ,
30 Ava i l ab l e REFINEMENT OPERATION:
31 [ 0 ] InstallNewDatabaseOnNewDbServer−Sc r i p t
32 [ 1 ] Instal lNewDatabaseOnExist ingDbServer
33 [ 2 ] Instal lNewDatabaseOnSpecialDbServer
34 Choose a REFINEMENT OPERATION: ? 2
35 Backtrack over remaining REFINEMENT OPERATION? (y/n) ? n
36 Ca lcu la t ing b ind ings f o r task In s ta l lDa taba s e and re f inement

Instal lNewDatabaseOnSpecialDbServer
37 Applying method Instal lNewDatabaseOnSpecialDbServer to task

In s ta l lDa taba s e
38 Enter temporal dead l ine f o r sub task SetupServer (−1 f o r no dead l ine ) : ?

−1
39 Enter temporal dead l ine f o r sub task Ins ta l lDatabaseSo f tware (−1 f o r no

dead l ine ) : ? −1
40 Remaining task network :
41 Pre l iminary plan : RunBackupScript (db <−− [ Database=5=WikiDb ] )
42 Remaining ta sk s : SetupServer , CopyDatabaseContent ,

Ins ta l lDatabaseSo f tware ,
43 Ava i l ab l e FIRST TASK:

128



C.4. ChangeRefinery outputs for examples in Sections 4.4 and 5.3

44 [ 0 ] Task : SetupServer
45 [ 1 ] Task : CopyDatabaseContent
46 Choose a FIRST TASK: ? 0
47 Ava i l ab l e REFINEMENT OPERATION:
48 [ 0 ] UseEx i s t ingServer
49 [ 1 ] I n s t a l lV i r t u a l S e r v e rBySc r i p t
50 Choose a REFINEMENT OPERATION: ? 1
51 Backtrack over remaining REFINEMENT OPERATION? (y/n) ? n
52 Ca lcu la t ing b ind ings f o r task SetupServer and re f inement

I n s t a l lV i r t u a l S e r v e rBySc r i p t
53 Applying operator I n s t a l lV i r t u a l S e r v e rBySc r i p t to task SetupServer
54 Remaining task network :
55 Pre l iminary plan : RunBackupScript (db <−− [ Database=5=WikiDb ] ) ,

I n s t a l lV i r t u a l S e r v e rBySc r i p t (mem <−− [ I n t eg e r=nu l l ] , s e r v e r <−− [
DbServer=16=n i l ] )

56 Remaining ta sk s : CopyDatabaseContent , Ins ta l lDatabaseSo f tware ,
57 Ava i l ab l e FIRST TASK:
58 [ 0 ] Task : CopyDatabaseContent
59 [ 1 ] Task : In s ta l lDatabaseSo f tware
60 Choose a FIRST TASK: ? 1
61 Ava i l ab l e REFINEMENT OPERATION:
62 [ 0 ] I n s t a l lOra c l eDbSc r i p t
63 [ 1 ] In s ta l lMysq lDbScr ipt
64 Choose a REFINEMENT OPERATION: ? 0
65 Backtrack over remaining REFINEMENT OPERATION? (y/n) ? n
66 Ca lcu la t ing b ind ings f o r task In s ta l lDatabaseSo f tware and re f inement

In s t a l lOra c l eDbSc r i p t
67 Applying operator In s t a l lOra c l eDbSc r i p t to task In s ta l lDatabaseSo f tware
68 Remaining task network :
69 Pre l iminary plan : RunBackupScript (db <−− [ Database=5=WikiDb ] ) ,

I n s t a l lV i r t u a l S e r v e rBySc r i p t (mem <−− [ I n t eg e r=nu l l ] , s e r v e r <−− [
DbServer=16=n i l ] ) , I n s t a l lOrac l eDbSc r i p t (db <−− [ Database=17=n i l ] ,
dbserver <−− [ DbServer=16=n i l ] )

70 Remaining ta sk s : CopyDatabaseContent ,
71 Ca lcu la t ing b ind ings f o r task CopyDatabaseContent and re f inement

CopyDbScript
72 Applying operator CopyDbScript to task CopyDatabaseContent
73 Found new plan (1 ) : RunBackupScript (db <−− [ Database=5=WikiDb ] ) ,

I n s t a l lV i r t u a l S e r v e rBySc r i p t (mem <−− [ I n t eg e r=nu l l ] , s e r v e r <−− [
DbServer=16=n i l ] ) , I n s t a l lOrac l eDbSc r i p t (db <−− [ Database=17=n i l ] ,
dbserver <−− [ DbServer=16=n i l ] ) , CopyDbScript ( fromDb <−− [ Database=5=
WikiDb ] , toDb <−− [ Database=17=n i l ] )

74 Backtracking
75 Backtracking
76 Backtracking
77 Backtracking
78 Backtracking
79 Backtracking
80

81

82 Found plans ( t o t a l 1)
83 (0 ) RunBackupScript (db <−− [ Database=5=WikiDb ] ) ,

I n s t a l lV i r t u a l S e r v e rBySc r i p t (mem <−− [ I n t eg e r=nu l l ] , s e r v e r <−− [

129



C. Additional listings and UML diagrams

DbServer=16=n i l ] ) , I n s t a l lOrac l eDbSc r i p t (db <−− [ Database=17=n i l ] ,
dbserver <−− [ DbServer=16=n i l ] ) , CopyDbScript ( fromDb <−− [ Database=5=
WikiDb ] , toDb <−− [ Database=17=n i l ] )

84 Action CopyDbScript : s t a r t s [ 8 0 . 0 , 1 1 0 . 0 ] ends [ 1 2 0 . 0 , 1 5 0 . 0 ] durat ion
[ 4 0 . 0 , 4 0 . 0 ]

85 Task SetupServer : s t a r t s [ 5 0 . 0 , 8 0 . 0 ] ends [ 6 0 . 0 , 9 0 . 0 ] durat ion [ 1 0 . 0 ,
4 0 . 0 ]

86 Task In s ta l lDa taba s e : s t a r t s [ 5 0 . 0 , 8 0 . 0 ] ends [ 8 0 . 0 , 1 1 0 . 0 ] durat ion
[ 3 0 . 0 , 6 0 . 0 ]

87 Action In s t a l lOra c l eDbSc r i p t : s t a r t s [ 6 0 . 0 , 9 0 . 0 ] ends [ 8 0 . 0 , 1 1 0 . 0 ]
durat ion [ 2 0 . 0 , 2 0 . 0 ]

88 Task Ins ta l lDatabaseSo f tware : s t a r t s [ 6 0 . 0 , 9 0 . 0 ] ends [ 8 0 . 0 , 1 1 0 . 0 ]
durat ion [ 2 0 . 0 , 5 0 . 0 ]

89 Task CopyDatabaseContent : s t a r t s [ 8 0 . 0 , 1 1 0 . 0 ] ends [ 1 2 0 . 0 , 1 5 0 . 0 ]
durat ion [ 4 0 . 0 , 7 0 . 0 ]

90 Task SpeedUpWebApplication : s t a r t s [ 0 . 0 , 3 0 . 0 ] ends [ 1 2 0 . 0 , 1 5 0 . 0 ]
durat ion [ 1 2 0 . 0 , 1 5 0 . 0 ]

91 Action RunBackupScript : s t a r t s [ 0 . 0 , 3 0 . 0 ] ends [ 5 0 . 0 , 8 0 . 0 ] durat ion
[ 5 0 . 0 , 5 0 . 0 ]

92 Action I n s t a l lV i r t u a l S e r v e rBySc r i p t : s t a r t s [ 5 0 . 0 , 8 0 . 0 ] ends [ 6 0 . 0 ,
9 0 . 0 ] durat ion [ 1 0 . 0 , 1 0 . 0 ]

93 Task BackupDatabase : s t a r t s [ 0 . 0 , 3 0 . 0 ] ends [ 5 0 . 0 , 8 0 . 0 ] durat ion
[ 5 0 . 0 , 8 0 . 0 ]

94

95

96

97

98 Total time consumed f o r HTN planning : 77405ms
99 Total time consumed f o r task network copying : 15ms (0%)

100

101

102

103 Total time consumed f o r knowledge base r o l l b a c k s : 624ms
104 Total time consumed f o r knowledge base a s s e r t i o n s : 859ms
105 Total time consumed f o r knowledge base qu e r i e s : 329ms
106 Total time consumed f o r knowledge base ope ra t i on s : 1812ms

130







List of Abbreviations

AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Artificial Intelligence
CI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration Item [6]
CIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Common Information Model [10]
CMDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration Management Database [6]
HTN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hierarchical Task Network
ITIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IT Infrastructure Library
ITSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IT Service Management
RFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Request for Change
STP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Simple Temporal Problem [34]
UML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unified Modeling Language

133





List of Figures

1.1. ITIL Core [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2. ITIL Change Management process [6]. . . . . . . . . . . . . . . . . . . . . . . 5
1.3. ITIL System Knowledge Management System [9]. . . . . . . . . . . . . . . . . 6
1.4. Simplified example for change templates and IT infrastructure before plan

execution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5. Simplified example for a partially refined change workflow and altered IT

infrastructure after plan execution. . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6. Assisted change design use case. . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1. Change catalogue and best practices UML model. . . . . . . . . . . . . . . . . 18
2.2. Relation between partially ordered sets of tasks and workflows. . . . . . . . . 19

3.1. Architecture for assisted design of change tasks. . . . . . . . . . . . . . . . . . 22
3.2. Total order versus partial-order HTN plans. . . . . . . . . . . . . . . . . . . . 27
3.3. Detailed STP structure of HTN actions. . . . . . . . . . . . . . . . . . . . . . 29
3.4. STP and workflow representations of HTN plans. . . . . . . . . . . . . . . . . 30

4.1. UML model of the knowledge base implementation. . . . . . . . . . . . . . . . 37
4.2. UML model of the BindingGenerator query building mechanism. . . . . . . . 41
4.3. UML model of the change catalogue implementation. . . . . . . . . . . . . . . 45
4.4. UML model of the IT infrastructure scenario. See Appendix C for a bigger

version of the figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1. Simplified UML diagram for the integration of STP temporal reasoning with
HTN planning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2. Additional ordering constraints due to CI dependencies. . . . . . . . . . . . . 58
5.3. Graphical representation of the temporal relations between actions in the

“Additional ordering constraints due to CI dependencies” change plan. . . . . 61
5.4. Graphical representation of the temporal relations between actions in the

“migrate database” change plan. . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.5. Graphical representation of the temporal relations between actions in the

“enable load balancing” change plan. . . . . . . . . . . . . . . . . . . . . . . . 65
5.6. Graphical representation of the stepwise change plan refinement process. . . . 66
5.7. CIM-based IT infrastructure model of the ChangeLedge system [4]. . . . . 67

A.1. The Dock-Worker-Robots planning domain [5] . . . . . . . . . . . . . . . . . . 77
A.2. Actions in the DWR domain [5] . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.3. Illustration of a binary constraint network . . . . . . . . . . . . . . . . . . . . 92
A.4. The composition operation for STPs . . . . . . . . . . . . . . . . . . . . . . . 95
A.5. The intersection operation for STPs . . . . . . . . . . . . . . . . . . . . . . . 95

135





List of Algorithms

1. Non-deterministic algorithm for partial-order forward decomposition HTN
planning with object-oriented knowledge base and temporal reasoning inte-
gration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2. Finding nodes without predecessors in a partially ordered set. . . . . . . . . . 26
3. The decomposeTo() method for task decomposition and forwarding of tem-

poral constraints in an STP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4. Non-deterministic algorithm for a depth-first search on a tree data structure. 34
5. Deterministic algorithm for a depth-first search on a tree data structure. . . . 34
6. Deterministic algorithm for a depth-first search on a tree data structure, with-

out local tree variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7. State-space forward search controlled by a heuristic on operators. . . . . . . . 70

8. Non-deterministic state-space forward-search . . . . . . . . . . . . . . . . . . 78
9. Partial-order HTN planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
10. Backtracking search algorithm for binary CSPs . . . . . . . . . . . . . . . . . 91
11. Path-consistency in a constraint network . . . . . . . . . . . . . . . . . . . . . 92
12. Floyd-Warshall’s all-pairs-shortest-path algorithm . . . . . . . . . . . . . . . . 94

137





Listings

4.1. Java code of the ObjectInSetConstraint class . . . . . . . . . . . . . . . . . . 42
4.2. Java code and HQL translation for the precondition specification of the Mi-

grateDatabase method of the SpeedUpWebApplication task . . . . . . . . . . 43

5.1. ChangeRefinery implementation of the path consistency algorithm . . . . 57
5.2. ChangeRefinery implementation of the preconditionDependsOnOtherAc-

tionsEffects() method of the Action class . . . . . . . . . . . . . . . . . . . . . 59
5.3. Sub class modeling in OWL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.1. “How to spend a day” domain definition . . . . . . . . . . . . . . . . . . . . . 85
A.2. “How to spend a day” problem statement . . . . . . . . . . . . . . . . . . . . 86
A.3. Tower of Hanoi domain definition . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.4. Tower of Hanoi problem statement . . . . . . . . . . . . . . . . . . . . . . . . 89

B.1. Variable passing in HTN: exemplarily domain definition . . . . . . . . . . . . 99
B.2. Variable passing in HTN: exemplarily problem definition . . . . . . . . . . . . 99
B.3. Variable passing in HTN: exemplarily domain definition . . . . . . . . . . . . 99
B.4. Variable passing in Prolog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

C.1. Java code of the ChangeRefinery HTN implementation . . . . . . . . . . . 103
C.2. JAVA code for the example domain VerySimpleJ2eeScenario . . . . . . . . . . 108
C.3. JAVA code for the example domain J2eeScenario . . . . . . . . . . . . . . . . 109
C.4. JAVA code the SpeedUpWebApplication task definition . . . . . . . . . . . . 114
C.5. ChangeRefinery output for Section 4.4.1 . . . . . . . . . . . . . . . . . . . 119
C.6. ChangeRefinery output for Section 5.3.1 . . . . . . . . . . . . . . . . . . . 120
C.7. Example of an inconsistent STP . . . . . . . . . . . . . . . . . . . . . . . . . 122
C.8. Example of additional ordering constraints due to mutual dependencies of

effects and preconditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
C.9. Example of additional ordering constraints due to failed preconditions . . . . 123
C.10.“Enable load balancing” change plan for complex example (for Section 5.3.3) 124
C.11.“Migrate database” change plan for complex example (for Section 5.3.3) . . . 127

139





Bibliography

[1] IT Infrastructure Library. Office of Government Commerce, UK, 2003.

[2] D. Dubie, “Itil adoption increases in u.s., proficiency still lacking.” [Online]. Available:
http://www.networkworld.com/news/2008/022908-itil-adoption.html

[3] R. Rebouças, R. Santos, J. Sauvé, and A. Moura, “The HP-Bottom Line Project,
IT Change Management Challenges - Results of 2006 Web Survey, Technical Report
DSC005-06,” Computing Systems Department, Federal University of Campina Grande,
Brazil, Tech. Rep., 2006.

[4] W. Cordeiro, G. Machado, F. Daitx, C. Both, L. Gaspary, L. Granville, A. Sahai,
C. Bartolini, D. Trastour, and K. Saikoski, “A Template-based Solution to Support
Knowledge Reuse in IT Change Design,” in 11th IEEE/IFIP Network Operations and
Management Symposium (NOMS). IEEE, 2008, pp. 355–362.

[5] D. Nau, M. Ghallab, and P. Traverso, Automated Planning: Theory & Practice. Morgan
Kaufmann Publishers Inc., 2004.

[6] IT Infrastructure Library, ”ITIL Service Transition”. Office of Government Commerce,
UK, 2003.

[7] P. Anderson and A. Scobie, “LCFG: The Next Generation,” University of Edinburgh,
2002. [Online]. Available: http://www.lcfg.org/doc/ukuug2002.pdf

[8] “HP Data Center Automation Center.” [Online]. Avail-
able: https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=
bto&cp=1-11-271-273_4000_100__

[9] IT Infrastructure Library, ”ITIL Service Operation”. Office of Government Commerce,
UK, 2003.

[10] “Common Information Model (CIM),” Distributed Management Task Force, 2007.
[Online]. Available: http://www.dmtf.org/standards/cim/

[11] “Business Process Execution Language.” [Online]. Available: http://docs.oasis-open.
org/wsbpel/2.0/wsbpel-v2.0.pdf

[12] “Workflow Management Coalition Workflow Standard (WFMC),” Workflow Manage-
ment Coalition, 2002. [Online]. Available: http://www.wfmc.org/standards/docs/
TC-1025_10_xpdl_102502.pdf

[13] “RuleML.” [Online]. Available: http://www.ruleml.org/

141

http://www.networkworld.com/news/2008/022908-itil-adoption.html
http://www.lcfg.org/doc/ukuug2002.pdf
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-271-273_4000_100__
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-271-273_4000_100__
http://www.dmtf.org/standards/cim/
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://www.wfmc.org/standards/docs/TC-1025_10_xpdl_102502.pdf
http://www.wfmc.org/standards/docs/TC-1025_10_xpdl_102502.pdf
http://www.ruleml.org/


Bibliography

[14] “Drools Business Rule Management System.” [Online]. Available: http://www.jboss.
org/drools/

[15] A. Keller, J. Hellerstein, J. Wolf, K. Wu, and V. Krishnan, “The CHAMPS System:
Change Management with Planning and Scheduling,” in 9th IEEE/IFIP Network Op-
erations and Management Symposium (NOMS). IEEE, 2004, pp. 395–408.

[16] A. Andrzejak, U. Hermann, and A. Sahai, “Feedbackflow-an adaptive workflow gener-
ator for systems management,” in ICAC, 2005, pp. 335–336.

[17] J. P. Sauvé, R. Rebouças, A. Moura, C. Bartolini, A. Boulmakoul, and D. Trastour,
“Business-driven decision support for change management: Planning and scheduling of
changes,” in 17th IFIP/IEEE International Workshop on Distributed Systems: Opera-
tions and Management (DSOM). Springer, 2006, pp. 173–184.

[18] R. Rebouças, J. P. Sauvé, A. Moura, C. Bartolini, and D. Trastour, “A decision support
tool to optimize scheduling of it changes,” in 10th IFIP/IEEE International Symposium
on Integrated Network Management (IM). IEEE, 2007, pp. 343–352.

[19] D. Trastour, M. Rahmouni, and C. Bartolini, “Activity-based scheduling of it changes,”
in International Conference on Autonomous Infrastructure, Management and Security
(AIMS). Springer, 2007, pp. 73–84.

[20] T. Setzer, K. Bhattacharya, and H. Ludwig, “Decision support for service transition
management,” in IEEE Network Operations and Management Symposium (NOMS),
2008.

[21] L. Ramshaw, A. Sahai, J. Saxe, and S. Singhal, “Cauldron: A policy-based design tool,”
in 7th IEEE International Workshop on Policies for Distributed Systems and Networks
(POLICY 2006). IEEE Computer Society, 2006, pp. 113–122.

[22] K. Erol, J. Hendler, and D. S. Nau, “Htn planning: Complexity and expressivity,” in
Twelfth National Conference on Artificial Intelligence (AAAI-94). AAAI Press/MIT
Press, 1994, pp. 1123–1128.

[23] T. Estlin, R. Castano, R. Anderson, D. Gaines, F. Fisher, and M. Judd, “Learning and
Planning for Mars Rover Science,” inĲCAI 2003 workshop notes on Issues in Designing
Physical Agents for Dynamic Real-Time Environments, 2003.

[24] J. Fernández-Olivares, L. A. Castillo, Ó. García-Pérez, and F. Palao, “Bringing users
and planning technology together. experiences in siadex,” in Sixteenth International
Conference on Automated Planning and Scheduling (ICAPS). AAAI, 2006, pp. 11–20.

[25] Y. Gil, E. Deelman, J. Blythe, C. Kesselman, and H. Tangmunarunkit, “Artificial intel-
ligence and grids: Workflow planning and beyond,” IEEE Intelligent Systems, vol. 19,
no. 1, pp. 26–33, 2004.

[26] B. Srivastava, J. Vanhatalo, and J. Koehler, “Managing the life cycle of plans,” in AAAI,
M. M. Veloso and S. Kambhampati, Eds. AAAI Press / The MIT Press, 2005, pp.
1569–1575.

142

http://www.jboss.org/drools/
http://www.jboss.org/drools/


Bibliography

[27] E. Sirin, B. Parsia, and J. Hendler, “Template-based composition of semantic web
services,” AAAI Fall Symposium on Agents and the Semantic Web, 2005.

[28] C. Knoblock, S. Minton, J. Ambite, M. Muslea, J. Oh, and M. Frank, “Mixed-initiative,
multi-source information assistants,” Proceedings of the 10th international conference
on World Wide Web, pp. 697–707, 2001.

[29] G. Ferguson and J. Allen, “TRIPS: An Integrated Intelligent Problem-Solving Assis-
tant,” Proceedings of the fifteenth national/tenth conference on Artificial intelligence/In-
novative applications of artificial intelligence, pp. 567–572, 1998.

[30] G. Ferguson, J. Allen, and B. Miller, “TRAINS-95: Towards a mixed-initiative plan-
ning assistant,” Proceedings of the Third Conference on Artificial Intelligence Planning
Systems (AIPS-96), pp. 70–77, 1996.

[31] James South, “If you put a penis on Britannia she’s just like Brad Pit in Fight Club,”
2008.

[32] F. Yaman and D. Nau, “TimeLine: An HTN Planner That can Reason About Time,”
AIPS 2002 Workshop on Planning for Temporal Domains, 2002.

[33] L. A. Castillo, J. Fernández-Olivares, Ó. García-Pérez, and F. Palao, “Efficiently han-
dling temporal knowledge in an htn planner,” in Sixteenth International Conference on
Automated Planning and Scheduling (ICAPS). AAAI, 2006, pp. 63–72.

[34] R. Dechter, I. Meiri, and J. Pearl, “Temporal Constraint Networks,” Artificial Intelli-
gence, vol. 49, no. 1-3, pp. 61–95, 1991.

[35] R. Dechter, Constraint Processing. Morgan Kaufmann, 2003.

[36] G. Machado, F. Daitx, W. Cordeiro, C. Both, L. Gaspary, L. Granville, C. Bartolini,
A. Sahai, D. Trastour, and K. Saikoski, “Enabling rollback support in IT change ma-
nagement systems,” in Network Operations and Management Symposium, 2008. NOMS
2008. IEEE, 2008, pp. 347–354.

[37] “Hibernate.” [Online]. Available: http://www.hibernate.org/

[38] “Jena - A Semantic Web Framework for Java.” [Online]. Available: http:
//jena.sourceforge.net/

[39] “HSQLDB.” [Online]. Available: http://hsqldb.org/

[40] A. Cesta and A. Oddi, “Gaining efficiency and flexibility in the simple temporal prob-
lem,” in TIME ’96: Proceedings of the 3rd Workshop on Temporal Representation and
Reasoning (TIME’96). Washington, DC, USA: IEEE Computer Society, 1996, p. 45.

[41] W. Cordeiro, G. Machado, F. Andreis, A. Santos, C. Both, L. Gaspary, L. Granville,
C. Bartolini, and D. Trastour, “A Runtime Constraint-Aware Solution for Automated
Refinement of IT Change Plans,” Lecture notes in computer science, vol. 5273, pp.
69–82, 2008.

143

http://www.hibernate.org/
http://jena.sourceforge.net/
http://jena.sourceforge.net/
http://hsqldb.org/


Bibliography

[42] S. Edelkamp and J. Hoffmann, “PDDL2.2: The language for the classical part of the
4th international planning competition,” in 4th International Planning Competition
(IPC’04), at ICAPS’04, 2004.

[43] R. Dechter and J. Pearl, “Generalized best-first search strategies and the optimality of
a*,” J. ACM, vol. 32, no. 3, pp. 505–536, 1985.

[44] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Prentice Hall,
2002.

[45] F. Manola, E. Miller, and B. McBride, “RDF Primer - W3C Recommendation,” 2004.
[Online]. Available: http://www.w3.org/TR/2004/REC-rdf-primer-20040210

[46] S. Bechhoffer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuiness, P. F.
Patel-Schneider, and L. A. Stein, “OWL Web Ontology Language Reference -
W3C Recommendation,” 2004. [Online]. Available: http://www.w3.org/TR/2004/
REC-owl-ref-20040210/

[47] D. Reynolds, C. Thompson, J. Mukerji, and D. Coleman, “An assessment of RDF/OWL
modelling,” HP technical report, HP Laboratories Bristol, Hewlett-Packard, HPL-2005-
189, 2005, Tech. Rep.

[48] R. Fikes and N. Nilsson, “STRIPS: A New Approach to the Application of Theorem
Proving to Problem Solving,” Artificial Intelligence, vol. 2, no. 3/4, pp. 189–208, 1971.

[49] D. Nau, “Lecture slides for Automated Planning: Theory and Practise.” [Online].
Available: http://www.cs.umd.edu/~nau/planning/slides/

[50] K. Erol, J. Hendler, and D. Nau, “Complexity results for hierarchical task-network
planning,” Annals of Mathematics and Artificial Intelligence, vol. 18, no. 1, pp. 69–93,
1996.

[51] M. Lekavy and P. Navrat, “Expressivity of STRIPS-Like and HTN-Like Planning,”
Lecture notes in computer science, vol. 4496, p. 121, 2007.

[52] D. Nau, H. Munoz-Avila, Y. Cao, A. Lotem, and S. Mitchell, “Total-order planning
with partially ordered subtasks,” Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence, pp. 425–430, 2001.

[53] O. Ilghami, “Documentation for JSHOP2,” 2005.

[54] J. Allen, “Maintaining knowledge about temporal intervals,” Communications of the
ACM, vol. 26, no. 11, pp. 832–843, 1983.

[55] M. Vilain, H. Kautz, and P. van Beek, “Constraint propagation algorithms for temporal
reasoning: A revised report,” Readings in Qualitative Reasoning about Physical Systems,
pp. 373–381, 1989.

[56] U. Montanari, “Networks of Constraints: Fundamental Properties and Applications to
Picture Processing,” 1971.

[57] “SHOP and JSHOP.” [Online]. Available: http://www.cs.umd.edu/projects/shop/
description.html

144

http://www.w3.org/TR/2004/REC-rdf-primer-20040210
http://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://www.cs.umd.edu/~nau/planning/slides/
http://www.cs.umd.edu/projects/shop/description.html
http://www.cs.umd.edu/projects/shop/description.html

	Introduction and motivation
	Structure of this thesis
	Context
	IT service management and ITIL
	IT change management
	Challenges in IT change planning

	Assisted refinement of high-level IT change requests
	Primary use case
	Complementary user stories
	Stepwise refinement of high-level goals
	Capturing change knowledge and implementation recipes
	Learning from past changes


	Related work

	Information model for change plan refinement
	IT operations model
	Change catalogue and best practices model
	IT policies

	A framework for assisted refinement of change tasks
	IT knowledge base
	Change catalogue repository
	Change planner
	Applicability of planning paradigms
	HTN planning with object-oriented data models

	Temporal reasoner
	HTN planning with parallel plans and quantitative temporal constraints
	Integration of temporal reasoning and HTN planning

	Policy engine

	The ChangeRefinery prototype
	Simplifying assumptions
	Prototypical implementation of the change refinement architecture
	Change planner
	The deterministic ChangeRefinery HTN algorithm
	User choice points
	Variable handling

	IT knowledge base
	The rollback() interface
	The assert() interface
	The query() interface

	Change catalogue repository

	The J2EE scenario
	IT infrastructure components
	Change catalogue
	Task: SpeedUpWebApplication
	Task: UpgradeECommerceApplication
	Task: InstallECommerceApplicationVersion5
	Task: InstallJ2eeModule
	Task: AddContainerToLoadbalancer
	Task: BackupDatabase
	Task: CopyDatabaseContent
	Task: InstallDatabase
	Task: InstallDatabaseSoftware
	Task: InstallJ2eeApplication
	Task: InstallJ2eeContainerSoftware
	Task: InstallJ2eeServer
	Task: InstallLoadBalancer
	Task: SetupServer
	Task: UpgradeHardware


	Evaluation of ChangeRefinery's basic capabilities
	Preconditions and variable bindings as CMDB queries
	Additional ordering constraints due to failed preconditions
	Reuse of change recipe information and granularity of plan refinement


	Towards an advanced prototype
	Quantitative temporal information: Durative actions and deadline tasks
	Additional ordering constraints due to CI dependencies
	Evaluation of ChangeRefinery's advanced capabilities
	Reasoning on quantitative temporal information
	Additional ordering constraints due to CI dependencies
	A complex example
	Solution plan 1: Migrate database server
	Solution plan 2: Enable load balancing


	Additional ideas for future extensions
	Dependency resolution: The ChangeLedge approach to change planning
	Advanced decision support through change plan metrics
	Advanced decision support through pre-compiled HTN planning trees
	Policies on infrastructure and change plans
	Richer temporal information
	Hybrid state-space and HTN planning
	Property-based operator heuristic
	Neural network approach to operator heuristics

	Advanced detection of precondition and effect interference
	Managing multiple and concurrent changes
	Semantic web technology based knowledge base component


	Conclusion and outlook
	Automated planning and constraint satisfaction problems
	Representations for classical planning
	Classical representation
	Example: The Dock-Worker-Robots domain

	State-space planning
	State-space planning algorithms
	Guiding the planning algorithm

	HTN planning
	Partial-order HTN planning
	Comparison of HTN and state-space planning
	HTN planning examples
	How to spend a day
	HTN-encoded state-space planning problem Tower of Hanoi


	Constraint satisfaction problems
	Basic definitions
	Constraint propagation
	Arc-consistency
	Path-consistency


	Quantitative temporal constraints

	Revised semantics of partial-order forward decomposition HTN planning
	Ordering of sub tasks
	Variable backwards passing

	Additional listings and UML diagrams
	ChangeRefinery HTN algorithm
	Example scenarios
	Example task, method and operator definitions
	ChangeRefinery outputs for examples in Sections 4.4 and 5.3

	Abbreviations
	List of Figures
	List of Algorithms
	List of Listings
	Bibliography

