

Architecture for the Automated
Management of Data Center

IT Infrastructure

 Habilitationsschrift im Fach Informatik
an der Fakultät für Informatik der

Ludwig-Maximilians-Universität München

von

 Dr.-Ing. Sven Graupner

Tag der Einreichung: 7. Juni 2010.

Fachmentorat:

Prof. Dr. Heinz-Gerd Hegering, Ludwig-Maximilians-Universität München
Prof. Dr. Claudia Linnhoff-Popien, Ludwig-Maximilians-Universität München
Prof. Dr. Martin Wirsing, Ludwig-Maximilians Universität-München
Prof. Dr. Jacques Sauvé, Universidade Federal de Campina Grande, Brazil

 Table of Contents

i

Table of Contents

Table of Contents ... i

Chapter 1: Introduction .. 1

1.1 Operating Systems... 2
1.2 IT Infrastructure Management in the Data Center .. 4
1.3 Different Approaches to Innovation.. 6
1.4 Problem Statement .. 6
1.5 Hypothesis... 7
1.6 Questions... 7
1.7 Outline... 7

Chapter 2: Concepts from Operating Systems.. 9

2.1 Definitions... 9
2.2 The Evolution of Operating System Concepts.. 10
2.3 Categorization of Operating System Concepts ... 16

2.3.1 The Application Layer .. 17
2.3.2 The Operating System Layer... 18
2.3.3 The Hardware Component Layer.. 20

2.4 Summary and Discussion .. 21
2.4.1 Generalization of Structural Concepts .. 21
2.4.2 Generalization of Functional Concepts ... 24
2.4.3 Generalization of Organizational Concepts .. 26

Chapter 3: Concepts from IT Management .. 29

3.1 Definitions... 29
3.2 The Evolution of IT Management Concepts ... 29

3.2.1 IT Services and IT Service Management .. 30
3.2.2 IT Management Frameworks .. 31

3.3 Categorization of IT Management Concepts .. 32
3.3.1 The Application Layer .. 35

Table of Contents

ii

3.3.1.1 The Application Environment... 35
3.3.1.2 The Application Execution Environment.. 36

3.3.2 The IT Management Layer.. 36
3.3.2.1 Management of the Application Environment 36
3.3.2.2 Management of the Application Execution Environment..................... 37
3.3.2.3 Data Center Component Management .. 38

3.3.3 The Data Center Component Layer .. 39
3.4 Scope of the Data Center Infrastructure Operating System (DCI-OS) 39
3.5 Summary and Discussion .. 41

3.5.1 Concept Generalization in the Structural Dimension................................ 42
3.5.2 Concept Generalization in the Functional Dimension 46
3.5.3 Concept Generalization in the Organizational Dimension........................ 51

Chapter 4: Requirements Analysis for the DCI-OS ... 55

4.1 The Starting Point for Requirement Analysis ... 55
4.2 Structural Requirements for the DCI-OS.. 60
4.3 Functional Requirements for the DCI-OS... 61
4.4 Organizational Requirements for the DCI-OS.. 64
4.5 Requirement Mapping and Refinement .. 65

4.5.1 Refinement for the Data Center Perspective ... 65
4.5.2 Refinement for the Infrastructure Service Perspective 70

Chapter 5: Architecture of the DCI-OS ... 79

5.1 The Planning and Design Layer .. 82
5.2 The Infrastructure Services Layer ... 83
5.3 The Information Model Layer... 84
5.4 Resource Management Layer.. 86

5.4.1 Resource Pool Managers... 86
5.4.2 Resource Pools .. 87
5.4.3 Resource Pool Drivers... 88

5.5 Data Center Component Layer.. 88
5.6 Summary and Discussion .. 88

5.6.1 Benefits Resulting from the DCI-OS Architecture 88
5.6.2 Concepts Adopted from Operating Systems ... 89
5.6.3 Supporting Requirements.. 90

Chapter 6: Research, Realizations and Case Studies ... 95

6.1 Overview of the Research ... 96

 Table of Contents

iii

6.2 The Planning and Design Layer .. 96
6.2.1 Performance Engineering for Data Centers .. 96
6.2.2 Systematic Approach to IT Configuration .. 97
6.2.3 Resource Topology Design ... 97
6.2.4 Policy-based Configuration... 98

6.3 The Infrastructure Services Layer ... 98
6.3.1 Task Automation Controller.. 98
6.3.2 Deployment Manager.. 100
6.3.3 Resource Acquisition Manager ... 100

6.4 The DCI-OS Layer .. 101
6.4.1 DCI-OS Information Model .. 101
6.4.2 Resource Management Layer.. 102

6.4.2.1 Resource Pool Manager .. 102
6.4.2.2 Resource Request Workflow... 103
6.4.2.3 Resource Allocation .. 103
6.4.2.4 Resource Assignment.. 103

6.4.3 Data Center Component Layer.. 104
6.4.3.1 Resource Pool Drivers... 104
6.4.3.2 Component Interfaces ... 104

6.5 Case Studies .. 105
6.5.1 Adaptive Infrastructure for SAP ... 105
6.5.2 Operational Management Controller for Oracle Application 105
6.5.3 Automated Management of Virtual Desktop Solution............................ 106
6.5.4 Flexing Interface and Controller for Blade Server Automation.............. 107

Chapter 7: The Planning and Design Layer .. 109

7.1 Requirements for Plannning and Design... 110
7.2 Data Center Capacity Planning ... 111
7.3 Performance Engineering for Data Centers .. 113

7.3.1 Related Work... 113
7.3.2 Approach ... 115
7.3.3 The Model Information Flow.. 116
7.3.4 Case Studies .. 120
7.3.5 Evaluation.. 125
7.3.6 Summary ... 125

7.4 Systematic Approach to Derive IT Configurations... 126
7.4.1 Related Work... 127
7.4.2 Supplementing Business Processes with Non-Functional Requirements127

Table of Contents

iv

7.4.3 Component Performance Models: Capturing Component Demands...... 129
7.4.4 Design Templates: Describing Infrastructure Capabilities 129
7.4.5 Automated Evaluation of Configurations ... 130
7.4.6 Evaluation.. 131
7.4.7 Summary ... 132

7.5 Resource Topology Design ... 133
7.5.1 Design Cycle of a Resource Topology.. 135
7.5.2 Automated Resource Topology Lifecycle... 136

7.6 Policy-based Configuration Generation .. 137
7.6.1 Resource Properties for Policy-based Configuration 138

7.6.1.1 Polymorphic Resources... 138
7.6.1.2 Aggregate Resources... 139
7.6.1.3 Constrained Resources .. 139

7.6.2 Resource Construction Model based on Constraints 139
7.6.3 Examples of Applying Construction Policies ... 142
7.6.4 Resource Composition .. 143
7.6.5 Component Selection .. 144

7.6.5.1 Capability-based Component Selection .. 145
7.6.5.2 Hardware and Software Partitions in a Server 147
7.6.5.3 Multi-function and Polymorphic Resources 149
7.6.5.4 Class-of-service-based Resource Selection... 150

7.6.6 Implementation Issues... 151
7.6.7 Related Work... 154

7.7 Summary ... 155

Chapter 8: The Infrastructure Services Layer.. 157

8.1 The Task Automation Controller .. 159
8.1.1 Automation in IT Management ... 160
8.1.2 The Controller Concept in IT Management .. 161

8.1.2.1 Problems With Workflow Systems... 162
8.1.2.2 Alternatives ... 162

8.1.3 Task Automation Controller Design and Implementation 163
8.1.3.1 Approach: Petri Nets ... 164
8.1.3.2 Place-Transition Nets (PTN)... 164
8.1.3.3 Colored Petri Nets (CP-Nets).. 165
8.1.3.4 Hierarchical Petri Nets .. 165
8.1.3.5 Timed Petri Nets.. 166
8.1.3.6 Combination of Colored, Hierarchical, Timed Petri Nets................... 166

 Table of Contents

v

8.1.3.7 Workflow Patterns Expressed in Petri Nets .. 166
8.1.4 Representing Desired and Observed State Models as PTN 167
8.1.5 Petri Net Interpretation of the Controller Logic...................................... 168
8.1.6 Deriving Actions from Desired State Changes 169

8.1.6.1 Connector Places ... 169
8.1.6.2 Activity Tokens ... 170

8.1.7 Deriving Actions from Desired State Changes 170
8.1.8 Reflecting Observed State Changes .. 171
8.1.9 Deriving Actions from Observed State Changes 172
8.1.10 Controller Composition... 173
8.1.11 PTN Execution Engine.. 174
8.1.12 Controller Automation Use Cases... 174
8.1.13 Related Approaches... 176
8.1.14 Summary ... 177

8.2 The Deployment Manager... 177
8.2.1 The Radia Deployment Manager as Integration Example 178
8.2.2 External Integration Model ... 179
8.2.3 Standard's-based Web-Services Middleware .. 181

8.3 The Resource Acquisition Manager.. 182
8.3.1 Resource Group Flexing.. 183
8.3.2 Resource Flex Control Loop ... 184
8.3.3 Adaptive Control System for Resource Group Flexing 185

8.3.3.1 Requirements for Flexible Resource Acquisition and Release 185
8.3.3.2 Design Choices.. 186

8.3.4 Resource Flex Control... 187
8.3.4.1 Flex up Cycle .. 187
8.3.4.2 Flex down Cycle.. 188
8.3.4.3 Resource Flex Protocol ... 188

8.4 Summary ... 190

Chapter 9: The DCI-OS Layer ... 193

9.1 Information Models in IT Management .. 194
9.1.1 Frameworks for Information Modeling in IT Management.................... 195
9.1.2 Behavioral Information Models .. 197
9.1.3 Unified Information Model and Information Providers and Consumers 200

9.2 The Common Information Model (CIM) .. 202
9.2.1 CIM Core and Common Model .. 203
9.2.2 CIM Meta-Model .. 204

Table of Contents

vi

9.2.3 Managed Object Format (MOF) ... 207
9.3 The DCI-OS Information Model... 208

9.3.1 First-Class Entities .. 208
9.3.2 Relationships Between First-Class Entities... 209
9.3.3 Entity Type: Actor... 212
9.3.4 Entity Type: Role .. 212
9.3.5 Entity Type: Activity... 213
9.3.6 Entity Type: Relationship.. 213
9.3.7 Entity Type: Context ... 214
9.3.8 Entity Type: View ... 215
9.3.9 Entity Type: Policy.. 216
9.3.10 Entity Type: Resource... 218
9.3.11 Complex Resource Constructions ... 219

9.3.11.1 Resource Atom.. 220
9.3.11.2 Resource Construction .. 220
9.3.11.3 Resource Aggregation ... 221
9.3.11.4 Resource Composition (Resource Transformation)........................ 222

9.4 The DCI-OS Resource Management Layer .. 223
9.4.1 Resource Pool Manager .. 223
9.4.2 Resource Request Workflow... 225
9.4.3 Resource Allocation .. 229

9.4.3.1 Resource Allocation Information Model... 230
9.4.3.2 Complex Request Format for Resource Topology.............................. 232
9.4.3.3 Resource Type, -Instance and -Template.. 234
9.4.3.4 Resource Profile .. 235
9.4.3.5 Specifying Time in Profiles... 236
9.4.3.6 Time Model for the Resource Profile.. 237
9.4.3.7 Specifying Resource Quantity for the Resource Profile 238
9.4.3.8 Resource Capacity Profile... 239
9.4.3.9 Resource Demand Profile.. 240
9.4.3.10 Request Inventory ... 240
9.4.3.11 Allocation Calendar and Resource Allocation 241
9.4.3.12 Resource Request Workflow... 242

9.4.4 Resource Assignment.. 245
9.4.4.1 Resource Scheduling in the Data Center... 245
9.4.4.2 Resource Assignment Optimization for the Data Center 245

9.5 The Data Center Component Layer .. 247
9.5.1 Management and Discovery of Data Center Components 247

 Table of Contents

vii

9.5.1.1 Management of Data Center Components .. 247
9.5.1.2 Discovery of Data Center Components... 249
9.5.1.3 Domain-specific Standards ... 249

9.5.2 WBEM and Web Services-based Management Protocols 249
9.5.3 OGSI-based Implementation... 252

9.5.3.1 Component Design.. 252
9.5.3.2 Crossing Protection Domains.. 254

9.6 Summary ... 254

Chapter 10: Summary and Conclusions .. 257

10.1 Summarizing Concepts Adopted From Operating Systems............................ 259
10.2 Summarizing Concepts Adopted From IT Management 262
10.3 Summarizing New Concepts and Significant Extensions............................... 264
10.4 Open Issues and Conclusions.. 268
10.5 Final Remarks ... 269

References .. 271
List of Figures .. 283
List of Tables.. 286

Chapter 1: Introduction

1

Chapter 1

 Introduction

The efficient management of data centers is critical in today’s information-centered
world. Automation has proven to increase efficiency in many industries. Although
automation has made significant progress in those industries, the management of data
centers still occurs mostly manually today. As a consequence, data center management –
as part of overall IT management – is perceived as slow, inflexible and cost intensive. It
is seen as an obstacle to innovation and business agility in enterprises, which are relying
on effective IT services and their efficient management.
The desire for more agile IT environments, the need to address the increasing scales of
data centers and the continuing pressure to reduce cost are consequently major drivers in
the IT industry today. Automation is one path to addressing these goals. Automation
means replacing human labor with systems performing tasks faster, more reliably and at a
lower cost [Jac09].
Like in other industries, not all tasks in IT management are suitable for automation.
Automation needs to aim at routine and repetitive tasks, which are often found at the
lower layers of IT infrastructure management in data centers.
IT management automation has proven to be difficult in the past. Major obstacles have
been the fragmentation of management, both in management systems and in management
processes performed by people; the lack of integration of management systems; and the
lack of comprehensive and consistent information models providing the appropriate
abstractions upon which algorithms could make decisions and perform management tasks.
IT management automation solutions built today often fall short of expectations due to
these factors [Kell06].
In contrast, the discipline of operating systems has led to a class of software systems that
has demonstrated the ability to manage applications and components of a machine
environment fully transparently and automatically.
Similarities can be observed between the environment of a machine and the environment
of a data center. Both environments include physical components for performing
computations, store data and facilitate communication. Both environments operate
applications on their components. Management is essential in both environments for
executing applications in a controlled and coordinated manner.
Operating systems have developed principles, techniques and technologies over the past
50 years, which automatically operate (manage) the components and applications of a

Chapter 1: Introduction

2

machine environment. IT management in data centers, in contrast, still largely depends
on human labor today.
It is a valid question to ask why this is still the case and what could potentially be learned
and adopted from operating systems to help construct systems that can perform similar
functions in the context of a data center – functions such as resource management,
configuration, deployment, run-time control, coordination, performance management,
failure handling and recovery.
And yet, there are substantial differences to consider with regard to size, scale, lifetime
and lifecycle, diversity, granularity and complexity of hardware and software components
in data centers and in machines that need to be taken into account. These differences are
of such a substantial nature that management has emerged in fundamentally different
ways. It is automated and performed by a system in the case of operating systems and it is
mostly manual in the case of data centers. No system has emerged that comprehensively,
transparently and automatically could manage the IT infrastructure and applications in a
data center like an operating system manages these in a computing machine.
The goal of this thesis is to develop the architecture of a system that automates the
management of IT infrastructure in a data center. The approach for developing this
architecture is based on connecting concepts from operating systems with concepts from
IT management. Both disciplines have been considered largely independently in the past.
The idea of connecting them and consolidating the result in form of an Architecture for
the Automated Management of Data Center IT Infrastructure is new and the contribution
of this thesis. It has not been published before and is the sole and original contribution of
the author.
The thesis is founded in research conducted by the author at HP Labs between 2003 and
2008 in the field of data center automation. The motivation for this thesis originated from
the desire to consolidate the insights obtained during this research and summarize them
systematically in form of an architectural framework.

1.1 Operating Systems
An operating system is a software system that manages the defined and coordinated
execution of a set of applications on a set of shared hardware components of a computing
machine. An operating system is a system that operates: 1.) the system of applications
executing in the environment; 2.) the system of hardware components on which
applications execute and 3.) the operating system itself, which is executing in the same
environment.
For operating systems, the computing elements are the components of the machine
provided for local processing, storage and communication such as: CPUs, caches,
memory, storage, controller, busses, interconnects and external interfaces. In order to
execute applications in this environment, the operating system must turn machine
components into resources that can drive application processes. This occurs by properly
configuring components and controlling them during operation through their control
interfaces – tasks that are performed by the operating system transparently and
autonomously without requiring attention from applications or users.
The need for utilizing computational components of a machine economically led to the
desire to perform multiple computations simultaneously and share the machine

Chapter 1: Introduction

3

components among applications. The principles of sharing and concurrent use were
fundamental for operating systems. They required additional coordination, which soon
became automated in the operating system. Over the course of time, comprehensive
coordination mechanisms and abstractions were developed in the field of operating
systems. Time sharing was an early technique to multiplex multiple applications on a set
of shared computational components. Virtualization was a more advanced multiplexing
technique by virtually creating more component instances than actually existed in the
environment and providing applications with the impression of their exclusive use.
Dynamic provisioning of resources was another core principle to supply only those
quantities of resources to application processes that were actually used. Rather than
assigning static portions of resources to applications – configured for maximum use –
these assignments became flexible such that the operating system could observe actual
workloads and dynamically adjust resource allocations during run-time accordingly. This
further increased the resource utilization of a machine. It required that applications and
data became decoupled from the locations in computing components and created the need
to develop resource abstractions and abstraction layers allowing applications to achieve
this independence. The mappings between the resource abstractions – visible in the
application layer – to the actual (flexible, adjustable) locations in machine components
had to be managed, which became another task automated by the operating system.
Automation implies decision making. Operating systems employ policies to guide
automated decisions such as for resolving resource contention conflicts. Policies are
another important principle used in operating systems to achieve automation.
To summarize, fundamental principles of operating systems with regard to automated
management are:

1. the transformation of hardware components into resources by properly
configuring them and assigning them to applications driving their processes,

2. the sharing and concurrent use of resources in a coordinated and transparent
manner,

3. the dynamic provisioning of resources depending on actual use,
4. the creation of resource abstractions and the decoupling of applications and data

from locations in underlying physical components with the transparent and
automated management of the construction and mapping relationships by the
operating system, and

5. the use of policy to guide automated decisions.
These principles have been established in operating systems for a long time. In the data
center, in contrast, most of these principles are just emerging. Dynamic provisioning is a
recent example motivated by the same reason as it was for computing machines: to more
effectively utilize the resources of the data center by sharing them and dynamically
adjusting resource supply according to actual demand rather than the static provisioning
for the maximum (peak) demand case. Introducing virtualization into data centers is
another example. It allows decoupling applications from physical components in order to
manage them more flexibly and in a more compact manner.
The introduction of dynamic techniques of provisioning and virtualization into data
centers creates problems. It breaks fundamental assumptions in IT management and in IT

Chapter 1: Introduction

4

management systems, such as the definition of the existence and the identification of
components and resources. Today's IT management systems mainly recognize physical
components as existing using physical properties for their identification such as physical
network interface addresses. Those assumptions fail in virtualized environments.
Recognizing virtual resources, such as virtual machines or disks, that are visible in the
environment only at times when they are active, which can change locations, and which
do not possess physical prosperities for identification, cause significant difficulties to
management systems. Management of virtual resources is thus deeply fragmented and not
transparent. For example, virtual machines can be created by a virtual machine
management system. But placement decisions onto physical machines are made outside
this system. Other resources that are needed for virtual machines, such as networks and
disks, need to be created and configured in other management systems. Overall, it is left
to people tying all the fragmented information together for managing the entirety of
physical and virtual resources in the environment. [Gra03] describes implications
virtualization has on IT management systems.
Operating systems faced similar problems when resource sharing and dynamic
provisioning were introduced in computing machines in the 1960's. It led to a new
understanding of the concept of resources beyond physical machine components and to
the introduction of resource abstractions and the explicit recognition of resource
construction and transformation processes performed by the operating system. Mapping
and construction relationships among resources were explicitly represented and managed
in the information model of the operating system allowing the operating system to
automate the construction processes and making them transparent to the higher layers.
These insights from operating systems have not yet been adopted in IT infrastructure
management in data centers. But the trend towards more dynamic resource management
and automation in data centers can mark the inflection point where principles from
operating systems can influence future data center management systems and practices.

1.2 IT Infrastructure Management in the Data Center
As stated earlier, the overall goals of operating systems and IT infrastructure
management in a data center are essentially similar: to execute applications and deliver
computational services in a controlled and coordinated manner. Like in operating systems,
portions of data center components must be selected, configured and transformed into
resources that can drive applications. In a data center, these activities are performed by
organizations of specialists who are concerned with decision-making and execution of IT
management tasks. Management systems are directed towards supporting people, they
provide little support for autonomous decision making and management task automation.
The management of a data center is a complex and thus fragmented task. Higher-ordered
tasks, such as resource allocation and scheduling, are performed as planning tasks by one
group of specialists. Another group is concerned with configuration and deployment,
while yet another is in charge of operational management. Different specializations have
emerged for different domains. Servers, networks and storage are largely managed
separately by different groups of specialists today.
It is a valid question to ask why proven principles from operating systems have not yet
been adopted to the infrastructure management in data centers? Reasons are manifold.

Chapter 1: Introduction

5

1.) One major reason is that a machine usually is acquired as one unit and its hardware
configuration is rarely changing over its lifetime. This provides the operating system with
a stable set of components that are known up front. It is easy to establish an inventory of
all components upon which the operating system can operate. The operating system
maintains a consistent information model of the entire environment at all times. The
automated algorithms an operating system performs fully rely on this consistent and
comprehensive information model, which is represented as a set of centrally organized
in-memory and persistent data structures as part of the operating system.
2.) Since data centers exist for longer periods of time, they face a continuously changing
inventory, mainly driven by overlapping equipment and application refreshment cycles.
This dynamism makes it difficult to maintain a similarly consistent information model for
a data center. Due to the fragmentation of management tasks and systems, information is
scattered and duplicated. Management systems typically coexist in isolation in a data
center and are unaware of one another. For example, a storage management system has
little insight into networks, which are managed by a network management system. It is
hard to consolidate the management information across these systems and achieve a
consistent state. The lack of standardization furthermore impedes integration of
management information and systems.
3.) Today's IT management systems are constraint to existing physical inventory relying
on permanent physical presence for discovery and detection of physical properties for
identification. These assumptions fail when resource abstractions (such as virtualized
resources) are introduced.
4.) IT management systems are proprietary, fragmented and incompatible. The separation
between component vendors and management system providers has not occurred like it
has for computing machines where (hardware) component vendors and system software
providers have separated and specialized creating the need for common abstractions and
interfaces allowing systems and software from different vendors to be combined.
5.) Common abstractions and interfaces enabling the integration of management systems
for hardware and software components have not emerged. The Hardware Abstraction
Layer (HAL) in the operating system is an example of such an abstraction layer providing
a common interface to underlying hardware components isolating their diversity from the
device driver code. The HAL enables the development of reusable algorithms performing
higher-ordered management tasks such as scheduling and resource management. Only
few comparable abstractions have emerged in the context of data center management.
6.) Data centers with their overlapping planning, design, deployment, operation, and
retirement cycles – occurring at all layers simultaneously – require more comprehensive
information models than currently are available. New concepts must be incorporated such
as future states (plans, designs), the transitions of those states into reality and their
subsequent operational management. It is not sufficient to only represent the current state
of physically present components. No automated conclusion can be made when only the
currently observed state of a component is known, but not what the expected state of that
component is. Furthermore, complex resource constructions with mapping and
construction relationships must be represented. Developing these concepts means that
management information models must be significantly extended with new expressions.

Chapter 1: Introduction

6

To summarize, the lack of a comprehensive and consistent information model in IT
management is a key obstacle to automation. Establishing this information model is the
prerequisite for constructing algorithms that are performing management tasks rather than
people. New management abstractions need to be introduced to reflect broader notions of
resources including constructions of resources. Future states must be represented, such as
plans and designs, enabling the automation of construction and transition processes.
Addressing these issues is fundamental for the development of the architecture of a data
center IT infrastructure management system.

1.3 Different Approaches to Innovation
While operating systems have focused on developing algorithms and the construction of
software systems automating the operation of applications in computing machines,
advances in IT management have focused on organizing the work of people in IT
management. Comprehensive overviews of IT management are provided in the literature
[Heg94], [Heg95], [Blan99], [Heg00], [Cass00] and [Hol00].
A large body of guidelines and frameworks has evolved for IT management summarizing
the experiences gathered over decades of IT management in form of guidelines and best
practices. The Information Technology Infrastructure Library (ITIL) [ITIL] is a
prominent example of such a framework. It is directed towards IT experts helping them
to organize their work for a broad spectrum of activities in IT management, ranging from
planning IT strategy; designing IT services; mapping them into IT systems; transitioning
them into data centers followed by subsequent operational management and continuous
improvement. ITIL employs the abstraction of a process as a unit of work that needs to
be performed for a management task. Policies (as directives for decision making) are
provided for human decision makers who follow them in their daily work.
Other examples of management frameworks are the Control Objectives for Information
and related Technology (COBIT, [COB]), the enhanced Telecom Operations Map
(eTOM, [eTOM]) and ISO/IEC 20000 [ISO2K]. Those frameworks can also be used to
structure the complex task domains of IT management. Some of these frameworks have
originated from the telecommunications industry. Attempts have been made to
consolidate and integrate the different frameworks. This topic is subject of continued
research in IT management [Dre02], [Nai04], [Scha07].
More recently, broader contexts are considered for innovation in IT management, such as
considering business aspects of IT [Sauv09]; the mapping of business requirements into
IT requirements [Bart04a], [Sauv06], [Gra08]; quantifying risk in IT [Sauv07] and the
external sourcing of IT services [Joch05]. Energy consumption and sustainability are
further domains in data centers where interest and innovation are emerging [Schie01],
[Sne02], [Gma10].

1.4 Problem Statement
Most automation efforts in data centers fail or fall short of expectations. The underlying
fundamental problem is the lack of a systematic approach to data center automation and
the lack of a comprehensive architecture that is founded in established principles and
provides a set of abstractions based on which management tasks can be automated. This
thesis addresses this problem.

Chapter 1: Introduction

7

1.5 Hypothesis
The hypothesis of this thesis is to demonstrate the systematic development of an
Architecture for the Automated Management of Data Center IT Infrastructure. The
systematic approach is rooted in adopting concepts from operating systems and adapting
them to the domain of IT infrastructure management in a data center. The architecture
builds on a set of abstractions based on which a broad set of management tasks in a data
center can be automated.

1.6 Questions
This thesis seeks answers to the following questions:

1. What are the fundamental problems of data center IT infrastructure automation?
2. Can a comprehensive set of requirements be formulated for the automated

management of data center IT infrastructure?
3. How can data center infrastructure automation systematically be achieved?
4. Which abstractions need to be developed upon which the architecture for the

automated management of data center IT infrastructure can be built?
5. Which concepts and techniques from operating systems can be adopted for data

center IT infrastructure automation?
6. Which concepts from IT management must be accommodated, which are not

present in operating systems?
7. Which new abstractions and concepts must be developed that can neither be

derived from operating systems nor from IT management?
8. How can the information model for these abstractions be defined?

This thesis will use the term Data Center Infrastructure Operating System (DCI-OS)
to refer to a software system that provides capabilities for the automated management of
data center infrastructure. The DCI-OS focuses on data center infrastructure management
recognizing the fact that there are other domains of IT management, which cannot be
automated and which are not addressed.

1.7 Outline
This thesis first discusses a selection of fundamental concepts from the disciplines of
operating systems and IT management in Chapter 2 and 3, respectively. Key concepts are
identified from both disciplines. The next step is the formulation of a set of requirements
for a DCI-OS based on the discussion of an early HP data center automation solution,
which had failed, in Chapter 4.
Based on these inputs, the DCI-OS architecture is developed and its abstractions are
presented in Chapter 5.
The following chapter presents realizations that were developed between 2003 and 2008
for purposes of validating the research. Experiences obtained from pilot implementations
with HP product groups are documented in Chapter 6.
Since the architecture is structured in layers, the content of the three main layers is then
presented in detail in Chapters 7, 8 and 9, respectively. The discussion in these chapters

Chapter 1: Introduction

8

summarizes research and results from prior publications and relates them back to the
architectural framework. Chapter 10 summarizes the work and concludes the thesis.
The outline of this thesis is summarized:

1. Introduction.
2. Concepts from Operating Systems.
3. Concepts from IT Management.
4. Combination and Requirement Analysis.
5. Architecture.
6. Realization.
7. Layer 1: Data Center Planning and Design.
8. Layer 2: Infrastructure Services Layer.
9. Layer 3: DCI-OS Layer.
10. Summary and Conclusions.

Chapter 2: Concepts from Operating Systems

9

Chapter 2

 Concepts from Operating Systems

2.1 Definitions
This thesis uses a broad definition of the term operating system:
 An operating system is a software system which operates other systems.
In a machine environment, operated systems include:

• a system of applications, which is operating on
• a system of hardware components, and
• the operating system itself is a system which also operates itself.

This general definition can be applied to a machine environment, as it traditionally has
been, but it can also be generalized and applied to the broader scope of a data center
environment where systems of applications need to be operated on systems of hardware
components found in the data center.
An operating system conceptually resides as a layer between the layers of programmable
machine components and the layer of application software. An operating system provides
the application execution environment in which applications can execute. It
furthermore transforms machine components into resources by properly configuring and
controlling them. It in turn transforms resources into resource abstractions providing a
more comforting execution environment to applications and also isolating applications
from diversity found in resource properties. The entirety of abstractions is also referred to
as abstract machine that is produced by an operating system as a software machine. An
abstract machine differs from a virtual machine although both are realized through
software. An abstract machine produces new abstractions and new capabilities for
applications which are different compared to the capabilities found in the physical
machine environment. In contrast, a virtual machine replicates the full behavior of the
physical machine with the same properties as found in the physical machine environment.
Virtual machines allow the same applications to execute that were written for the
physical machine environment.
An operating system isolates applications, controls their execution, prevents interferences
between them and resolves resource contention conflicts while managing the resources of
the environment. It also manages itself fully automatically and autonomously.

Chapter 2: Concepts from Operating Systems

10

A Data Center Infrastructure Operating System (DCI-OS) is defined as a software
system which operates other systems in a data center such as:

• the system of applications in the data center executing on
• the system of active data center components (as active components are understood

components which can participate in computing tasks, such as server, storage and
network components).

Data center components are transformed into a system of resources that can be supplied
into the execution environment of an application system allowing it to execute.
Today, the operational management tasks a DCI-OS would perform are carried out by
teams of people who are involved in the planning, the design, the creation, operation and
the management of the components and the applications in a data center.
The hypothesis of this thesis is that it is possible to define the architecture for a technical
system that can automatically perform those operational management tasks for a data
center environment and hence would qualify as a DCI-OS.

2.2 The Evolution of Operating System Concepts
Purpose of the discussion in this section is to identify essential theoretical and practical
concepts that have emerged in operating systems over the past 50 years and that have led
to the class of technical systems which we know as operating systems today. A broad
overview of the progress of this field is provided in [Han01]. The fact that operating
systems have become an established field is also demonstrated by the broad availability
of text books such as [Kal90], [Wett93], [Tan01], [Silb02], [Deit03] and [Stal04].
The discussion here addresses a boarder scope of concepts than usually is associated with
operating systems, particularly in the later part of the section. It includes application-level
services and distributed execution environments, which are not part of traditional
operating systems. A discussion of these extended architectures and their influence on
application architectures can be found in [Gra97].
A variety of categories of operating systems have emerged over time. In the early years
of electronic computing (1950’s-1960’s), computing machines required permanent
attention and were fully operated by people. The profession of an operator emerged. The
role of an operator was different from the role of a user because it mainly dealt with
operational tasks such as the allocation of memory to a program, loading the application
code, controlling the application’s execution, providing input and directing output to the
desired medium. All these tasks were performed manually by operators. These tasks of
basic resource management and application control are typical tasks that are still
performed manually in data centers today.
Beginning in the 1960’s, operating systems emerged from libraries and tools provided
by machine vendors that supported the development (libraries) and management (tools)
of applications on their machines. Libraries primarily supported programming on
machines. Tools were used to support people in their operational tasks. This still is
largely the situation how data centers are managed and operated today.
An important mile stone were the early monolithic operating systems for main frame
machines which truly could be called operating systems since they operated themselves
and carried out basic machine management tasks. Operating systems emerged as result of

Chapter 2: Concepts from Operating Systems

11

integrating reusable tools and libraries into a coherent system that provided a common set
of functionality that was necessary to operate a machine.
Example of those early operating systems were IBM’s OS/360 (and later series 370, 380
and 390); DEC’s TOPS and VMS; HP’s MPE for HP3000. Since hardware was
expensive, sharing was an important goal of operation. Essential concepts were
introduced such as time-sharing and multi-tasking. Time-sharing and multi-tasking
required a concept of isolation between coexisting applications on a machine and
controlling resource use (quotas, partitions).
Virtual machines evolved to virtually replicate the entire hardware of the machine itself
within which multiple instances of operating systems could coexist.
Persistent data management was a core capability operating systems developed from
the very beginning, mainly relying on block-oriented external storage (disks, tapes, punch
cards or tape). Blocks were organized into files and various models were created to
organize files into file libraries or file systems.
Another important concept emerging early was resource transformation. Resource
generation allowed producing higher-ordered resource abstractions from more basic
resources such as a file system abstraction created based on block devices. Resource
virtualization allowed the multiplication of resources for use by multiple applications or
expanding resource capacity by mapping one resource to another. An example is virtual
memory which expanded the physical memory of a machine by swapping ranges of
memory between main memory and a block device. Resource transformation requires
active processing to take place. The operating system performs this processing itself or
initiates it in underlying active components by properly instructing and configuring them.
Theoretical foundations in operating systems were also mainly laid in the early 1970’s by
Dijkstra’s work on parallel processes and process control (THE System, inter-process
synchronization and communication mechanisms such as semaphores) [Dij68], [Dij71]
and C.A.R. Hoare's work on parallel programming (CSP, Communicating Sequential
Processes) [Hoa78]. A large body of research exists in areas of resolving resource
contention and algorithms for resource scheduling. Denning investigated the
phenomenon of locality of memory access in von-Neumann machines developing it into
the theory of working sets [Den68] which enabled virtual memory. Haberman introduced
architecture to operating systems in form of layers of hierarchical functions.
Specifications of functions allowed defining interfaces between layers and separating
concerns addressed in layers [Hab76].
There has always been a close relationship between operating systems and computer
architecture. For example, one aspect that made operating system software special from
other software was that it “managed itself”. It had to manage the same resources it itself
was running on, the same processor, the same memory and the other resources it used and
shared with the applications. In order to enable this, computer architecture developed an
important synchronization mechanism between hardware components and the processor
in form of interrupt signals received by the processor from the interconnect fabric in
the machine which consisted of wire connections between machine components and the
central processor. Processors were designed such that they were able to receive those
signals at any time and respond to them by a special cycle interrupting the currently
executing application and handing execution over to an interrupt handling routine in the

Chapter 2: Concepts from Operating Systems

12

operating system. The concept of preemptive transfer or control back to the operating
system in response to a condition that had been signaled was critical for the operating
system to gain control back when application programs were executing on the same
processor it itself was executing on. This principle has become common across all
generations of processor architectures and is still present today.
After vendors had established successful lines of main frame machines and main frame
operating systems, Ken Thompson planted the seed of a new class of operating systems at
Bell Labs by porting a smaller set of the Multics experimental operating system to a
PDP11 [Cor65]. Multics had been particularly focused on a new security architecture for
operating systems. It primarily introduced security mechanisms of protection and
access control in a multi-user environment, which Thompson (in a reduced form)
carried over to what would become the Unix family of operating systems. It led to the
separation of a protected kernel part and the isolation of application parts that were also
protected among each other. By the clear separation between kernel and applications, an
operating system interface could be defined between them.
It was at that time that a strict physical separation between the operating system and the
application environment was introduced. The operating system provided a common
application execution environment for all applications running on a machine. The
development of applications was fully decoupled from the operational tasks of user,
resource and process management performed by the operating system.
User management introduces the concept of a user into the system which is needed to
establish mechanisms for protection and access control, resource use accounting and
resource use control. User identification forms the basis of user management typically
using some form of user credentials such as passwords.
Operations for process and resource management were defined around basic operating
system abstractions such as file systems, processes, inter-process communication (IPC)
and file-based IO mechanisms, which still describe the essential abstractions used in
operating systems today. The Unix operating system developed ways to integrate those
capabilities into the existing file system abstraction.
Another trend in the 1970’s and 1980’s was the upcoming of powerful parallel machines
with specialized architectures that required specialized operating systems. Examples were
COS and CTSS for Cray for numerical processing or TOS for Tandem (now HP
NonStop) for parallel transactional processing. Scale and scalable processing capacity
had been essential drivers for those developments.
Connecting computers through networks had been another major trend in the 1980’s.
Operating systems incorporated networking support into their core capabilities supporting
essentially all networking technologies that had been emerging over time (the Internet
protocol suite, but also vendor-proprietary networks that gained wider use such as
DECnet, IBM’s Token Ring and SNA, Novell, etc.). Accessing machines by users over a
network was an initial advantage which was enhanced by adding support for accessing
remote machine resources and enhancing inter-process communication across machine
boundaries. It enabled a new class of networked applications. The most widely used and
adopted early networked applications were file transfer and e-mail.
The 1980’s were also characterized by the miniaturization of computers and the
upcoming of the personal computer. Apple’s MacIntosh had the first operating system

Chapter 2: Concepts from Operating Systems

13

that introduced a more user friendly graphical user interface and new human interaction
devices such as the mouse building on research Xerox PARC had done on SmallTalk
earlier. Microsoft’s coup with IBM to develop a simple operating system for the IBM PC
laid the foundation for the Windows operating system family which is dominating the
market for personal computer systems to this day.
Due to the growing diversity of operating systems and increasing effort to port
applications from one system to another, standardization became important. In earlier
years when operating systems had been proprietary to the machine vendor, vendor-
specific unification of operating systems had been the dominating trend. IBM, for
instance, has established a reliant line of compatible operating systems over generations
of technologies from its main frame systems to mini computers that are still capable of
executing applications that are decades old. Application software had also become a
significant investment for customers that needed to be protected. Portability and
compatibility of applications to new generations of systems had become essential.
Unix was the first operating system that was adopted across machine vendor boundaries.
Customers for the first time could port applications from one system vendor to another
and overcome the application lock-in to a particular system vendor. Vendors first aimed
to gain control over Unix by creating proprietary derivates (AIX, HP-UX, Ultrix,
SunOS/Solaris) and fiercely competing over proprietary capabilities, which became also
known as the era of the “Unix wars”.
However, the need to keep applications on Unix portable, manageable and interoperable
led to the demand for standardization. ANSI became the body to standardize the C
programming language and libraries. IEEE became the organization for standardizing the
Portable Operating System Interface (POSIX). Standardization led to commodization and
consolidation of operating system vendors, a trend that continues to this day.
The 1990’s were characterized by the spread of networks and the Internet. It is thus not
surprising that this decade was also the decade of distributed operating systems.
Networks developed at four major scales: intra-machine (to build machines with large
numbers of processors), local between machines (LAN), at campus or metropolitan
(MAN) and wide area scales (WAN). The networks and technologies connecting
components at the four scales were substantially different.
The need for parallel computing drove the emergence of NUMA (non-uniform memory
access) architectures that allowed better scaling of CPUs than SMP (symmetric
multiprocessing) architectures. Fast intra-machine interconnects were needed. Accessing
a large number of CPUs to shared intra-machine memory efficiently along with work on
parallel algorithms for those architectures defined a large body of academic and applied
research in the 1990s. Burroughs, Convex Computer, SGI, Sequent and Data General
built NUMA machines which, particularly later, used specialized Unix operating systems
with built-in NUMA support. Access from a larger number of processors to memory with
different access characteristics for performing large parallel applications was the main
contribution of this class of systems. An interesting alternative at this time was the
Transputer architecture from Bristol-based INMOS using processors with local on-chip
memory equipped with 4 programmable communication paths to other processors
allowing multi-dimensional interconnect topologies between processors such as
hypercubes rather than presenting an abstraction of one large shared memory resource.

Chapter 2: Concepts from Operating Systems

14

In the late 1990’s, distributed operating systems shifted focus from intra-machine parallel
computing to inter-machine computing accelerated by the rapid scaling of the Internet.
Representatives of academic operating system research of that era have been Amoeba
[Tan91], BirliX [Härt90], Condor [Cond96], Eden [Laz81], Locus [Pop85], NOW
[NOW95], V [Cher84] and Accent [Rash86]. Text books covered the field of distributed
operating systems [Gosc91], [Tan94]. Essential concepts from those operating systems
were the ability to access resources on remote computers as well as the ability to migrate
process execution to other machines over the network (e.g. in BirliX, [Härt90]).
In the domain of parallel numeric computing, high cost of NUMA and SMP systems,
which both primarily still meant processing in one machine, had led to the emergence of
cheaper alternatives in form of clusters of standard computers connected over high-speed
interconnects. Clusters still were operated in one location such as in one data center.
Grids [Fost98] then introduced WAN connectivity between clusters and established a
global computing environment for parallel applications. A number of large Grids exist
today. Grid computing has contributed tools and systems for automated resource
management in clusters. Examples are schedulers such as Platform’s LSF [LSF] or the
Maui scheduler [Maui] for the popular PBS batch processing system [PBS], which
automated the allocation of batch jobs to available nodes in a cluster. Simple automated
tools for application deployment have emerged as well as have tools for remote
administration of large numbers of nodes such as Cfengine [Burg93]. More advanced
academic work in Grids has recently focused on market-based mechanisms, which may
form the basis of a new category of cloud or utility computing environments.
The most important concept from Grids is the global federation of resource
environments in which applications can be executed transparently from the actual
location. Programming libraries such as PVM [PVM] and MPI [MPI] emerged and are
still popular today to develop parallel, message-based distributed applications under the
premise of location transparency. While Grids have pushed the overall concept of
federated computing far, it still mainly is focused on connecting distributed clusters of
similar machines for the class of batch-oriented processing. Enterprise Grids [Rob04],
[Gra04a] aimed at expanding the focus of scientific Grids on numerical processing to the
broad range of enterprise applications predominantly running in enterprise data centers.
The Enterprise Grid Alliance (EGA) [EGA] was formed.
This “new” [Fost03] Grid has replaced the proprietary middleware used in earlier Grids
with web services standards defined in the Web Services Resource Framework (WSRF)
[WS-RF] and Web Services Distributed Management (WSDM) [WS-DM]. The new grid
also introduced broader ideas of a general Open Grid Services Architecture [OGSA] that
could be expanded into other domains than scientific computing. One of these domains is
geographically disperse enterprise data centers providing resource pools for enterprise
applications and services. Although a number of standards have been developed, the
overall idea of the new Grid did not materialize in the enterprise.
Back in the second half of the 1990’s, concerns about the complexity began to arise
referring to the growing sizes and complexity of operating systems, particularly with
respect to stability and security of those “big” kernels in networked environments leading
to renewed discussions about operating system architectures. Reducing and shrinking
operating system kernels to a minimal set of essential functionality became the focus of

Chapter 2: Concepts from Operating Systems

15

operating system research in the second have of the 1990’s. Dynamic adaptability was
another field that was explored. It meant the ability to load and unload code into the
operating system only when needed. The miniaturization of operating system kernels led
to micro- (Mach [Acc86], SPIN [Ber95]), pico- (Panda [Ass93], KeyKOS [Bom92],
Choices [Camp93]) and nano-kernels (L4 [Lie95], ExoKernel [Kaa95]), which reduced
the operating system functionality to a minimum of essential mechanisms such as context
switches, basic memory management and inter-process communication.
Software components such as device-drivers, were placed outside the inner kernel
executing themselves as application-level services. This concept of providing
operational functionality not from within the operating system kernel, but at the same
level as the applications would turn into an important pattern of how large networked
environments are composed and operated today. The distinction between mechanisms
and policies was an important insight from this research.
A side line of the trend of miniaturization led to specialized operating systems for
embedded and real-time applications. Those operating systems introduced scheduling
especially tailored to meet hard or soft (statistical) reaction time guarantees, which was
called real-time scheduling.
In the industry, however, computing over the network in the late 1990’s was not
approached from the operating system perspective. It was instead approached in form of
application stacks that allowed applications to access other applications remotely.
Layers in those stacks aimed at decoupling functionality and hiding the exposure of
changes in one layer from other layers (as long as interfaces were not affected). Layered
architectures have proven successful in networked environments and form the
architectural pattern of distributed environments to this day.
Distributed programming environments were developed such as the Distributed
Computing Environment (DCE) [DCE] defined by a consortium of Apollo, DEC (both
later HP), IBM and Sun in the Open Software Foundation (OSF) [OSF] which later
became The Open Group. DCE was not just a set of libraries and tools that supported
remote procedure calls among applications. It also had a substantial run-time (or
operating system) capability. It offered a Distributed File System (DFS) [DSF] with
Kerberos-based authentication and ACL-based access control as well as a number of
application-level services such as time, directory and other run-time services needed to
support a distributed operating environment. Microsoft developed with DCOM [DCOM]
a similar platform for its distributed applications. With the emergence of object-oriented
programming, the Object Management Group (OMG) [OMG] introduced object-oriented
programming into distributed application environments with the Common Object
Request Broker Architecture (CORBA) [CORBA], particularly for applications written in
popular C++. With the emerging popularity of Java, Sun rebuilt a stack of distributed
programming capabilities for web and web services applications. This stack is known
today as the Java Platform, Enterprise Edition or Java EE or J2EE stack [J2EE].
DCE, DCOM, CORBA and later J2EE had a further diminishing effect on the importance
of local operating systems in a distributed environment. The role of what is commonly
understood as operating system has remained limited to managing the local resources of a
machine. The traditional class of operating systems with its local kernel and local
applications has little significance for the operation of larger distributed environments.

Chapter 2: Concepts from Operating Systems

16

Rather, distributed services form the architectural foundation of those environments,
and consequently, a distributed operating environment is also the architectural pattern
of a data center environment.
To summarize, operating or managing a larger distributed environment such as a data
center leads to another dimension of systems. This new class of operating systems is
broader than what is considered as a traditional operating system today, which manages
resources and application processes of a local machine. Functionality to manage or
operate a larger distributed environment is provided in form of distributed services,
which are applications themselves from a local operating system point of view.
Management services exist today in simple forms such as a simple resource manager in a
Grid cluster such as GRAM [GRAM] or timing, naming or registry services in distributed
environments such as CORBA. However, most management tasks are left to operators.

2.3 Categorization of Operating System Concepts
The previous section highlighted a number of concepts in bold font. These concepts are
considered operating system concepts that are now categorized in Figure 1. The figure
shows an architectural diagram often used in operating systems with three layers:

• the Application Layer,

• the Operating System Layer and

• the Hardware Component Layer.

System architectures using layers have proven to be powerful. They are thus suitable to
structure complex hardware and software systems in general. Layers separate domains
which build one upon another and establish well-defined interfaces and abstractions
within and between them. Interfaces mediate direct interactions between components in
different layers. Abstractions refer to the computing entities which exist in each layer,
their properties and relationships. Usually, an underlying layer produces the abstractions
or computing elements of the higher-ordered layer. For instance, the abstraction of an
application process, which exists in the Application Layer, is produced in the underlying
Operating System Layer as result of computations in this layer, such as processor
scheduling and address space creation by programming the memory management unit of
the processor.
The pattern of layers supports separation of concern, isolation, encapsulation,
modularization and interaction, which are all desirable properties of complex software
systems. It also allows decoupling and specialization. It has essentially created an
industry of vendors in computing systems today which have specialized in making
hardware components, operating systems and application systems, which at the end fit
together into one complex system. This specialization has not occurred in IT management
mainly due to the fact that the concept of layers has not sufficiently been adopted.

Chapter 2: Concepts from Operating Systems

17

Figure 1 shows the three layers of an operating system with essential components and
abstractions within them.

Application Layer

Application
Layer
User App-Intf

Application Environment: application processes and application data;
multi-user, multi-tasking environment;

Operator
(Admin)

Admin-
Intf

Application Execution Environment (abstract machine) with abstractions:
user, process, file system, inter-process-communication, protection, resource
isolation (quota, partition), virtual machines and access control;

Operating System Layer

Operating System Interface
User Management:
user identification, role,
credentials;

Process Management:
process control (lifecycle),
isolation, inter-process-
communication;

Persistent Data
Management:
file system, special file-
based IO and IPC;

Resource Management: resource creation and transformation (generation,
virtualization), sharing, scheduling, resource contention policy, accounting and
controlling resource use (isolation, partitions, quota), protection (access,
integrity);
Hardware-Abstraction Layer (HAL) with generalized component interfaces;

Operating
System
Layer

Drivers apply control instructions and configuration onto components and
report their states; signals and interrupt handling;

Hardware Component Layer

Component Interfaces: ports, registers, memory-mapped access;
Components (Resources, Devices, Interface cards): processors, memory,
MMU, controllers, network and other periphery interface cards;

Hardware
Component
Layer

Interconnect Fabric: busses, connection links, DMA, interrupts, signals;
Figure 1: Categorization of Operating System concepts.

2.3.1 The Application Layer
The application layer contains concepts such as a user role, the application user interface,
application processes and application data. General concepts are multi-user and multi-
tasking environment. A specific role of an operator (or administrator or super user) has
privileges to carry out administrative tasks on the system and in the application execution
environment. Further concepts include the following.

• The Application Environment contains the applications, their processes and data.
Multiple applications co-exist and perform simultaneously sharing components of
the machine environment on which they execute.

Chapter 2: Concepts from Operating Systems

18

• The Application Execution Environment provides the resources presented to
applications enabling them to execute. Those resources are produced by the
underlying operating system layer such as file systems, processes, inter-process-
communication, partitions, virtual machines, isolation and protection mechanisms.

Both, the application environment as well as the application execution environment
provide interfaces to administrative roles for setting policy. User roles interact with
applications through user interfaces. Operator or administrator roles interact with the
application execution environment through administrative interfaces.

2.3.2 The Operating System Layer
The Operating System Interface decouples the application layer from the operating
system layer. One specific property of a traditional operating system is that it, as a
software system itself, executes on the same machine as the applications it operates.
Special protection of the operating system software is enacted by switching the processor
into a privileged mode when executing operating system code. Special machine
instructions allow system calls to switch between the privileged kernel mode and the less
privileged user mode under which applications execute as part of the system interface.
Within the operating system layer, there are three main functional blocks providing the
essential operating system functionality. These functional building blocks comprise:

• User Management – implements functions supporting the concepts of user and
role. These functions include identifying a user, assigning roles to users and
issuing and managing credentials. Purposes of user identification are to control
access to operations and resources as well as to account and control resource use.

• Process Management – implements functions supporting the concepts of
processes executing applications. Process control includes basic lifecycle
operations for processes such as create, start, activate, pause, suspend, resume,
interrupt (signal), stop and terminate. Processes are isolated by separating their
address spaces. Inter-process-synchronization and communication required
special primitives within a machine and across a network.

• Persistent Data Management – implements functions supporting the concepts of
persistent data. Most modern operating systems have adopted the abstractions of
storing data persistently in an abstraction called files, which are organized as
hierarchical file systems. In addition, input and output operations as well as
primitives for inter-process communication which can be mediated through file-
based IO abstractions are included here using special file types.

Since all functionality of an operating system relies on resources, all three functional
blocks rely on a layer of:

• Resource Management – implements functions needed for creating and
transforming resources and for supplying them into application execution
environment allowing applications to execute. Resource Management includes a
number of tasks:

• Resource Creation. A resource itself is an abstraction which is created by an
operating system. Resources are created by a transformation and a mapping onto
machine components which partially or wholly occupy them. At the component-

Chapter 2: Concepts from Operating Systems

19

level, resource creation means to apply specific configurations to the component
and load its state onto the component, if this is required. Application processes
can only proceed when all their needed resources are mapped onto actual
machine components (all-or nothing policy).

• Resource Transformation. Resources cannot only be created by mapping them
directly onto machine components, such as a memory resource of an application
process mapped onto a specific address region in RAM. Resources can also be
transformed into new resources with new and different qualities. Two kinds of
transformations are distinguished:
o Resource Generation is the process of generating resources with new

qualities and new properties based on more elementary resources. An
example are file and file system resources, which are created based on
elementary block resources mapped onto a disk or another persistent
storage component of the machine environment. A file resource is
generated by managing additional mapping information of a logically
constituent data set (the file) onto a sequence of block resources.

o Resource Virtualization is the process of multiplying underlying resources
with the same properties. Purpose of virtualization is the exclusive
assignment of virtualized resources to processes when resources are
mapped onto shared underlying components. The mapping and sharing
complexity can be hidden using virtual resources. Another reason is the
decoupling effect virtualization has for the applications themselves
avoiding potential interference among processes in a shared environment
(e.g. configuration overlaps on shared machines can be avoided by placing
overlapping applications into separate virtual machines).

• Resource Sharing. Multiple resources are typically created on a set of shared
machine components. Two patterns can occur for sharing. One is sharing in
space, when two resources are mapped onto different regions of an underlying
machine component such as into different address regions in memory. The other
is sharing in time, which is the typical time-sharing or multiplex pattern. Here,
two or more resources cannot co-exist on the same machine component. Hence,
their state must be switched such that only one resource actually resides on the
component and the others only exist in form of their state representations in
another machine component which can store state. CPUs are typical components
that are shared as processor resources.

• Scheduling is the process of determining the assignment schedule over time of
resources to underlying machine components, which does not only apply to
processor resources which must be mapped onto CPU. Scheduling is a concept
that generally applies to coordinate the mapping of time-shared resources onto
machine components.

• Resource Contention Policy. Since most machine components are shared by
resources, their mapping must be scheduled. Resource contention is the effect
when application processes compete for resources and their mapping onto
shared machine components. It is often the case that more application processes
could proceed if all their needed resources could be mapped onto machine

Chapter 2: Concepts from Operating Systems

20

components. A resource contention conflict occurs when there are less mappings
available than resources needed by application processes. In this case a decision
must be taken, which applications processes will be granted their resources and
which ones have to wait. The resource contention policy is often applied to
resources of the same type, e.g. processor resources or memory resources.
Processor resources are often managed with a policy of fairness among all
application processes. Other policies can honor prearranged priorities or meeting
defined completion times or throughputs (processing units/time).

• Accounting and Controlling Resource Use. It is often required that resource use
is accounted and controlled on a per-user basis avoiding users monopolize
resources by launching large numbers of processes and allocating resources such
as file systems by isolating processes from one another using mechanisms such
as resource partitions. Operating systems provide for this purpose means to
account resource use and also set policy limiting resource use by enacting quotas
(such as maximum quantities of resources allowed to use by users).

• Protection. Operating systems also provide means to protect resources from
unauthorized access as part of resource management. Access control relies on
the identification of users which are seen as subjects accessing resources. The
other dimension of protection is ensuring resource integrity which means
preventing unauthorized alteration of resource state.

Resource management operates over elementary resources, which result from the direct
mapping onto machine components such as processors, memory with address spaces and
physical as well as byte- or block-oriented access to I/O devices (e.g. disks). Higher
resource abstractions are generated from sets of those elementary resources.
Resource management of an operating system interacts with the physical components of
the machine environment through their control interfaced. In order to support portability
of the core operating system software itself, an internal hardware abstraction layer is
introduced in modern operating systems. This sub-layer of an operating system isolates
the higher building blocks from detail and diversity found in hardware components.

• Hardware-Abstraction Layer (HAL) provides generalized component interfaces.
It shields the more general core functions from the specific and changing
properties of underlying machine components. Internally, this layer contains the
implementation of the component drivers.

• Drivers apply control instructions and configurations received from the control
logic of higher building blocks of the operating system onto the components
they are associated with and report components states in the reverse direction.
Drivers connect to their associated components through their component
interfaces. For asynchronous interaction, drivers are also connected with the
interrupt system which allows drivers, as software system, to seize the processor
resource for executing interrupt handling routines.

2.3.3 The Hardware Component Layer
Drivers interact with actual hardware components of the machine environment through a
variety of mechanisms depending on the hardware architecture. Component interfaces
can be implemented as ports, registers or via memory-mapped access. Interrupt signals

Chapter 2: Concepts from Operating Systems

21

provide an important synchronization mechanism between machine components and the
driver code as part of the operating system software. Processors are capable of processing
interrupt signals received from the machine’s interconnect fabric triggering the execution
of a special interrupt cycle in order to reengage the operating system driver code.
The Hardware Component Layer is comprised of three main sub-layers:

• Component Interfaces – enable to program hardware components through ports,
registers, memory mapped access, etc., depending on the processor architecture.

• Components – the elements that exit in the machine environment: processors,
memory, MMU, controllers, network and other periphery interface cards, etc.

• Interconnect Fabric – links the components of the hardware environment with
each other. The interconnect fabric does not only allow data transfer from one
component to the other (e.g. from main memory to IO interfaces via fast bulk
transfer), it also allows the transmission of control and synchronization signals
which allow the coordination between the components and the operating system
software. This mechanism is known as interrupt mechanism.

2.4 Summary and Discussion
This section presented a discourse in the history and evolution of operating system
concepts. Concepts then have been categorized using an architectural framework of three
layers: the application layer with applications and the application execution environment;
the operating system layer with user management, process management and persistent
data management, which are built on resource management and access to machine
hardware components through a hardware abstraction layer and component drivers.
Some of the concepts presented in this section directly relate to the environment of a data
center and its management. The following discussion will develop a generalization of
operating system concepts which then can be mapped into the context of a data center.
The concept generalization has three dimensions:

• a structural dimension – includes generalized concepts relating to structure, which
will later map into architectural structure of a DCI-OS;

• a functional dimension – includes generalized concepts relating to functionality a
DCI-OS would need to provide; and

• an organization dimension – includes generalized concepts regarding
organizational properties.

2.4.1 Generalization of Structural Concepts
Structural concepts primarily refer to the architecture of a system or environment.
Concepts such as layers, modules and interfaces are examples of structural concepts.
Purpose of structural concepts is to introduce order and patterns into a system or
environment such that it can be extended, parts can be replaced and developed and
maintained independently. All complex software systems should implement structural
concepts. A DCI-OS is no exception.
Table 1 shows structural concepts which have been developed and have successfully been
applied in operating systems.

Chapter 2: Concepts from Operating Systems

22

Concept Description
Layer A Layer in a software system presents a structural concept which is

internally comprised of a software system producing an execution
environment of another software system residing in a layer above.
A layer internally can have Modules as internal components and also
Sub-layers. An operating system is a software layer residing between
the hardware component layer and the application layer.
A specific property of the operating system layer is that it manages the
application layer above and the hardware component layer below. It
thus forms the management environment for the two managed
environments above and below.

Interface Since layers form independent software systems, they are separated by
interfaces through which elements from different layers can interact.
An application, for example, can request more resources from the
operating system by invoking a method of the operating system
interface.

Application
Layer

The Application Layer consists of two sub-layers:
- the Application Environment and
- the Application Execution Environment,
The Application Environment contains all elements that constitute an
application (application processes, application data, application
configurations, etc). All elements can uniformly be seen as resources
that are provided through the Application Execution Environment.
Multiple Application Environments typically co-exist independently at
the same time.
Application-level resources can also be shared with other applications.
__
The Application Execution Environment organizes the resource supply
into the Application Environment, either based on explicit request or
implicitly as needed by an application to proceed.
The Application Execution Environment also mediates all interactions
between the Application Environment and the Operating System,
which includes:
- access to application lifecycle operations (e.g. start, stop, etc.).
- access to resource management (e.g. request, release resources),
- access to the user management (e.g. login verification).
The Application Execution Environment presents the resources
abstractions as expected by the application and produced by the
operating system.
The Application Execution Environment includes the Interface with
the operating system.

Chapter 2: Concepts from Operating Systems

23

Operating
System Layer

The Operating System coordinates the Application Environments
transparently among each other making them execute in an
environment of shared components.
The Operating System organizes:
- User Management,
- Process Management and Application Management,
- Persistent Data Management,
All based on an abstraction of Resources produced and managed by an
internal sub-layer:
- Resource Management.
__
Further internal sub-layers are:
- Hardware Abstraction Layer (HAL) which resides between higher-

ordered building blocks of Resource Management and the Device
Driver layer. The HAL presents internal abstractions for basic
component types found in the machine environment (e.g. block
devices, character devices).

- Device Driver Layer which implements the HAL interface and
provides the basic access to the associated components of the
underlying machine environment through their component
interfaces.

Device drivers fulfill three main tasks:
- Accept control instructions received from resource management by

applying control configurations to associated components.
- Read data or status data from the component on request by higher

components.
- React to asynchronous signals received from the component (via

interrupt mechanism) and signal in turn higher OS components.

Hardware
Component
Layer

The Hardware Component Layer is comprised of the computing
elements of the machine environment. Hardware components have
control interfaces through which they interact with the associated
device drivers in the operating system.
The Hardware Component Layer comprises three sub-layers:
- Component Interfaces – enable to program hardware components

through ports, registers, memory mapped access, etc., depending
on the processor architecture.

- Components – the bare elements that exit in the machine
environment: processors, memory, MMU, controllers, network and
other periphery interface cards, etc.

Chapter 2: Concepts from Operating Systems

24

- Interconnect Fabric – links the components of the hardware
environment with each other. The interconnect fabric also provides
the transmission of control and synchronization signals such as
interrupt signals which allow the coordination between the
components and the operating system software.

Table 1: Generalized operating system concepts in the structural dimension.

2.4.2 Generalization of Functional Concepts
Functional concepts refer to the functionality a system or environment should provide.
Concepts such as application control or resource management are examples of functional
concepts. Purpose of functional concepts is to define what a system or environment is
supposed to deliver. All complex software systems should be implemented based on
defined functionality.
Table 2 shows functional concepts used in operating systems.

Concept Description
User
Management

User management provides user identification and authentication. The
concept of a User is fundamental to mechanisms of access control to
applications and data, application control and resource use accounting.
User management relies on credentials that are managed by the
operating system allowing authenticating a user.
Users can be grouped and assigned roles determining privileges to
access applications.
A special "super-" user role exists which has the privilege to access
and manage the application execution environment and the operating
system to set policy or perform administrative tasks in the system.

Process
Management

Process management in an operating system provides control over
processes as units of application execution. Process Management
includes tasks of creating and controlling processes through basic
lifecycle operations provide and exercising control over processes
such as create, start, activate, pause, suspend, resume, interrupt
(signal), stop and terminate.
Isolation of processes and applications is another goal to allow co-
existing applications and their processes to execute independently
from one another.
Inter-process communication is provided to support synchronization
and communication among processes.

Persistent Data
Management

Persistent data is core to applications. It is stored in non-volatile
storage, often block device storage (disks, disk arrays, tape libraries).
The operating system provides a basic organizational structure in form
of resource abstractions of files and hierarchical file systems. Basic

Chapter 2: Concepts from Operating Systems

25

operations are defined: create, read and write files or directories.
Besides the structure of a file system, the operating system does not
interpret persistent data sets.

Resource
Management

Resource Management includes two fundamental tasks:
• The production of Resources in the quality (abstraction) and

quantity (amount) that is expected by applications, and
• The assignment of resources to applications.
The first aspect relates to concepts of:
- Resource Abstraction – a resource is either an elementary

resource, which can directly be mapped onto an underlying
machine component, or is a compound of resources assembled by
the operating system in order to produce new desired resource
properties. Resource abstractions are produced by resource
transformation.

- Resource Topology stands for an abstraction that describes an
entirety of a resource set with their relationships. Applications not
only need individual resources in order to proceed, they need a set
of resources at once (all-or-nothing).

- Resource Transformation in order to produce resources in desired
abstractions, which can include a configured set (topology) of
resources that are presented as a whole.

- Resource Generation as the process of generating new resources
with new properties and abstractions based on more elementary
resources, eventually over multiple levels.

- Resource Virtualization as the process of multiplying resources
with same properties and abstractions for exclusive assignment to
applications based on underlying shared resources.

- Resource Creation as the process of mapping elementary resources
onto underlying machine components.

- Protection as process of enforcing access protection to resources
and ensuring data integrity.

The second aspect relates to concepts of:
- Scheduling is the process of determining the assignment schedule

over time of resources to underlying machine components.
- Resource Contention Policy decides about resource assignment

among competing processes.
- Accounting and Controlling Resource Use to prevent

monopolizing resource use in a shared environment.

Table 2: Generalized operating system concepts in the functional dimension.

Chapter 2: Concepts from Operating Systems

26

2.4.3 Generalization of Organizational Concepts
Organizational concepts refer to the overall organization of a system, in particular how it
relates to its environment. Examples of organizational concepts are time-horizons and
defining behavior such as by setting policy the system should follow. All complex
software systems should follow a set of defined organizational concepts.
Table 3 shows organizational concepts which have successfully been applied in operating
systems.

Concept Description
Comprehensive
View of the
Environment
(Information
Model – IM)

The ability any operating or management system to automatically
manage an environment depends on the information this system has
available. An operating system has a comprehensive view (meaning a
full and accurate information set) of all layers surrounding it.
The full set of information, maintained in form of internal data
structures, allows the operating system to make management
decisions.
The entirety of information the operating system maintains about the
environment and about itself is its Information Model (IM).

Scope in time
of the
Information
Model

An Information Model maintains information about a defined entity
domain over a certain time horizon:
• Extending into the past – memorizing prior states and conditions

such as prior processor allocations to processes in order to
implement a fair scheduling policy,

• Capturing the presence – as accurately and consistently with the
actual situation in the environment as possible, such as provided
by instant processor response to interrupt signals allowing to mark
state changes in components in the corresponding data structures
instantly,

• Extending into the future – such as predicting and foreseeing
situations with regard to trends that may have been observed in the
past and projected into the future, which forms the basis of the
theory of working sets which is used for scheduling page
replacements.

Operating systems mainly work based on current information. They
maintain little information about the past and incorporate only rarely
information about the future. For instance, it cannot be "announced" to
an operating system that a new application is scheduled to arrive next
months. Resource reservation hence is not supported, which is,
however, a requirement in a data center environment.

Chapter 2: Concepts from Operating Systems

27

Scope in space
of the
Information
Model

An Information Model also maintains information about a defined
scope of elements it knows about. Elements known to an operating
system include:
• the higher-ordered application layer with application processes,

application data and the states of these elements,
• the underlying hardware component layer with the components

and their states, and
• the state about itself.

Policy Policy is understood as a mean to express a goal an automated system
should follow for making its decisions. Scheduling policy for
resolving resource contention issues in an operating system may be to
treat all application processes fairly or prefer higher prioritized
processes and applications.

Sharing The concept of Sharing occurs in two dimensions:
- Sharing resources among applications for purposes of

communication or collaboration.
- Multiple application environments sharing a set of components in

a data center.

Isolation The concept of Isolation has two dimensions:
- Avoid unwanted direct interference between application

environments. Operating systems implement this concept by
isolating address spaces and controlling visibility and access to
resources associated with applications.

- Allow control over unwanted indirect interference between
applications that results from the shared environment in which
they exist. In particular performance effects may result from
interference in the underlying shared environment.

Table 3: Generalized operating system concepts in the organizational dimension.

Table 1 to Table 3 represented fundamental concepts from the domain of operating
systems. These concepts will be reinterpreted for the context of a data center environment
after the discussion of concepts from the domain of IT Management.

Chapter 2: Concepts from Operating Systems

28

Chapter 3: Concepts from IT Management

29

Chapter 3

 Concepts from IT Management

3.1 Definitions
As IT Management is understood the entirety of people, processes and systems that are
needed for providing IT services from strategic planning, design, transitioning into
practice to operation and continuous improvement.
In contrast to operating systems, which mainly address the internal operation of computer
systems, IT management also addresses the technical and organizational issues of the
environment in which IT systems are used.

3.2 The Evolution of IT Management Concepts
One early root of IT management emerged with early computing systems. Systems
required special skills to operate and also constant maintenance. Operators emerged as a
profession of specially trained personnel who possessed those skills. The domain of
system management has its roots in this tradition. With increasing volume of data being
processed and stored, storage and data management later became specialized disciplines.
A second root of IT management is the domain of telecommunication and
telecommunication networks, which have always been essential to enterprises with
telephony and telegraphy services in the early days. Large telecommunication and later
computer networks also required, and still require, specially trained personnel for
operation and management.
With networking across sites and stronger integration between enterprises, the need for
standards enabling more interoperability arose, which also reflected back to the
management of related systems. A number of management standardization bodies
emerged dedicated to telecommunications and IT management such as the Distributed
Management Task Force (DMTF) [DMTF], the Telecommunications Management
Network (TMN) [TMN] organization, or the Storage Networking Industry Association
(SNIA) [SNIA] responsible for developing standards in the field of storage systems.
But also the more general standards’ bodies such as International Organization for
Standards (ISO), the Internet Engineering task Force (IETF) [IETF] or the Institute of
Electrical and Electronics Engineers (IEEE) produced a number of standards related to IT

Chapter 3: Concepts from IT Management

30

management. [Heg99] and [Slo94] are excellent sources for a comprehensive overview of
the field of telecommunication and IT management.
A third dimension for IT management emerged with the need to manage the increasing
number of operators, teams of operators and entire organizations concerned with the
operation of large-scale computer systems or telecommunication networks. Their work
needed to be organized and distributed and coordinated among organizations. Goals and
metrics needed to be established for an IT organization and how IT organizations would
fit into the overall organization of an enterprise.
The importance of the organizational (or “people”) aspect of IT management has
constantly been increasing. Practices from business management have been introduced
into IT organizations defining how their business is run such as operate IT as a profit
center producing a stream of revenue for IT services.
Due to the increasing reliance of businesses on IT, quality management in IT has become
an important factor as well with attempts to adopt manufacturing practices for quality
assurance for IT such as Six Sigma practices [Pan01].
More and more complex IT environment also led to the emergence of a more carefully
considered lifecycle in IT, which begins early with strategic planning, design of IT
services and their transition into IT systems as separate sets of tasks from the later
lifecycle stages of operational management, which traditionally have been more in focus
of IT management. Furthermore, it has been realized that IT management also does not
end with maintaining IT operational. Constant improvement needs to be factored in as
well. All these dimensions have been emerging over the years and have been factored
into management frameworks and practices.

3.2.1 IT Services and IT Service Management
One particular problem IT management has been facing over the years is the gap between
the IT world with its people, processes and systems and the business world, the world of
users of IT. The problem manifests itself not only in IT management, it also relates to
business process management and software engineering, but it is always IT that is pointed
at when systems fail to provide the expected function.
Linking the business world (or world of users) better with the world of IT has become a
major driver in IT management. On basis of a clear understanding of who is providing
service to whom, IT and IT management has to “learn” to take the user’s perspective
rather than making users familiar with the complexities in IT.
IT Service Management (ITSM) has become the synonym for efforts managing
information technology centered around the user's perspective and, in a business context,
IT's contribution to the business in terms of its cost and value. ITSM stands in deliberate
contrast to technology-centered approaches to IT management and business interaction:
“Providers of IT services can no longer afford to focus on technology and their internal
organization, they now have to consider the quality of the services they provide and focus
on the relationship with customers.”, [Bon02].
The IT Service Management Forum [itSMF] is an independent and internationally-
recognized forum for IT Service Management professionals worldwide.
With the goal of more focus on the business context in which IT is managed, IT service
providers have developed their own interpretations and product and service portfolios.

Chapter 3: Concepts from IT Management

31

Hewlett-Packard's idea of an Adaptive Enterprise targets Business Agility [HPBA03] as
main differentiator by allowing customers to regain control over IT and take advantage in
their markets from an IT environment that is more responsive and easier to adapt to
change in business [HPAEM03]. Transforming IT systems from a factor of limiting
change in business to a factor that is actually fostering change and agility in business
requires substantially higher interoperability, looser coupling of components into services
and automation. And since business agility is seen as a differentiator for customers
competing in their markets, it is also a differentiator for IT system and solution vendors
providing those capabilities [IDC03].
IBM’s programs in this realm have been called On Demand computing and Autonomic
Computing [Kep03], primarily aiming at higher returns on IT investments by automating
management, but also addressing concerns of increasing scale and complexity in IT.
Key element of the interface between users and providers of IT is the IT Service, which is
a contractual relationship between IT service provider and consumer specifying the
services and service levels in form of an agreement. IT Services are expressed in
consumers’ terms, such as “email service”, with expected business objectives regarding
capacity, security or availability. IT interfaces with its users through these contractual
relationships and also derives its directives through those relationships [Bart04].

3.2.2 IT Management Frameworks
A number of IT frameworks exist for IT service management. ITIL is chosen for a more
detailed discussion because of its widespread use.
The IT Infrastructure Library (ITIL) [ITIL] is a set of best practice guidance for IT
Service Management. ITIL is owned by UK’s Office of Government Commerce (OGC)
and consists of a series of publications giving guidance on the provision of quality IT
Services, and on the processes and facilities needed to support them.
The IT Infrastructure Library framework version 3, for example, incorporates a
comprehensive lifecycle view for IT Services over five major stages:

- Service Strategy [Iqb07],
- Service Design [Rud07],
- Service Transition [Lac07],
- Service Operation [Can07], and
- Continual Service Improvement [Spa07].

Recent trends focus on how IT functions can be provided, consumed and managed more
uniformly as services that are closer linked to the business needs they support. Business-
driven IT Management (BDIM) is one of those trends. Another related trend is to more
explicitly and transparently manage processes as the fundamental link to the business
world. Business Process Management (BPM) [Wes07] is a practice of attempting to
constantly improve business processes, which relates back to IT management by the
pattern of organizing not only the core business functions as defined and predictable
processes, but also IT management itself.
In order to summarize common experiences to better organize IT management, a number
of frameworks for IT management have been established over the years. Two prominent

Chapter 3: Concepts from IT Management

32

representatives are the IT Infrastructure Library for general IT management, and Tele-
Management Forum’s enhanced Telecom Operations Map (eTOM) [eTOM] and New
Generation Operations Systems and Software (NGOSS) [NGOSS] which originally have
been addressing the management of telecommunications networks but later, with the
convergence of telecommunication networks into general communication networks used
in IT, they have been broadening their scope towards general IT management reaching up
into the business process layer.
Both frameworks describe the organization of IT management in terms of processes
performed over the lifecycle of IT services, from early, pre-operational stages of strategy,
planning and definition to operational stages of service delivery (or fulfillment,
assurance) and service support. [Scha07] provides a comparison between ITIL and
NGOSS under the view of business-driven service level management.
ISO/IEC 20000 [ISO2K] is another framework for IT management released by ISO. The
Control Objectives for Information and related Technology (COBIT) [COB] is another.
Despite the different origins and flavors of these management frameworks, they all seem
to be converging around notions of services and processes and their lifecycles.
The following discussion will refer to the IT Infrastructure Library. ITIL has been chosen
mainly because of the research background and Hewlett-Packard’s strong position in IT
management products and services. ITIL thus had been considered most relevant,
although another IT management framework could have been chosen as well.

3.3 Categorization of IT Management Concepts
For purpose of categorization, some further definitions from ITIL are provided, which
will be used in the categorization shown in Figure 2.

• As IT Service (in ITIL) is understood a service provided to one or more internal or
external customers by an IT Service Provider. An IT Service is based on the use
of Information Technology and supports the customer’s business processes. An IT
Service is made up from a combination of people, processes and technology and
should be defined in a Service Level Agreement. An IT Service Provider is an
organizational entity that provides IT Services to internal or external customers.

• A Service Level Agreement (SLA) is a part of a service contract where the level of
service is formally defined. In practice, the term SLA is sometimes used to refer
to the contracted delivery time (of the service) or a performance-related metric.

• As IT Management or IT Service Management is understood the implementation
and management of quality IT Services that meet the needs of the business. IT
Service Management is performed by IT Service Providers through an appropriate
mix of people, process and Information Technology.

• As IT Operations (Service Operation) is understood the activities carried out by
IT operations control, including console management, job scheduling, backup and
restore, and print and output management. IT Operations is also used as a
synonym for Service Operation. As IT Operations Management is understood the
function within an IT Service Provider that performs the daily activities needed to
manage IT Services and the supporting IT infrastructure. IT Operations
Management includes IT Operations Control and Facilities Management.

Chapter 3: Concepts from IT Management

33

Application Layer
Application Environment – Managed Side

 IT Management Environment
Management of the Application Environment

Role
User
Consultant

Business Services
(e.g. payroll, supply chain,
order processing, fulfillment).
Business Logic & Processes

 Business Service Management (e.g.
customer management, user support),
Business Process Management

IT Architect
(planning,
realization),
IT
organization
(deployment,
operation)

IT Application Services
(e.g. SAP ERP, Oracle CRM)
Topology of customized and
operational Application
Instances.

 IT Service Management with
- Service Support: service request
management, incident management,
problem management, configuration and
change management, release management,
and software asset management.
- Service Delivery: service level
management, capacity management, IT
service continuity management, availability
management, financial management.

Application Execution Environment – Managed Side

Management of the Application Execution Environment
IT Operator
IT
organization
(infrastructure
planning and
operation)

Application Services
Execution Environment
Topology of operational
Infrastructure Services
(operational application
software and data on a
topology of operational
infrastructure resources).

 Topology of
Infrastructure Resources
(configured networks, servers,
storage that are assigned to
an application).

 IT Infrastructure Service Management
Goal is to provide and manage:
- Infrastructure Management Services for
 producing Infrastructure Resources,
 infrastructure planning and design,
 deployment management, operational
 management with aspects of:
- Grounding Requirements (refinement),
- IT Design and Topology Models,
- Provisioning: plan, request, allocate and
 assign resources (current and future),
- Deployment: apply configurations,
- Operational Management.

Data Center Component Layer

Data Center Component Management

Data Center Components
Component Interfaces

 Data Center Component Management
with component interfaces for operators
(console, GUI) and management systems
(SNMP, WBEM, WS-Management).

Components: bare servers,
storage, devices (switches,
routers, firewalls, balancers).

 Component-level Management: read status,
deliver monitoring data, control, apply
configuration.

IT Operator
IT
organization
(infrastructure
planning and
operation)

Interconnect fabrics: LAN,
SAN, WAN uplinks.

 Access to Component Management
Interfaces.

Figure 2: Categorization of IT Management concepts.

Chapter 3: Concepts from IT Management

34

• As IT Infrastructure is understood the entirety of the hardware, software,
networks, facilities, etc., that are required to develop, test, deliver, monitor,
control or support IT Services. The term IT infrastructure includes all of the
Information Technology but not the associated people, Processes and
documentation.

• As IT Infrastructure Management is understood a part of IT Operations
Management which deals with planning, designing, configuring and maintaining
IT Infrastructure components. As IT Infrastructure Component is understood a
technically enclosed hardware system that is located within the environment of a
data center.

Given that the domain of concern of this thesis is IT Infrastructure automation in the data
center, emphasis will be IT Service Management and IT Infrastructure Management.
Like in the previous section on categorizing concepts from operating systems, a
methodology of layers will be applied.
Figure 2 shows a categorization of IT Management Concepts. IT management occurs as a
second stack of layers with each layer on the Management Side (shown on the right in
Figure 2) accompanying components of an associated layer of the Managed Side (shown
on the left). The local operating system layer still exists between the application
environment and the local data center components. However, this layer is not involved in
data center management tasks. It is responsible for managing local machine resources and
application processes local to a machine. The local operating system layer is not aware of
the broader context of the data center within which machines and applications reside.
IT Management exists as a separate environment of hardware, software and people on the
managed side. Layers in the managed environment are accompanied by layers in the
management environment.
In order to relate concepts from operating systems to IT management, the three layers
shown in Figure 2: Application Layer, Operating System Layer and Hardware
Component Layer need to be reinterpreted for the environment of IT management:

• The concept of the Application Layer refers to the actual applications running in
a data center. It consists of the

- Application Environment with Business Services, IT Application Services
and operational Application Instance and the

- Application Execution Environment, which includes operational
Infrastructure Services residing on operational Infrastructure Resources
with the Local Operating System Layer residing between them.

• The concept of the Operating System Layer responsible for managing an
environment is generalized into the IT Management Environment. The three
layers of the managed environment are accompanied with three layers of the
Management Environment:

- Management of the Application Environment with Business Service
Management, which includes Business Process Management, as well as IT
Service Management with Service Support and Service Delivery.

Chapter 3: Concepts from IT Management

35

- Management of the Application Execution Environment with IT
Infrastructure Service Management including planning and design,
FCAPS management, technical support. A number of further tasks are
included here such as grounding requirements, IT design and topology
models, provisioning, deployment and operational management.

- Data Center Component Management including Component Interfaces
and Component-level Management.

• The concept of The Hardware Component Layer refers to the physical IT
hardware components found as in a data center comprising the Data Center
Component Layer. It consists of

- Component Interfaces and
- Components connected through
- Interconnect Fabrics.

3.3.1 The Application Layer

3.3.1.1 The Application Environment
On the managed side, the application layer shown in the upper left box in Figure 2 is
formed by concept of:

• Business Services perform business functions such as payroll or supply chain
functions. They rely on IT Application Services that are connected through
properly configured business logic or business processes.

• IT Application Services provide functions for business services, typically provided
by standard applications such as SAP or Oracle. Those Application Services
consist of a number of:

• Application Instances, which are local instances executing on local systems in a
data center. Application instances form the smallest unit of execution in the
Application Environment.

Business services support business users, people who conduct some business functions.
These people use the business services. Business logic or business processes implement
business services. They are planned, designed and implemented by various people
engaged as consultants or developers. Both roles need to be supported in this category.
The underlying services shown in the middle left box in the figure refer to IT Application
Services are services provided by running, customized applications, which are often
standard applications such as SAP or Oracle in enterprise environments. Customized
applications implement the business logic or business processes. The combination of IT
Application Services plus customized Business Logic and Business Processes results in
the desired Business Service at the top layer.
Since IT Application Services themselves can be of a complex nature, a further break
down into Application Instances is often necessary. IT Application Services are
comprised of instances of running applications that are needed for an IT Application
Service. For example, SAP ERP follows a multi-tiered architecture consisting of a
NetWeaver Application Server (one application instance), a database (a second

Chapter 3: Concepts from IT Management

36

application instance) and eventual further modules such as Business Information
Warehouse or Master Data Management. All these application instances together provide
the overall application service of a SAP ERP system. All participating application
instances must be properly customized, configured and made operational in order to
provide their contributions to an application service.

3.3.1.2 The Application Execution Environment
On the managed side, the Application Execution Environment shown in the middle left
box in Figure 2 is comprised of:

• Topology of operational Infrastructure Services. As operational Infrastructure
Service is understood as operational application software and data installed on
operational infrastructure.

• Topology of Infrastructure Resources. As Infrastructure Resources are
understood configured networks, servers, storage that provide the operational
environment for Infrastructure Services.

The Application Execution Environment consists of a topology of configured hardware
and software components that is capable of supporting all Application Instances of an
Application Service.
Operational Infrastructure Services are produced when bare (dead) data center
components are selected from the inventory and turned into operational (alive)
components by properly configuring them, which includes installing the proper software
on them (application code and data). The entirety of these operational infrastructure
services forms the application services execution environment. Application instances are
the basic units mapped onto infrastructure services. Typically, a physical or virtual server
is provisioned for an application instance. Proper configuration of this server means that
the server must have access to disks with proper software and data configured as well as
to networks
Infrastructure Resources are properly configured and operational infrastructure
components onto which application data and customizations can be deployed. The
difference between infrastructure resources and infrastructure services is the presence of
application-specific configurations including application software and data on them.
Infrastructure resources are created from data center components such as networks,
storage and server components.

3.3.2 The IT Management Layer

3.3.2.1 Management of the Application Environment
On the management side of the Application Environment, the concepts of the application
layer are accompanied by respective layers of management concepts shown in the upper
right box in the figure:

• Business Service Management (e.g. customer management). Business Service
Management includes Business Process Management (BPM) [Wes07], which
aims at constantly adapting the business processes to changing business
conditions to improve business results. The Capability Maturity Model Integration
(CMMI) is a practice with a process improvement approach that provides

Chapter 3: Concepts from IT Management

37

organizations with the essential elements of effective processes. Management at
the business service or business process layers is inherently people-oriented.

• IT Service Management with Service Support (service request management,
incident management, problem management, configuration and change
management, release management, and software asset management) and Service
Delivery (service level management, capacity management, IT service continuity
management, availability management, and financial management).

IT Service Management generally describes the discipline of managing IT services. It
includes a broad range of management practices targeting IT management organizations
to structure their work. A number of frameworks exist such as ITIL. Other frameworks
include the ISO/IEC 20000 [ISO2K], Microsoft Operations Framework (MOF) [MOF],
the Control Objectives for Information and Related Technology [COBIT], IBM's Process
Reference Model [PRM-IT] or ISO 9001 [ISO9K].
The two major categories of service operation for ITIL are:

- Service Support includes: service request management, incident management,
problem management, configuration and change management, release
management and software asset management.

- Service Delivery includes: service level management, capacity management, IT
service continuity management, availability management and financial
management of IT services.

Further areas may need to be addressed such as security and compliance management,
which are not discussed here.

3.3.2.2 Management of the Application Execution Environment
On the management side of the Application Execution Environment, the middle layer
shown in the middle right box in Figure 2 is formed by concepts of:

• IT Infrastructure Service Management with infrastructure planning and design,
deployment management, operations management (fault, capacity, availability,
performance, security), technical support.

• Managed Infrastructure Services.
- Grounding Requirements (refinement).
- IT Design and Topology Models.

• Managed Infrastructure Resources
- Provisioning: plan, request, allocate and assign resources (current and future).
- Deployment: apply configurations.
- Operational Management.

Goal of IT Infrastructure Management is to provide operational infrastructure services
considering all aspects of: infrastructure planning and design, deployment management,
operations management (fault, capacity, availability, performance, security) and technical
support.
For Infrastructure Services, concepts of grounding and topology are important, which are
explained in more detail later.

Chapter 3: Concepts from IT Management

38

Related aspects of infrastructure management include requirement acquisition and
Grounding requirements, which is a concept of refining requirements from higher terms
into more specific terms used for data center planning and design. Requirements for new
business services must be translated into more specific requirements for capacities of
servers, storage and networks. Workloads must be estimated. Grounding requirements
from business into IT terms relies on expertise of experienced IT specialists.
The concept of an IT Design is important since the system to be built does not exist, yet.
Many management systems fall short of supporting design stages. They focus on
operational management where the managed system is already in existence. For this
reason, designs are often made outside of management systems.
Information Models are used to define designs (in form of topological, structural,
capacity, performance and security models). A design guides subsequent stages of
acquisition, configuration and deployment of IT components when the designed system is
brought into existence in a data center. Standards for information models exist such as the
Common Information Model [CIM], in which designs can be formally represented.
Since individual instances are not sufficient for creating operational application services,
their relationships must be represented in designs as well. A concept of a Topology is
introduced as a graph which includes all components at a respective layer along with their
relationships. The concept of a topology can be generally applied at any layer, from
application services consisting of a topology of configured application instances to
infrastructure services consisting of a topology of configured infrastructure resources.
For Operational Infrastructure Components, concepts of provisioning and deployment are
important.
Provisioning is the process of making resources available for use. It includes stages of
requesting resources (e.g. as result of grounding higher-ordered requirements), allocating
resource capacity and assigning particular resource instances to a request. In contrast to
operating systems, time scales of requests and provisions of resources are much longer
(may be years). Hence, planning and managing "future" resources is essential. Future
resources may not exist at the time when they are requested, yet the information that they
will be available at some future time is already known and can be factored into planning
processes. An operating system only knows the resources that currently exist in the
machine environment. Most IT management tools also only can deal with current
inventory, which is a significant limitation for data center management. Resource
management for a data center must incorporate future resource planning with anticipated
demands such that resources are ready in sufficient quantity when needed.
Deployment refers to the process of applying proper configurations to components such
that they become operational for the desired purpose. This includes transfer of data such
as application data into software components, application programs onto servers or
configuration data into hardware infrastructure components.

3.3.2.3 Data Center Component Management
Component-level management assumes access to components for management. This can
be provided in form of user interfaces for operators (management consoles) or in form of
programmable interfaces. One important requirement for an operating system is to have
programmatic access to data center components through API. A number of standards

Chapter 3: Concepts from IT Management

39

exist for programmatic access to management interfaces: SNMP, WBEM or more
recently Web Services Management.

- Component-level management primarily refers to:
- read status information from components,
- deliver monitoring data from components,
- issue control instructions to components and
- apply configuration data onto components.

At the lowest level of management, access to management interfaces must be provided
through basic network interconnects.

3.3.3 The Data Center Component Layer
Data Center Components include everything in a data center which is physically
connected and can be used to create infrastructure components and services. It includes
bare servers and storage as well as devices such as switches, routers, firewalls or load
balancers. All these components are wired through interconnect fabrics for LAN and
SAN as well as LAN/WAN for management networks (if a separate network is used).
Three main categories of Infrastructure Components exist in the data center:

• Data Center Components with Component Interfaces,
• Components: bare servers, storage, devices (switches, routers, firewalls,

balancers), and
• Interconnect fabrics: LAN, SAN, WAN uplinks.

3.4 Scope of the Data Center Infrastructure Operating System
(DCI-OS)

Considering the broad scope of IT Management, from Business Process Management to
Data Center Component Management, it is clear that the scope of a DCI-OS must be
focused on aspects that are related to infrastructure and its management. A DCI-OS is
situated in the management environment and consequently part of the right column in the
figure. The box in the right column in Figure 3 shows the areas addressed by the DCI-OS.
The scope of a DCI-OS addresses two main areas of concern:

• The area of Managed Infrastructure Services on Managed Infrastructure
Resources and

• The area of Data Center Component Management.
Infrastructure Services provide the basic abstraction offered in the Application Execution
Environment. These Infrastructure Services are comprised of operational application
software and data on operational infrastructure resources. An example is a properly
configured server resource with installed application software and data. Infrastructure
Resources in this example are the server resource which is properly connected to the right
network and storage resources, which are also Infrastructure Resources needed in the
Application Execution Environment. Infrastructure Services and their underlying
topology of Infrastructure Resources are part of the managed side (left column in Figure
3) and must be complemented by management (right column in Figure 3), which is part

Chapter 3: Concepts from IT Management

40

of the DCI-OS. The DCI-OS fulfills management tasks for Infrastructure Services and
Infrastructure Resources as well as bringing them together in the right setting of
configurations and relationships, which is referred to as Topology. This domain of a DCI-
OS is concerned with the context of an Application Execution Environment, and multiple
of those environments that co-exist in a data center. It represents the "application context"
that must be maintained in a DCI-OS, like an operating system must maintain the context
of the applications executing on them. Likewise an operating system, the DCI-OS is not
aware of the meaning of actual application logic or application data. It only supplies the
appropriate Infrastructure Services into the Infrastructure Execution Environment such
that application systems can execute.

Scope of a DCI-OS

IT Operator
IT organization
(infrastructure
planning and
operation)

Application Services
Execution Environment
Topology of operational
Infrastructure Services
(operational application
software and data on a
topology of operational
infrastructure resources).

 Topology of
Infrastructure Resources
(configured networks, servers,
storage that are assigned to
an application).

IT Infrastructure Service Management
Goal is to provide and manage:
- Infrastructure Management Services for
 producing Infrastructure Resources,
 infrastructure planning and design,
 deployment management, operational
 management with aspects of:
- Grounding Requirements (refinement),
- IT Design and Topology Models,
- Provisioning: plan, request, allocate and
 assign resources (current and future),
- Deployment: apply configurations,
- Operational Management.

IT Operator
(infrastructure
planning and
operation)

Data Center Components
Components: bare servers,
storage, devices (switches,
routers, firewalls, balancers).

 Data Center Component Management
with component interfaces for operators
(console, GUI) and management systems
(SNMP, WBEM, WS-Management).

Figure 3: Scope of the Data Center Infrastructure Operating System (DCI-OS).

The other area addressed by a DCI-OS is the environment of the data center in which it
exists. Components exist in the data center on which Infrastructure Resources can be
created by applying proper configurations. Since components typically occur in numbers,
they can be considered and treated as Pools. A Pool is a set of Data Center Component or
created Infrastructure Resource instances of the same type. As Infrastructure Resources
are needed for Infrastructure Services, capacity is assigned from Pools. In a pooled
environment is not significant, which component or resource instances are assigned for a
particular demand. All instances in a pool are considered equal. If they are not equal,
different Pools must be maintained.
The presence of further concepts in Figure 3 of Grounding Requirements, IT Design and
Topology Models, Provisioning, Deployment and Operational Management indicates

Chapter 3: Concepts from IT Management

41

functionality a DCI-OS must provide in order to deliver the Infrastructure Resources and
Services. Those will be discussed in the following chapters.

3.5 Summary and Discussion
This section provided an overview of concepts from the domain of IT Management and
categorizing them based on a similar architectural view used in the previous section for
categorizing concepts from the domain of operating systems.
Figure 2 showed the main concepts categorized into an architectural framework for IT
management using three layers:

• the Application Layer with Business Services managed by Business Service
Management and underlying IT Application Services managed by IT Service
Management.

• the IT Management Environment as vertical stack of layers of management
abstractions associated with layers of managed abstractions.

• the Data Center Component Layer managed by Data Center Component
Management.

While the Separation into three layers is similar to the three layers discussed for the
domain of operating systems, the vertical split into a managed and a management side is
different. The operating system layer provides the management for the applications and
the hardware component systems of a machine. It resides a as layer between the
application and the hardware component layers in the same environment of the machine.
From the categorization of IT management concepts, the scope of a DCI-OS has been
defined related to the area of Infrastructure Services provided on a Topology of
Infrastructure Resources. Another area of concern for a DCI-OS is the environment of
Data Center Components. Both areas contain their elements that need to be managed by a
DCI-OS. The two areas of concern reflect the application context on one hand and also
the context of a data center on the other hand. This is similar to an operating system,
which also brings the contexts of applications together with the context of the
components of a machine environment.
The following chapter will further correlate concepts from both domains of operating
systems and IT management and condense them into requirements for a DCI-OS, based
on which the architecture of such a system then will be developed.
Similarly like in Chapter 2 where concepts form operating systems were categorized
based on three dimensions, these dimensions are applied here as well to categorize
concepts from the IT management domain:

• a Structural Dimension – includes generalized concepts relating to the structure,
which will later map into architectural structure of a DCI-OS;

• a Functional Dimension – includes generalized concepts relating to the
functionality a DCI-OS would need to provide; and

• an Organization Dimension – includes generalized concepts regarding
organizational properties.

The approach in this discussion is to take the generalized concepts from operating
systems discussed in Chapter 2 and interpret them for the domain of IT management.

Chapter 3: Concepts from IT Management

42

Eventual additional concepts are added, which are new in the domain of IT management
and do not exist, or exist in different kind, in the domain of operating systems.

3.5.1 Concept Generalization in the Structural Dimension
Structural concepts primarily refer to the architecture of a system or environment.
Concepts such as layers, modules and interfaces are examples of structural concepts.
Purpose of discussing structural concepts from operating system in context of data center
management is to derive structural requirements for a DCI-OS.
Table 1 shows the structural concepts which have been discussed for operating systems in
Chapter 2 and how they are mapped into the domain of data center management.

Concept Description
Layer As layers occur in the managed domain, they also occur in the

management domain. Figure 2 presented the Application Layer with
associated Business Services Management and IT Service
Management, the Layer of the Application Services Execution
Environment with Infrastructure Services and the associated IT
Infrastructure Service Management and the Data Center Component
Layer with the associated Data Center Component Management
Layer.
A layer internally can have Modules as internal components and also
Sub-layers. In contrast to an operating system, management is not
residing between the hardware component layer and the application
layer. It exists as separate stack of management layers.
Similarly like an operating system, the management layer manages the
application layer and the hardware component layer in a data center.

Interface Since the managed environment and the management environment
form independent systems, they are separated by management
interfaces through which elements in both environments can interact.
An application, for example, can request more resources from the
management system by invoking a method of the management
interfaces. The management system also can request the status of a
management component through its management interface.
A difference to operating system interfaces is that management
interfaces are not unified. Not one management interface exists; many
exist for each managed component and management system.
Communication with management interfaces today occurs as remote
invocations mediated through some middleware. A number of
standards have been defined for management API.
Since in contrast to operating systems, management systems rely on
human operators for making decisions. For this purpose, user
interfaces (consoles) to management systems are important.

Chapter 3: Concepts from IT Management

43

Application
Layer

The Application Layer also consists of two sub-layers:
- the Application Services Environment and
- the Application Services Execution Environment,
The Application Services Environment in a data center environment,
maps to systems of IT application services performing coordinated
business functions such as SAP ERP (Enterprise Resource Planning)
or Oracle CRM (Customer Relationship Management). IT Application
Services consist of a number of interacting application processes
executing on a set of machines which are configured in a way such
that they support the interaction. Application Data is a key part of
Application Services. There is a spectrum of processes occurring in an
application environment of a data center, ranging from operating
system processes executing on individual machines to workflows and
business processes across application instances.
Multiple Application Service Environments typically co-exist
independently at the same time in a data center.
Application-level resources can also be shared with other applications.
__
The Application Services Execution Environment organizes the
resource supply into the Application Environment, either based on
explicit request or implicitly as needed by an application to proceed.
In a data center, the Application Services Execution Environment does
not exist in form of an abstract machine per se. Application
components execute directly on sets of machines with local operating
systems. The Application Services Execution Environment of a data
center is provided by its management functions and processes that
allow applications to operate. It is thus today mainly provided by
operators in data centers who carry out basic functions of resource
management (e.g. capacity planning and adjustments, monitoring and
observation, etc.).
The Application Services Execution Environment provides means to
configure applications and connect them to their application data.
The Application Services Execution Environment provides means to
retrieve and manipulate state of the application and application data
such as needed for backup, archive or migration purposes.
The Application Services Execution Environment provides the
interface to the associated operating or management systems to request
and release resources and control to the application lifecycle (create,
start, stop, suspend, resume, etc.).
The Application Execution Environment also allows creating and
presenting the resources abstractions as expected by the application.
The Application Execution Environment includes the Interface with
the management system.

Chapter 3: Concepts from IT Management

44

Management
Layers

In contrast to the Operating System Layer, layers of management
accompany the layers of the managed environment. Management
forms a separate stack of layers (see Figure 2).
For a DCI-OS, two management layers are of interest:

• IT Infrastructure Service Management with
o Managed Infrastructure Services and
o Managed Infrastructure Resources; and

• Data Center Component Management with accessing data
center components through their management interfaces.

Since infrastructure services and resources are directly provided and
associated with the application services, they represent the
“application view” a DCI-OS has; while the data center component
management represents the “data center view”. This duality
corresponds to operating systems which also have views into the
application domain and the domain of machine components.
Standard building blocks of an operating system such as user
management, process management, application management and
persistent data management are generalized into specific Infrastructure
Services the management environment can provide.
Examples of Infrastructure Services are:
- User Management Service, e.g. Microsoft Active Directory,
- Application Lifecycle Management (as generalization of process

and application management) with aspects of:
- Service Design,
- Provisioning,
- Deployment and
- Operational Management.

- Data Management Services, e.g. for backup and archiving (as
generalization of persistent data management).

These building blocks are implemented and provided as Infrastructure
Services, which means they are active software components as part of
the management system.
Basis for these higher-ordered Infrastructure Services is like in an
operating system:
- Resource Management, which is generalized to a concept of

Infrastructure Resources which are organized as Topologies in
order to provide the resources into the Application Services
Execution Environment as needed.

Chapter 3: Concepts from IT Management

45

Further internal sub-layers can be seen similar to an operating system:
- Hardware Component Abstraction Layer (HCAL) which resides

between higher-ordered building blocks of Resource Management
and the Device Driver layer. The HAL presents internal
abstractions for basic component types found in the data center
environment (e.g. routers, switches, servers with their
configuration systems, storage with their configuration systems).

- Hardware Component Driver Layer implements the HAL interface
and provides the basic access to the associated components of the
data center environment through management interfaces. It
corresponds to the device driver layer in an operating system.

Device drivers fulfill three main tasks:
- Accept control instructions received from resource management by

applying control configurations to associated components.
- Read data or status data from the component on request.
- React to asynchronous signals received from the component (via

interrupt mechanism) and signal higher-ordered components.

Data Center
Component
Layer

(~Hardware
Component
Layer in OS)

The Data Center Component Layer corresponds to the Machine
Component Layer in operating systems. It is comprised of the
computing elements of the data center environment. Data center
components have management interfaces through which they interact
with the associated drivers in management systems.
Interactions with component management interfaces can occur for
operators through consoles and user interfaces. Interactions with
management systems occur through management protocols such as
SNMP, WBEM or WS-Management which is mediated through a
management network interconnect, which may exist as a separate
network or is part of the regular network.
Management protocols facilitate access to status information, to set
new configurations and to interact asynchronously via traps or
asynchronous event messages which allow the management software
to synchronize with the managed component.

Table 4: Generalized IT Management concepts in the structural dimension.

Conclusions for structural requirements for a DCI-OS are:

• A DCI-OS has two main parts reflecting the application and the data center view:
o IT Infrastructure Service Management

� Managed Infrastructure Services and
� Managed Infrastructure Resources; and

o Data Center Component Management.

Chapter 3: Concepts from IT Management

46

• Internal layers comprise:
o Infrastructure Management Services layer – providing the actual

management functionality,
o Resource Management layer – producing resource abstractions needed in

the application environment as well as managing the components of the
data center environment as resources,

o Hardware Component Abstraction Layer (HCAL) – providing a uniform
access layer to data center components for Resource Management,

o Hardware Component Drivers – for accessing data center components via
their control interfaces.

• Functional building blocks are implemented as application-level services
operating on machines that are dedicated to management.

• Interfaces through standard middleware protocols allow for the interaction among
the infrastructure management services.

• A modular structure should support reuse and extensibility. Choosing a structural
building block of an Infrastructure Service for a DCI-OS supports modularity.

3.5.2 Concept Generalization in the Functional Dimension
Functional concepts refer to the functionality a management system. Purpose of
discussing functional concepts is to derive functional requirements of a DCI-OS.
Table 2 shows functional concepts which have been discussed for operating systems in
Chapter 2 and how they are mapped into the domain of data center management.

Concept Description
User
Management

User management provides user identification and authentication for
applications and management. In contrast to operating systems, which
manage local users, user management in data centers of often
fragmented and often also part of applications.
A number of systems exist that can be used as Infrastructure
Management Services for user management in a data center.
With regard to a DCI-OS, user management is not addressed directly
by implementing own functionality. It can be incorporated as one its
Infrastructure Management Services.

Application
Service
Lifecycle
Management

(~Process
Management in
OS)

Application Service Lifecycle Management is an important function of
data center management. It includes aspects of

• Application Service Design – includes the specification of
requirements (functional, non-functional), and further into

o Grounding of those requirements into a set of
specifications for infrastructure resources and services
that can be produced in a data center,

o Development of IT Design and Topology Models which
provide the blueprints for the Infrastructure Services

Chapter 3: Concepts from IT Management

47

and underlying Infrastructure Resources which need to
be produced for the application service.

• Provisioning – comprising the planning, request, allocation,
assignment of Infrastructure Resources for the Infrastructure
Services needed for an Application Service.

• Deployment – application of configurations derived from
design blueprints to Infrastructure Resources and Hardware
Components in order to produce the desired Infrastructure
Services needed for an Application Service.

• Operational Management – to manage the entirety of
Hardware Components participating in an Application Service,
upon which Infrastructure Resources have been built and
delivered into the Application Execution Environment.

Task Automation of these management functions is a goal for DCI-OS.

Application
Data
Management

(~Persistent
Data
Management in
OS)

Application Data are key assets in IT. Persistent data sets of IT
Application Services are stored in special applications such as
database or warehouse applications, which themselves can be IT
Application Services. Since data maintained for IT Application
Services often is business-critical, special attention is given to
availability, reliability, security, access and compliance of data stored
and exchanged. There is a spectrum of tiers where application data can
reside in a data center (block device storage, central storage and file
servers, storage arrays). Storage management is a key discipline in
data center management. Security, availability, integrity, and
regulatory requirements (such as audit of access to data) are important
dimensions of application data management, which is also a key
discipline in data center management. Access control, data replication,
fail-over, backup and recovery are essential building blocks of data
management. While application data management concentrates on the
aspects of pure data (with content unknown), information management
focuses on the lifecycle, distribution and aggregation of information
(content is know). Both are key disciplines in data center management.
Most applications provide their own capabilities for application data
management, which is in contrast to operating system. Applications
only use persistent storage from the data center environment.
Consequently, with regard to a DCI-OS, direct application data
management is not part of a DCI-OS. What is in scope of a DCI-OS is
to produce and manage the needed storage as Infrastructure Resources
for application data management.
The Application Execution Environment provides means to configure
applications and connect them to their application data.
Common functionality such as backup or archival can also be
supported as higher-ordered Infrastructure Management Services.

Chapter 3: Concepts from IT Management

48

Resource
Management

(~Resource
Management in
OS)

Resource Management in operating systems included two fundamental
tasks (see Chapter 2):
• The production of Resources in the quality (abstraction) and

quantity (amount) that is expected by applications, and
• The assignment of resources to applications.
These general aspects apply to a data center environment. Although
the kind and granularity of resources differs between a machine
environment and a data center environment, the principal pattern
applies: a resource is produced by applying a configuration to a
machine component making it usable by an application.
For this reason, the concepts that have been identified for resources in
operating system, fully apply to a DCI-OS:
- Resource Abstraction – a resource is either an elementary

resource, which can directly be mapped onto an underlying data
center component, or is a compound of resources assembled by the
DCI-OS in order to produce new desired resource properties.

- Resource Topology stands for an abstraction that describes an
entirety of a resource set with their relationships. Applications not
only need individual resources in order to proceed, they need a set
of resources at once (all-or-nothing).

- Resource Transformation in order to produce resources in desired
abstractions, which can include a configured set (topology) of
resources that are presented as a whole.

- Resource Generation as the process of generating new resources
with new properties and abstractions based on more elementary
resources, eventually over multiple levels.

- Resource Virtualization as the process of multiplying resources
with same properties and abstractions for exclusive assignment to
applications based on underlying shared resources.

- Resource Creation as the process of mapping elementary resources
onto underlying data center components.

- Protection as process of enforcing access protection to resources
and ensuring data integrity.

Also the concepts relating to Scheduling, Resource Contention Policy
and Accounting and Controlling Resource Use apply:
- Scheduling is the process of determining the assignment schedule

over time of resources to underlying data center components.
- Resource Contention Policy decides about resource assignment

among competing processes.
- Accounting and Controlling Resource Use to prevent

monopolizing resource use in a shared data center environment.
Table 5: Generalized IT Management concepts in the functional dimension.

Chapter 3: Concepts from IT Management

49

Conclusions for functional requirements for a DCI-OS are:
• The main tasks of an operating system: application and process management

relate in context of a DCI-OS to an Application Service for which the Application
Service Execution Environment with all needed Infrastructure Services and
Infrastructure Resources must be provided.

• Production of Infrastructure Services and Infrastructure Resources for
Application Service is a core function of a DCI-OS.

• Management Tasks also apply to the concept of an Application Service in form of
its Application Service Lifecycle Management with tasks of:

o Application Service Design with Grounding and Development of IT
Design and Topology Models,

o Provisioning,
o Deployment, and
o Operational Management.

• Task Automation for management functionality is an important goal of a DCI-OS.
(section 8.1 “The Task Automation Controller” provides a detailed design and
implementation of task automation for a DCI-OS).

• Protection of resources with regard to controlling access or isolation must be
supported by a DCI-OS in order to avoid unwanted interferences among
Application Services which coexist in a shared data center environment.

• The concept of a Resource and its management functions in an operating system
has been generalized into a Topology of Infrastructure Resources. An
Infrastructure Resource is a Resource Abstraction needed by an Application
Services. Since Infrastructure Resources can only be used in combination with
other needed Infrastructure Resources (all-or-nothing aspect), a set of
Infrastructure Resources is brought into context by a Topology.

• Production of Infrastructure Resources is an essential function of a DCI-OS
which is achieved by applying configurations to data center components or
recursively to underlying previously produced Infrastructure Resources and thus
making them usable for an Application Service.
Following qualitative categories of resource productions are distinguished:

o Resource Transformation with sub-categories of
� Resource Generation,
� Resource Virtualization,

o Resource Creation.
Production of Infrastructure Resources also has a quantitative dimension.

• Scheduling is the process of coordinating resources that are shared among
Application Services. Scheduling is an important function of a DCI-OS.
Scheduling also implements the Resource Contention Policy.

• Accounting and Controlling Resource Use through monitoring and associating
monitored data with the contexts of Application Services is a further task of a
DCI-OS.

Chapter 3: Concepts from IT Management

50

Functionality that is missing or only present in rudimentary form in operating systems
must be supplemented to functional requirements for a DCI-OS. This missing
functionality primarily relates to aspects of:

• Data Center Planning, Design and Management.
That these aspects are not considered in operating systems reflects the fact that data
centers are not static environments like the environment of a machine, which hardly
changes over its lifetime. In a data center, each data center component goes through a
lifecycle causing constant replacement of inventory.
This aspect must be factored into the data center management part of a DCI-OS and
relates to following functionality:

• Planning and Capacity Management for Application Services – based on
projected information, new Applications Services may need to be accommodated
in a data center while others retire. Workloads must be predicted for Application
Services such that appropriate types and quantities of data center components can
be projected that will deliver needed capacity in future.

• Inventory Planning – is derived from capacity management and translates into
decisions which data center components (e.g. servers) will be acquired and made
available to meet future demands.

• Inventory Management – discovery and verification of presence and state of data
center components.

• Data Center Component Management – to manage data center components. Since
those components are procured in larger numbers of same type, and further
streamlining of IT inventory towards more homogeneity supports this trend, data
center components of same type can be used interchangeably and hence managed
in Pools.

• Pool Management is in scope of a DCI-OS since it must be able to acquire and
build new resources. Pool management includes tasks to add or remove
components from pools and keep track of their states and current and future
assignments. The concept of Pools can not only be applied to bare data center
components, often needed Infrastructure Resources, such as virtual machines, can
be pre-created and maintained in Pools from where they can be assigned quickly.
Operations on Pools include:

o Add and Remove Members – of the same type increasing and decreasing
pool capacity.

o Allocation – maintaining information about planned future use of pool
members. Pool capacity can be reserved to accommodate future needs by
Application Services. Allocation includes operations to release, change or
withdraw allocations.

o Assignment –fulfillment of an allocation with any instance assignment of
pool members at due time. Assignment includes operations to release,
change or withdraw assignments.

Most functions from the above list can be provided in form of Infrastructure Management
Services operating in the management environment.

Chapter 3: Concepts from IT Management

51

3.5.3 Concept Generalization in the Organizational Dimension
Organizational concepts refer to the overall organization of a system, in particular how it
relates to its environment and which information the system can rely on. Examples of
organizational concepts are time-horizons and defining behavior such as by setting policy
the system should follow.
Table 3 shows organizational concepts which have successfully been applied in operating
systems.

Concept Description
Comprehensive
View of the
Environment
(Information
Model – IM)

In contrast to operating systems, which have a comprehensive and
exclusive view of their environment (the surrounding layers), IT
management systems have only a limited view into their environment
of a data center, typically related to the specific function there are
aiming at. Network management systems, for instance, know little or
nothing about storage or applications.
The Information Model (IM) of a DCI-OS is at the core of its ability to
automate IT management tasks. The Information Model must
accommodate a comprehensive view of the environment, specifically
information about layers that are associated with a DCI-OS (see
Figure 2):

• The Application Services and the Application Instances from
the Application Environment,

• The Application Execution Services and Infrastructure
Services from the Application Execution Environment, with
Topologies of Infrastructure Resources, organized as Pools,
mapped onto

• Data Center Components.

Scope in time
of the
Information
Model

An Information Model maintains information about a defined entity
domain over a certain time horizon. In contrast to an operating system,
which mainly maintains timely and short-term information, a DCI-OS
must cover a broader timeframe extending into the past and future:
• Extending modeled information into the past – refers to keeping

information about past states in the system. Purpose is to use this
information for decision making purposes (e.g. trending) and for
analysis (e.g. root cause analysis). Monitoring has always been a
core part of IT Management for these reasons. A DCI-OS must be
made aware of monitoring data that is collected in an environment
(this means that DCI-OS itself does not need to implement
monitoring, but it must connect to external monitoring
Infrastructure Management Services.
One extension over existing monitoring systems is that the DCI-
OS must take control over the entities and relationships about

Chapter 3: Concepts from IT Management

52

which monitoring data is collected. Particularly the relationships
must be captured flexibly in a dynamic environment where
relationships may change over time, e.g. the assignment
relationship of an Application Instance to a server resource.

• Capturing present information – primarily refers to accurately and
consistently capturing the actual states and situation in the
managed environment. In IT management, this is a serious
problem to capture accurate state of the environment. Reasons are
the time-delay during poll cycles, the chance to not report events
and the change in the environment itself. Not just data center
inventory and components may change, in a more dynamic
environment; also the relationships to resources and applications
can change, sometimes frequently.
One approach to overcome some of the issues is that the traditional
ways to establish an Information Model in management systems
primarily rely on information discovered in the managed
environment and changes occurring in the managed environment
must be propagated back into the Information Model.
What has been missing is the fact that most changes are planned
changes, which are designed, approved and then implemented in
the managed environment. If this information were available in the
Information Base of a DCI-OS a priori to a change (e.g. as a
design or a planned change), then the change to the environment
could not just be automated and driven out into the environment
from the Information Model, it would also be known what is
supposed to be there in the managed environment and verified
whether this is the case rather than periodically scanning for
changes. The Information Model of a DCI-OS hence should
incorporate designs and changes to occur, which will lead to a
notion of Desired State and Observed State discussed later.

• Extending modeled information into the future – directly relates to
the point to not only represent information about past and present
states about the managed environment, but also future states.
Future states of the managed environment can be represented in
form of
- Designs, based on which new future resource and service

configurations can be produced by the DCI-OS,
- Future schedules, based on which allocation decisions can be

made in Pool management,
- Planned changes to existing resource and service

configurations.
The information related to these aspects today is primarily known and
managed by people in IT. An Information Model of a DCI-OS must
incorporate particularly information about future states in order to:

Chapter 3: Concepts from IT Management

53

- drive automated creation, e.g. the generation and application of
configurations in order to produce the creation of resources
automatically as opposed to manually (with Topology Designs
as foundation of this automation);

- decide about resource allocation and assignment automatically,
which assumes information about future resource needs;

- guide capacity planning of Resource Pools;
- apply changes automatically to the managed environment.

Automation of provisioning and deployment processes fundamentally
relies on information being available about future and current states of
the managed environment.

Scope in space
of the
Information
Model

An Information Model of a DCI-OS must incorporate information
about elements of two main domains:
• Infrastructure Services and Infrastructure Resources presented

into the context of an Application Execution Environment (the
application view); and

• Resource Pools and Data Center Components (the data center
view).

The domain of Infrastructure Services and Infrastructure Resources is
associated with concepts of:
• Topology – describing a set of relationships among Infrastructure

Services and Infrastructure Resources that are needed at once by
an Application Execution Environment (e.g., a three-tier server
environment with storage and network connections for a web
application);

• Resource Construction Relationships – describing the mappings of
Infrastructure Resource onto underlying Infrastructure Resources
or Data Center Components. Mapping relationships can cross
application domains when applications share common resources,
such as applications co-located on the same physical server.

Complex Resource Topology and Resource Construction
Relationships may occur, which need to be designed properly using
design tools. Design tools produce machine-readable models of IT
configurations. Blue prints of those designs can be created and reused
for generally applicable designs, such as an IT design for a database
server, which is an often found building block in enterprise
applications.
The use of design tools is critical for constructing complex resource
topologies and resource construction relationships and also for
maintaining them later when the system us in operation and change
must be incorporated. Changes then first can be discussed and
evaluated against designs before implementing them in the system.

Chapter 3: Concepts from IT Management

54

Policy Policy is understood as a mean to express a goal an automated system
should follow for making its decisions. Policy consequently is
essential for automation systems.
A DCI-OS needs to incorporate a number of policies for making
decisions about automated:
- Resource Creation and Transformation,
- Resource Allocation and Assignment,
- How to achieve a desired state of a Resource Topology.

Sharing The concept of Sharing in a data center environment occurs in
dimensions of:
- Sharing resources among applications for purposes of

communication or collaboration.
- Multiple application environments sharing a set of components in

a data center.
Isolation The concept of Isolation in a data center environment occurs in

dimensions of:
- Avoid unwanted direct interference between application

environments. Operating systems implement this concept by
isolating address spaces and controlling visibility and access to
resources associated with applications.

- Allow control over unwanted indirect interference between
applications that results from the shared environment in which
they exist. In particular performance effects may result from
interference in the underlying shared environment.

Table 6: Generalized IT Management concepts in the organizational dimension.

The concepts presented in Table 1 to Table 3 represent fundamental concepts which have
been adopted from operating systems and reinterpreted for the context of data center
management. These concepts will be used in the following chapter to outline in more
details the structural, functional and organizational requirements for a DCI-OS.

Chapter 4: Requirements Analysis for the DCI-OS

55

Chapter 4

 Requirements Analysis for the DCI-OS

The discussion in this chapter will identify requirements for a DCI-OS beginning with an
analysis of an early integrated data center management and automation product which
was called the HP Utility Data Center (UDC) [UDC]. The UDC came to market in 2002
and was discontinued in 2004 as a failure. He failure was caused by a number of market
reasons such as high upfront cost, but was also caused by a number of technical
shortcomings which were analyzed to provide the basis for a better data center
automation product with the overall approach to research not only the shortcomings, but
also take knowledge into account from related disciplines of operating systems and data
center management.
This chapter first analyses the structural, functional and organizational shortcomings of
the early UDC data center automation product in section 4.1 to then establish a set of
structural, functional and organizational requirements for a DCI-OS taking ideas and
patterns from operating systems and data center management into account in sections 4.2,
4.3, and 4.4. These general requirements are then translated into a specific set of technical
requirements, which are presented at the end of this chapter in section 4.5.
These requirements form the basis for defining the architecture of the DCI-OS in the
following chapter.

4.1 The Starting Point for Requirement Analysis
The value proposition for the UDC solution was to increase automation of data center
management tasks leading to significantly lower operational cost. However, while
automation of lower level operational management tasks could be achieved, the overall
results were not satisfactory. Furthermore, the overall cost of the UDC solution was
exceeding the anticipated cost savings significantly. With the ambitious cost savings not
being realizable and high upfront cost, the UDC failed at the market as a commercial
offering and was withdrawn in 2004.
It was however recognized that increasing automation in data center management should
be continued, leading to the research effort this thesis is based on.
The UDC also suffered a number of structural, functional and organizational
shortcomings, which are discussed later in this section. Detailed analysis of these
shortcomings then provided the basis for the requirements for future developments.

Chapter 4: Requirements Analysis for the DCI-OS

56

Figure 4: Control racks of the Utility Data Center (HP Labs, Palo Alto, Nov 2004).
Figure 4 shows the installation of the control racks in the HP Labs Palo Alto Data Center
in November 2004. These units constituted the control systems of the UDC, not the actual
managed systems. Due to the nature of centralized control of the entire(!) data center
through one control unit, this units had to be highly reliant. Failure of the control unit
would have a data center-wide impact and hence had to be avoided.
Substantial engineering effort was spent to build out the control unit with three replicated
instances, which had to synchronize their states and be able to accept the role of a master
controller at any time.
Figure 4 shows the storage arrays with three cabinets on the left. Two central SAN
networking switches are shown in the center. And to the right, there are three racks with a
number of server blades running the controller software. The right-most rack also has the
operator’s console showing the design of a resource configuration, which will be
explained later in more detail. The abstraction of a so-called Resource Topology was an
essential innovation the UDC solution incorporated, which was further developed later on.
Another key innovation was the concept of a Design, or a computer-represented model,
of a Resource Topology, which also was adopted and further developed in future research.
Both concepts also represent examples of concepts which did not exist in operating
systems and hence needed to be developed for the context of a data center.
The technical foundation of UDC’s capabilities was based on the assumption that modern
data center resources are all programmable, including connection networks (LAN, SAN),
which means they can be accessed not only via management consoles by operators
(people), but also through API. By programming, “virtual connections” could be
established between any resource pair.

Chapter 4: Requirements Analysis for the DCI-OS

57

Figure 5: Programmable resources as basis
for the Utility Data Center (UDC).

Figure 6: Resource Farm as abstraction
for a configured resource set.

Figure 5 shows the two control planes of the UDC with programmable network fabrics
for connecting machines to storage (via the programmable SAN) and for connecting
machines to other machines and devices (via the programmable LAN). The control layer
of the UDC is shown on the left hand side which allowed the coordinated creation of the
proper connections among sets of resources as desired.
The control logic allowed creating and executing task procedures which can be invoked
and, internally, breaking tasks down into finer grain automation procedures affecting
individual resource sets and connection networks. This procedural programming
capability allowed automation to a much higher degree than it was possible before.
The UDC solution provided an abstraction for configured resource sets called Farm. A
Farm included a number of resources configured in a way such that they formed an
execution environment for structured applications which could be deployed into this
resource environment later.
Figure 6 shows three Farms containing different resource sets tailored for three-tier
applications, which had become popular in data centers. Those applications consisted of
an access tier with edge routers, routing switches and firewalls providing authentication,
DNS, intrusion detection, VPN capabilities and caching; a web tier handling incoming
HTTP requests with load balancers and a scalable set of web servers; an application tier
with another scalable set of servers running application servers and logic; and the final
database tier where all persistent state was stored requiring server resources for the
database and storage resources for disks.

Chapter 4: Requirements Analysis for the DCI-OS

58

A simple description language was defined for the UDC which allowed describing the
structure (~topology) of the resource sets as well as the automation procedures. The
language was XML-based and called Farm Markup Language (FML) [FML].
Farm descriptions in FML could be submitted to the UDC control software for creating
the described farm. The UDC control software was able to create the described resource
topology by invoking automation procedures it had built in.
Despite the fact that the UDC at the time was the most advanced integrated data center
automation product, the UDC suffered a number of shortcomings which contributed to its
failure in the market place.
These shortcomings were analyzed and formed the basis for defining the requirements for
the DCI-OS aiming at overcoming UDC’s shortcomings. These requirements are
presented in detail in sections 4.2, 4.3, and 4.4.
Three dimensions have been identified for the shortcomings of the UDC:

• structural shortcomings,
• functional shortcomings, and
• organizational shortcomings.

Structural shortcomings
Structural shortcomings primarily relate to the structure of UDC’s control software and
internal data model. The control software was a monolithic block of tightly coupled
software components. Internal software blocks used specific functions of vendor-specific
hardware capabilities making it hard, and later impossible, to keep software blocks up to
date with fast replacement cycles of the hardware. The set of supported hardware lacked
by two generations behind the latest hardware components because of the need to update
internal software components.
Breaking the monolithic structure apart and introducing structural concepts known form
operating systems such as Hardware Abstraction Layers (HAL) and a Device-driver
architecture which allows hiding changes in underlying hardware components, or at least
keeping them local in device derivers, has been seen as an approach overcoming the
structural shortcoming of the monolithic structure of UDC’s control software.
In terms of the data model, the UDC used a standard SQL Schema of a fixed set of
entities and relationships to represent the resource sets of a farm and other entities it
needed to maintain internally. The disadvantage of this approach has been that the SQL
model lead to the interlock between the data structures defined in the schema and the
code that operated upon those data structures. When the schema was changed, the code
had to be changed as well with no explicit isolation into modules which would be defined
for certain parts of the schema. Code/data isolation was not considered and hence leading
to potentially global changes in the code base as new functions or capabilities or
advancing hardware needed to be incorporated. Although the data model used the
abstractions provided by a SQL database, its entity representations were proprietary and
not extensible (because of the data/code lock-in).
Functional shortcomings
Functional shortcomings relate to the functionality the UDC provides as a system, which
related to basic hardware components, but did not consider deployment and configuration

Chapter 4: Requirements Analysis for the DCI-OS

59

of software. For example, the UDC could configure the server with disks and network
interfaces for a database application, but could not provision the software onto the server,
including the operating system. These tasks still required human action and limited the
automation capabilities substantially.
Another functional shortcoming was that configurations were considered statically by the
UDC. This meant that, once made, they could not be changed unless the overall farm was
dissolved. There was no dynamic resource management, resource provisioning on
demand of resource flexing capabilities, which again posed substantial limitations to
customers’ expectations. The UDC also did not manage resources in a sense that it kept
track of which resources were assigned to which farm deployments. Resource allocations
and resource assignments were static and had to be organized by human operators
requiring the explicit specification of resource instance identifiers in FML specifications.
One effect of this circumstance was that FML specifications were not reusable because
they contained physical resource identifiers, such as Ethernet addresses for servers or
Logical Unit Numbers (LUNs) for virtual disk from storage arrays, which had to exist
and created manually before the Farm could be deployed. These examples demonstrate
how small flaws in the architecture of the data model lead to significant functional
limitations in the final product.
Organizational shortcomings
Organizational shortcomings relate to the way the UDC organized the environment of
resources under its control. The UDC kept a current inventory of the current set of
resources that existed in a data center. Changes to this resource set, e.g. when defective
parts had to be replaced, had to be entered and updated manually via the console, which
turned out to be major source of human-induced error. Automated resource discovery
was added in later version of the UDC. The UDC, like most IT management systems,
only maintained inventory information about managed elements which really existed in
the data center as physical devices, such as servers, storage arrays, network switches and
routers and firewall or load balancing devices. UDC’s data model could not comprehend
future inventory, which was not present in the data center yet, but was planned and
known to exist at some future time, as well as inventory which existed at the current time,
but was known to not exist in future due to replacement, for example.
The limitation in the data model to only consider current, physical inventory prevented
automation of resource capacity management, future application deployments,
coordination of future deployment plans, identifying resource conflicts as well as
automated provisioning schemes (the UDC would select resources as opposed to rely on
specified resources in FML). Resource allocation and assignment plans had to be
maintained by operators manually and separately using Excel spreadsheets from where
the correct information about the proper set of resources had to be copied over into the
proper fields of the FML description submitted to the UDC, another major source of
human-introduced failure.
These limitations, in many regards, could be overcome technically when they would be
identified first, then represented as structural, functional and organizational requirements
and finally translated into specific technical requirements to the structure, function and
organization of what is called the DCI-OS in this thesis.

Chapter 4: Requirements Analysis for the DCI-OS

60

4.2 Structural Requirements for the DCI-OS
Ideas and patterns from operating systems and IT data center management should be
taken into account for formulating the requirements for the DCI-OS. Along the structural
dimension, the following concepts have been identified in section 3.5.1:

• Layers with Sub-layers and Modules,
• Interfaces between the Layers and Modules.

In addition, two stacks of corresponding layers have been identified for data center
management:

• the Managed Environment and
• the Management Environment.

As specific Layers structuring the Managed Side have been identified:
• Application Layer with concepts of an

- Application Services Environment with Application Instances forming and
Application Service, and

- Application Services Execution Environment with Infrastructure Services
and Infrastructure Resources produced and delivered to Application
Instances.

As specific Layers structuring the Management Side have been identified:
• IT Infrastructure Service Management Layer with concepts of Infrastructure

Management Services. Further structure is provided as internal layers of:
- Infrastructure Management Services – providing the actual management

functionality,
- Hardware Component Abstraction Layer (HCAL) – providing a uniform

access layer to data center components for higher-ordered Resource
Management,

- Hardware Component Drivers – for accessing data center components via
their control interfaces and the

- Data Center Component Management Layer with concepts of Component
Interfaces to data actual physical components found in a data center.

Conclusions for structural requirements for a DCI-OS are:
• Functional building blocks in the IT Infrastructure Service Management Layer are

implemented as Infrastructure Management Services, which are application-level
services operating on machines that are dedicated to management. Examples of
such services are (they are discussed in more detail in the next chapter):

- Resource Acquisition Management Service,
- Provisioning and Deployment Service,
- Task Automation Controller Service.

• Interfaces are implemented through standard middleware protocols allowing the
interactions with the infrastructure management services.

• A modular structure supporting reuse and extensibility is another structural
requirement for the architecture of a DCI-OS.

Chapter 4: Requirements Analysis for the DCI-OS

61

4.3 Functional Requirements for the DCI-OS
The following concepts have been identified along the functional dimension in section
3.5.2:
• The main function of a DCI-OS is to provide the Application Service Execution

Environment with all needed Infrastructure Services and Infrastructure Resources for
Application Instances and Application Services.

• A core function of a DCI-OS is the production of Infrastructure Services and
Infrastructure Resources for Application Services.

• Management Tasks also need to support the concept of an Application Service in
form of its Application Service Lifecycle Management with tasks of:

- Application Service Design with Grounding and Development of IT Design
and Topology Models,

- Resource Acquisition and Provisioning,
- Deployment, and
- Operational Management.

• Task Automation for management functionality is an important functional goal of a
DCI-OS reducing the need for human action or intervention when possible.

• Protection of resources with regard to access control and isolation must be supported
by a DCI-OS in order to avoid unwanted interferences among Application Services
which coexist in a shared data center environment.

• Production of Infrastructure Resources is an essential function of a DCI-OS which is
achieved by applying configurations to data center components or recursively to
underlying previously produced Infrastructure Resources making them properly
configured and usable for an Application Service.

• The following categories of resource productions referred to as Resource
Transformation are distinguished:

- Resource Generation – the creation of a new resource type as composition of
underlying resources in combination with specific configurations; an example
is a general purpose file server resource which combines a server resource,
storage resources and file server operating software;

- Resource Virtualization – the multiplication of underlying resource types with
same properties; an example are virtual networks, virtual disks or virtual
machines; and

- Resource Creation – the production of a specific resource type with
application-specific properties fitting the particular needs of application
services; an example is a server configured with a database that can be seen as
a database resource for a particular application service.

• Scheduling is the process of coordinating resources that are shared among
Application Services. Likewise in operating systems where resources are shared
among application processes, scheduling is a concept that is important in the context
of data center resources as well. Scheduling includes resource requirement use and

Chapter 4: Requirements Analysis for the DCI-OS

62

conflict detection and resolution and the creation of a resource allocation and use plan.
Scheduling is an important function of a DCI-OS.

• Accounting and Controlling Resource Use is another function required for a DCI-OS
including monitoring and associating monitored data with the contexts of Application
Services. Control needs to be applied when resources used by Application Services
exceed their previously established limits.

These functional requirements can be sees as common between operating systems and the
data center. The differences are in the kind of resources that are managed in a machine
versus in a data center. But the overall functionality is common.
There is some substantial functionality that is missing or only present in rudimentary
form in operating systems that must be supplemented in addition to complete the
functional requirements for a DCI-OS.
This missing functionality primarily relates to aspects of:
• Data Center Planning, Design and Management with support of:

- Planning and Capacity Management for Application Services - based on
projected use information; new Applications Services may need to be
accommodated in a data center while others retire. Workloads must be
predicted for Application Services such that appropriate types and quantities
of resources can be produced in current or future data center components such
that the expected (known) Application Services can be accommodated.

- Inventory Planning - is derived from capacity management and translates into
decisions which data center components (e.g. servers) will be acquired and
made available to meet future demands.

- Facility Planning – as the processes needed to provide the physical
environment in which current and future data center components can exist.

- Regulatory Planning – as the processes needed to meet all regulatory
obligations.

• Inventory Management - discovery and verification of the presence and state of
current data center components. In more advanced systems, also future inventory is
managed which is known to exist at some time in future as well as other components
which are known to not exist beyond a certain time in the future.

• Data Center Component Management – addresses the management of data center
components. Since those components are typically procured in larger numbers of
same type, and further streamlining of IT inventory towards more homogeneity
supports this trend, data center components of same type can be used and managed
more uniformly and interchangeably in Pools as opposed to individual instances.

• Pool Management enables the acquisition of resources of the same type. Pool
management includes tasks to add or remove resources from pools as well as keeping
track of their states and current and future assignments. The concept of Pools can not
only be applied to bare data center components, it can be applied to constructed
resources as well, such as virtual machines which are pre-created and also maintained
in Pools from where they can be assigned for use quickly.

Chapter 4: Requirements Analysis for the DCI-OS

63

Operations on Pools include:
- Add and Remove Members - of the same type increasing and decreasing pool

capacity.
- Allocation - maintaining information about planned future use of pool

members. Pool capacity can be reserved to accommodate future needs by
Application Services. Allocation includes operations to release, change or
withdraw allocations.

- Assignment - fulfillment of an allocation with any instance assignment of pool
members at due time. Assignment includes operations to release, change or
withdraw assignments.

Most functions from the list can be provided in form of Infrastructure Management
Services operating in the management environment on the data center side of a DCI-OS.
Later discussion in this chapter will use a numbering scheme for a more refined list of
requirements. This numbering scheme uses a letter R followed by a three-digit number
R.ddd where the first digit represents a class of requirements. This requirement
numbering scheme has been established in HP and is used here as well.
The following list shows the relationships between the more general functional
requirements discussed in this section and how they relate to specific functional and
organizational requirements against which the architecture then must be evaluated.
Using the R.ddd scheme, the refinements of functional requirements relating to the Data
Center side and the side of Infrastructure Services can be categorized into:

• Refinement of functional requirements for a DCI-OS related to Resource
Management in a data center (R.100):
- Resource capacity and inventory planning (at future time, R.110),
- Resource capacity and inventory management (at current time, R.115),
- Resource categories (basic, transformed, R.120),
- Organization of resources (pools, R.140),
- Resource sharing (R.150),
- Resource acquisition from resource pools (allocation, assignment, R.160),
- Automated resource pool management (add, remove, replace resources,R.170),
- Resource programmability (apply configurations programmatically, R.190),
- Resource pool monitoring and accounting (monitor, account, R.200),
- Discover, probe and report resource inventory (R.210).

• Refinement of functional requirements for a DCI-OS related to Infrastructure
Service management (R.300):
- Topology design and models (R.300),
- Automated resource acquisition (allocation, assignment, release, flex, R.400),
- Automated deployment (resources, applications, R.500; deployment control

R.600),
- Automated operational management (set policy R.700; control lifecycle

R.800).

Chapter 4: Requirements Analysis for the DCI-OS

64

4.4 Organizational Requirements for the DCI-OS
As organizational concepts have been identified:

• Comprehensive view of the environment through Information Model – The
Information Model must accommodate a comprehensive view of the environment,
specifically information about layers that are associated with a DCI-OS (see
Figure 1): The Application Services and the Application Instances from the
Application Environment, The Application Execution Services and Infrastructure
Services from the Application Execution Environment, with Topologies of
Infrastructure Resources, organized as Pools, mapped onto Data Center
Components.

• Scope in time of the Information Model – Extending modeled information into the
past - refers to keeping information about past states in the system. Purpose is to
use this information for decision making purposes (e.g. trending) and for analysis
(e.g. root cause analysis). Capturing present information - primarily refers to
accurately and consistently capturing the actual states and situation in the
managed environment. The Information Model of a DCI-OS should incorporate
designs and changes to occur, which will lead to a notion of Desired State and
Observed State of system elements. Extending modeled information into the
future - directly relates to the point to not only represent information about past
and present states about the managed environment, but also future states. Future
states of the managed environment can be represented in form of Designs, based
on which new future resource and service configurations can be produced.

• Scope in space of the Information Model – An Information Model of a DCI-OS
must incorporate information about elements of two main domains: Infrastructure
Services and Infrastructure Resources presented into the context of an Application
Execution Environment (the application view); and Resource Pools and Data
Center Components (the data center view).

• The domain of Infrastructure Services and Infrastructure Resources is associated
with concepts of:

- Topology - describing a set of relationships among Infrastructure Services
and Infrastructure Resources that are needed at once by an Application
Execution Environment (e.g., a three-tier server environment with storage
and network connections for a web application);

- Resource Construction Relationships - describing the mappings of
Infrastructure Resource onto underlying Infrastructure Resources or Data
Center Components. Mapping relationships can cross application domains
when applications share common resources, such as applications co-
located on the same physical server.

• Policy – allows expressing a goal an automated system should follow for making
its decisions. Policy consequently is essential for automation systems. A DCI-OS
needs to incorporate a number of policies for making decisions about automated:
Resource Creation and Transformation, Resource Allocation and Assignment,
How to achieve a desired state of a Resource Topology.

Chapter 4: Requirements Analysis for the DCI-OS

65

• Sharing – in a data center environment occurs in dimensions of: Sharing resources
among applications for purposes of communication or collaboration. Multiple
application environments sharing a set of components in a data center.

• Isolation – in a data center environment occurs in dimensions of: Avoid unwanted
direct interference between application environments. Operating systems
implement this concept by isolating address spaces and controlling visibility and
access to resources associated with applications. Allow control over unwanted
indirect interference between applications that results from the shared
environment in which they exist. In particular performance effects may result
from interference in the underlying shared environment.

4.5 Requirement Mapping and Refinement
Based on the discussion of structural, functional and organizational requirements in the
previous sections, those requirements can now be mapped into technical properties based
on which the architecture can be formulated later.
A duality exists between an environment of an operating system and a data center. There
are the resources that exist in the environment that need to be managed, and there are the
applications consuming resources, which also need to be managed. Both management
domains have different purposes. Managing resources from an overall data center
perspective relates to planning capacity, managing inventory and managing the overall
data center operation with respect to its resources. Managing resources from an
application perspective relates to the particular set of resources consumed by the
application. In IT management, both domains are typically clearly separated: the data
center management and application management.
This principal separation of concerns also exhibits in the mapping of requirements into
technical properties. The following two sections discuss the requirements from the

• perspective of the data center, which is discussed in section 4.5.1 below, and the
• perspective of individual Infrastructure Services, which is discussed in section

4.5.2.

4.5.1 Refinement for the Data Center Perspective
The following principles guide the definition of requirements for a DCI-OS from the
perspective of Data Center Management:

• Support for capacity management and data center planning.
• Ability to deal not only with current inventory, but also with projected future

inventory.
• Manage capacity rather than inventory, particularly in the future.
• Single abstraction for data center resources: Resource Pools.
• Automated resource pool management.
• Support for transformed resources, specifically virtual resources in pools.
• Support for sharing resources.

Chapter 4: Requirements Analysis for the DCI-OS

66

• Exclusive access to data center components through programmatic management
interfaces eliminating direct human access to data center components.

• Automated discovery and consolidation of current with projected inventory in the
data center information model.

The following table presents the requirements for a DCI-OS for Data Center Management.

Requirements
Data Center Management

Definition R.100

Resource capacity and
inventory planning

A DCI-OS must support planning processes of future resource
build-outs of a data center.

R.110

- DC capacity planning
 (future)

Capacity management is critical to determine estimates of
future resource capacity needed in a data center.

R.111

- DC inventory planning
 (future)

Inventory management must incorporate future resource
capacity in order to support longer-term resource allocation.
Inventory management affects changing resource quantity as
well as changing resource types.

R.112

- Abstract capacity from
 inventory (future)

Properties of future resources may not be known.
Consequently, future needed capacity must be kept
independently from inventory.

R.113

Resource capacity and
inventory management

A DCI-OS must support current management of data center
capacity and inventory.

R.115

- DC capacity management
 (current)

Current data center capacity must be managed against current
demand.

R.116

- DC inventory management
 (current)

Current data center inventory and its use must be managed. R.117

- Discover inventory and
 compare with plan

Inventory management must probe the existence and state of
inventory in the DC and compare it with the planned inventory.

R.118

- Expose DC inventory
 programmatically

In order for a requestor to discover which resources are
available in a DC, its inventory (resource types, capacity, and
availability) must be exposed programmatically.

R.119

Resource categories A DCI-OS must support the variety of resources occurring in a
data center.

R.120

- Resource types Resources of same kind are classified as resource types.

R.121

- Expandable resource types With progressing technology, new resource types (vendor
provided) must be incorporated.

R.122

Chapter 4: Requirements Analysis for the DCI-OS

67

- Customizable resource
 types

Allow introduction of new resource types provided by data
center operator.

R.123

- Resource instances Allow introduction of new resource instances:

R.124

 - replacements as replacements or

R.125

 - expansion as expansion of existing resource capacity.

R.126

- Basic resource types All basic resources in a data center must be supported. Basic
resources are resources as found in a data center.

R.130

 - servers Servers of different types must be supported.

R.131

 - storage Storage of different types must be supported (built-in disks,
arrays, SAN arrays, NAS).

R.132

 - networks Support for different network types (LAN, VLAN and SAN).

R.133

 - devices Devices such as load balancers, fire walls, appliances, routers,
switches must be supported.

R.134

- Transformed resource types Resources can result from transformation processes performed
on underlying basic resources. It is common to transformed
resource types that a relationship to underlying resource types
must be maintained.

R.135

 - generated resource types Generated resources provide capabilities that are required by
applications. Those capabilities are different from the
capabilities provided by underlying basis resources. Examples
are disks generated in a storage array or subnets generated in a
general network environment. Generation of resources is
actuated by applying configurations to underlying basic
resources.

R.136

 - types of virtual resources Virtual resources are multiplied resources of underlying types
with same capabilities. A virtual machine is an example or a
resource partition. Allowing for resource sharing is often a
reason for using virtual resources.

R.137

- Resource identity Resource instances must have a unique identifier (unique in
time and space, not reusable). This is particularly important for
transformed (generated, virtualized) resources.

R.138

- Resource transformation
 relationships

Relationships of transformed resources to their underlying
resources must be maintained.

R.139

Chapter 4: Requirements Analysis for the DCI-OS

68

Organization of resources Resources of multiple, varying types with multiple, varying
numbers of instances must be organized in a common
abstraction.

R.140

- Resource pools A resource pool contains resource instances of the same type.

R.141

- Time-varying pool capacity Capacity of the resource pool (as number of instances) can
vary over time.

R.142

- Integration with planning Planned capacity and inventory from R.111, R.112 must be
factored into future states of resource pools.

R.143

Resource sharing Sharing resource must be supported by a DCI-OS, with or
without awareness of applications.

R.150

- Explicit sharing Explicit sharing means that applications are aware of sharing.
An example is a multi-tenancy use of a database.

R.151

- Implicit sharing Implicit sharing means that multiple resource assignments are
mapped onto the same resource instance without awareness of
applications. Virtualization technology is often used to isolate
shared resources.

R.152

Resource acquisition from
resource pools

Resource acquisition in a data center means making resources
available for applications from resource pools.

R.160

- Resource allocation A resource allocation is a commitment the resource pools
provides to a requestor of a defined resource capacity of
requested resource types for a defined use period. Resource
allocations can be requested and as result refused or committed
by a resource pool. Resource allocations can be withdrawn or
change requested by the requestor.

R.161

 - long-term, future A resource allocation can be issued by the requestor at
planning stages; neither the requesting application nor the
resources must exist in a resource pool.

R.162

 - short-term, current use A resource allocation can be issued during run time of an
application to adjust its future resource use (increase,
decrease).

R.163

- Multi-type resource
 allocation

Applications will need sets of resource types at once on order
to function leading to the requirement of multi-type resource
allocations.

R.164

- Resource assignment A resource assignment is a fulfillment of a resource allocation
at the time it has become due. Free resources from current
resource pools are selected and assigned to the requestor or
requesting application.

R.165

- Multi-type resource
 assignment

Applications need sets of resource types at once. A DCI-OS
must support multi-type resource assignments.

R.166

Chapter 4: Requirements Analysis for the DCI-OS

69

Automated resource pool
management

Pools of resource types are constantly filled with resource
instances as they become available in a data center.

R.170

- Add resources New resources must be added to existing pools. If resources of
new types arrive for which no pool exists, a new resource type
along with a new pool must be created.

R.171

- Remove resources Retired (e.g. end of life) or failed resource must be eliminated,
eventually entire pools must be eliminated as well.

R.172

 - planned resource
 replacement

Planned retirement of resources or failed, unassigned resources
must be removed from pools and eventually replaced with
other resources of that type to maintain current resource pool
allocations.

R.173

- Resource pool drivers Within a DCI-OS, resource pool drivers produce the resource
types by applying configurations to basic resource components.

R.174

- Resource replacement
 due to failure

Unplanned failure causes the need for replacing resource
instances.

R.180

 - passive resource
 instances

Failed resources that have not been assigned must be removed
from the pool and eventually be replaced.

R.181

 - active resource
 instances

In case assigned resource instances fail, they must be replaced
for the assignment with other compatible resource instances.

R.182

 - programmable resource
 identity

In case a resource can shield it’s identify from an application
by allowing to program its identity, a different, compatible
instance can be plugged into an assignment without causing
change for the application.

R.183

Resource programmability In order to automate resource pool management, resource
configurations must be programmable to resource components.

R.190

- Wire once, programmable
 configurability

Programmability of resources also means that physical wiring
must only be done once while any desired configuration can be
applied programmatically.

R.191

- Remote access to
 resources

Programming resources from a DCI-OS assumes remote,
programmable access to resource components directly or to
components which make resources available.

R.192

Resource pool monitoring
and accounting

During operation, resource pools and resources in pools must
be monitored.

R.200

- Detection of failing or
 failed resources

Detection of failing or failed resources triggers R.181 or R.182. R.201

Chapter 4: Requirements Analysis for the DCI-OS

70

- Monitor resource use Resource use must be monitored during an assignment.

R.202

- Resource use logging and
 accounting

Resource use must be logged and accounted to a requestor's
account.

R.203

- Monitoring of resource
 pools

Resource pool utilization must be monitored and compared
with projections.

R.204

- Performance monitoring If applicable, performance of resources must be monitored.

R.205

Discover, probe and report
resource inventory

During operation, resource inventory must be discovered, its
state probed and detected and reported to resource inventory
management.

R.210

Detect and discover resource
inventory

Discoverable data center components must be detected and
reported to inventory management.

R.211

Probe state of resource
inventory

State of inventory must be probed and reported to inventory
management.

R.212

Table 7: DCI-OS requirements supporting data center management.

4.5.2 Refinement for the Infrastructure Service Perspective
The following principles guide the definition of requirements for a DCI-OS from the
perspective of Infrastructure Services:

• Model-driven design and management based on a common abstraction: Topology.
• Modularity and reuse of topology designs.
• Openness and modularity of model layer.
• Multi-instantiation and multiplication of topology designs in a data center.
• Portability of a topology design into other data centers.
• Support for transformed resources, specifically virtual resources.
• Isolation between resource specifications and bindings to actual resource

instances; late binding between resource allocations and resource assignments.
• Apply formal methods to ground and size a topology for requirements.
• Automated resource acquisition.
• Automated deployment (concept of an automation controller).
• Automated, policy-driven operational management including automated

correction of certain error conditions.
The following table presents in detail the requirements for aspects Infrastructure Service
management in a DCI-OS as the execution environment of an application service.

Chapter 4: Requirements Analysis for the DCI-OS

71

Requirements
Infrastructure Service

Definition R.300

Topology design and
models

In order to automate the creation of infrastructure services,
formal descriptions of the to-be infrastructure service must
exist in form of formal models at planning and design stages.

R.300

Topology A number of resources (basic and transformed) must be
considered as a whole in order to provide the execution
environment of a desired infrastructure service. All resources
needed must be present, must be properly configured in
associated states.
The concept of a topology forms the basic abstraction for
modeling (planning and designing), deploying and operating an
infrastructure service.

R.301

- Topology design of
 infrastructure service

A topology design is a graph structure which describes
elements (resources) and relationships supplemented with all
necessary configuration data needed for creating an
infrastructure service.
A DCI-OS must be able to interpret a topology design in order
to automatically create an infrastructure service. A topology
design can also be seen as the definition of an abstract machine
as execution environment for application services.

R.310

- Resource grounding Grounding is the process of resolving higher-order resource
requirement descriptions into concrete resource types and
quantities available in a data center for request.
For example, a server is needed in a resource topology design
which can support a mySQL database. This requirement can be
grounded into multiple server types, depending on availability
of those types in a data center.
In order to ground resources, a DCI-OS provides information
about the data center resource inventory at deployment time.

R.311

- Resource sizing Sizing is the process of determining capacity of those types
such as number of instances (e.g. servers), transaction rate,
bandwidth or storage capacity.
Resource grounding and sizing leads to a more specific
topology design variant.

R.312

- Multi-grounding support
 for topology design

Multiple choices can exist for grounding and sizing resource
requirements in a topology design. Exploring multiple choices,
as well as resulting topology design variants should be enabled.

R.313

- Automated grounding and
 sizing

A DCI-OS should support automated grounding and sizing. R.320

- Reusability of topology
 designs

One significant advantage of using topology designs as models
of to-be infrastructure services is reusability of those designs.

R.330

Chapter 4: Requirements Analysis for the DCI-OS

72

 - re-instantiation A topology design must be re-instantiatable independently how
many times it has been instantiated before.

R.331

 - multi-instantiation A topology design must be instantiatable multiple times in a
data center leading to multiple instances of infrastructure
services.

R.332

- Portability and reuse of
 topology designs

A topology design should be portable such that it can be reused
without or with little modification.

R.340

 - across changes in a data
 center

A topology design should be portable across changes occurring
in a data center, such as when resource inventory is updated.

R.341

 - across data centers A topology design should be portable across data center
tolerating the changed environment as much as possible.

R.342

- Customization of
 topology design

Changes in requirements in a topology design can lead to
different results in grounding and sizing supporting topology
design variants.
Based on the initial topology design with the highest-level
resource specification, customizations should be derivable
based on which then supporting topology design variants
should be generated.

R.350

- Operational management
 policies in topology
 designs

In order to drive automated operational management after
creation of infrastructure service, operational management
policies must be specified in the associated topology design.
A DCI-OS must interpret those policies guiding its automated
operational management.

R.360

 - Desired State Model Operational management policy is defined as an adjustable
Desired State Model of the infrastructure service against which
a DCI-OS will evaluate the observed state of the running
infrastructure service.

R.361

 - Observed State Model The Observed State Model (at design time) defines the
elements, states and transitions that need to be observed later
when the infrastructure service is operating.

R.362

Automated Resource
Acquisition

Automated resource acquisition includes all stages related to
acquiring, using and releasing the necessary set of resources
for a resource topology. Resources acquisition follows a
lifecycle of resources being requested, allocated, assigned,
used (owned) and released.

R.400

 - Resource allocation
 request

A request for resources must be issued to the DCI-OS
containing the resource types and their quantities (quantity in
terms of numbers, size or capacity) that are anticipated for use
by a resource topology over a projected time profile.

R.410

Chapter 4: Requirements Analysis for the DCI-OS

73

A resource profile is a multi-dimensional projection (one
projection per resource type) of quantities over time.
A request contains one profile and is issued for an entire
resource topology with all its needed resource types and
quantities. The DCI-OS responds with a grant or a denial of the
request.

 - Resource request
 granted

If a resource allocation request is granted, all its components
are committed by the DCI-OS.

R.411

 - Resource request
 denied

If a resource allocation request is denied, no changes occur in
the state of the DCI-OS.

R.412

 - Resource allocation A resource allocation is the commitment of the DCI-OS to a
requestor of the availability of quantities (numbers, size or
capacity) of resource types described in a granted resource
request.
If a resource request is granted, the projected resource
quantities of the request are subtracted from the projected
capacities of resource types in the data center.

R.420

 - Resource allocation
 change request

Any granted resource request can be requested to change by
the requestor, a third-party role or the DCI-OS. The DCI-OS
responds by either granting or rejecting the change. A change
request may refer to resource types, quantities or time profiles
of projected use. A reduction in resource types or quantities is
always granted by the DCI-OS. A change request is either fully
granted or rejected.

R.421

 - Resource allocation
 request cancellation

Any granted resource request can be requested to be cancelled
by the requestor, a third-party role or the DCI-OS. Cancellation
requests are always granted by the DCI-OS.

R.422

- Resource assignment Resource assignment is the process of selecting individual
resource instances from pools in order to fulfill a resource
allocation at the time when it has become due, which means
the first time of use as described in the request has arrived.
The requestor becomes the resource owner with an assignment.

R.430

- Resource creation with
 assignment

Resources may be created by the DCI-OS in order to be
assignable. Examples are virtual resources that are assigned.

R.431

- Initial deployment by
 DCI-OS

Before resources are handed over to the owner, the DCI-OS
applies basic configurations to bare resources as specified in
the resource topology.
Requirement class R.500 describes automated deployment
carried out by the DCI-OS.

R.432

- Resource hand-over After assignment, resource instances are handed over to the
owner of resources for subsequent deployment (configuration).

R.433

Chapter 4: Requirements Analysis for the DCI-OS

74

- Resource access by
 owner

The resource owner is notified by the DCI-OS of the
assignment. Resource specific handles are passed with the
notification through which the owner can access resources (e.g.
IP addresses of servers or virtual machines).

R.434

 - Owner-initiated
 release of resource
 instances

Resource instances in use can be released by the owner. The
owner specifies resources to be released by the handles
obtained from the DCI-OS after assignment. The DCI-OS may
destroy released resources without preserving state. Resource
handles invalid after release.
Resources must be re-acquired through a resource allocation
request (R.410), which may be denied. New resource instances
with new handles and in initial state are returned.

R.440

 - DCI-OS expresses
 desire to releasing
 resources

The DCI-OS may issue requests to owners of resources to
release resources voluntarily. Owners may or may not respond
to this request.

R.441

 - Resource preemption The DCI-OS may preemptively withdraw resources in order to
fulfill higher prioritized requests. Potential resource
preemption is announced by the DCI-OS to the owner before
the preemption can occur. (controversial case).

R.442

Automated deployment Deployment is the process of applying configurations to
resources. Access to resources and eventual control interfaces
must be given.
Deployment is a multi-staged process. It begins with deploying
configurations to bare resources as returned from the DCI-OS.
Deployment occurs before resources are handed over to the
owner of resources by the DCI-OS.
Configurations are either known to the DCI-OS or are derived
from the resource topology provided at deployment time.

R.500

- Basic resource
 deployment

Bare resource configurations are applied to bare resources.
Main tasks are to establish the identity of the resource and the
interfaces and handles handed over to the owner through which
the resource is accessed later.

R.510

 - Server deployment Physical server deployment includes the creation of a server
identity and network addresses.

R.520

 - Server partition
 deployment

If applicable, a partition must be created on the selected server.
An identity must be obtained or created for the partition.

R.521

 - Virtual machine
 deployment

If applicable, a virtual machine must be deployed, created and
started on the selected server. An identity must be obtained or
created for the virtual machine as well as its network access.

R.522

Chapter 4: Requirements Analysis for the DCI-OS

75

 - Storage deployment Storage deployment depends on the kind of storage used.
Following cases may occur.

R.530

 - local disk deployment If applicable, local disks need to be initialized.

R.531

 - RAID deployment If applicable, a RAID array must be configured.

R.532

 - Array deployment If applicable, virtual disks must be created in an array, LUNs
must be obtained.

R.533

 - SAN deployment If applicable, LUNs attached to SAN cards in servers.

R.534

 - NAS deployment If applicable, file systems must be prepared in the NAS server
for later server mount. LAN must be configured for NAS.

R.535

 - Device deployment Configure devices.

R.540

 - Firewall deployment If applicable, a hardware firewall is configured. An identifier
must be obtained and its network access. The default firewall
configuration is applied first. Any configuration obtained from
the resource topology is applied after that.

R.541

 - Load balancer
 deployment

If applicable, a hardware load balancer is configured. An
identifier must be obtained and its network access. The default
load balancer configuration is applied first. Any configuration
obtained from the resource topology is applied after that.

R.542

- Network deployment Network deployment achieves the creation of a functional
network by applying configurations to routers, switches and
other networking components.

R.550

 - LAN deployment LAN deployment creates IP subnets with routable IP addresses.
LAN deployment affects either static IP addresses or DHCP.

R.551

 - DNS deployment DNS deployment creates routable DNS names in a LAN by
configuring a DNS server.

R.552

 - WAN deployment WAN deployment creates access points to external networks. It
can include gateways, proxies, firewalls, DMZ.

R.553

 - SAN deployment SAN deployment creates a functional storage area network
between storage arrays and SAN access cards in servers.

R.554

- Software deployment Software deployment makes the stack of software available on
a server that is needed for its operation. Four major software
layers are addressed: operating system, application software,
application data and application customizations.

R.560

Chapter 4: Requirements Analysis for the DCI-OS

76

- OS deployment Operating system deployment means to make a bootable
operating system available on a server.

R.561

 - OS installation
 Local disk ILO

An operating system is installed on a local disk of a server
trough ILO (HP proprietary).

R.562

 - Network installation An operating system is installed on a local disk of a server
through network installation such as PXE.

R.563

 - SAN disk OS install An operating system image is copied into a fresh SAN disk
from a golden image.

R.564

 - VM OS install An operating system image is copied into a VM image.

R.565

- Application software
 deployment

Application software is installed on a disk that is made
available to a server.

R.570

- Application data
 deployment

Application data is installed on a disk that is made available to
a server.

R.580

- Customization
 deployment

An application software customization is installed on a disk
that is made available to a server.

R.590

- Deployment control Deployment control enables control over deployment
processes.

R.600

 - Start deployment
 process

A deployment process is started. R.601

 - Deployment state
 detection

State of a deployment process must be detectable: not existing,
created, starting, started, active, error, not responding,
aborting, and aborted.

R.602

 - Terminate deployment
 process

A deployment process is aborted and a termination process is
started which will abort a deployment process.

R.603

 - Reset deployment state Deployment state must be reset that may have been created as
effect of a previous deployment process that has been aborted.

R.604

Automated operational
management

Operational management enacts control over a managed
environment. It is based on comparison of two distinct states:
the desired state, which describes a state in which the managed
system is expected to be in, and an observed state, which is a
state in which the managed system currently is observed. An
operational management controller aims to align the observed
state to wards the desired state by issuing control actions to the
managed environment, or if this is not possible, issue an alert
signal to correct the situation.

R.700

Chapter 4: Requirements Analysis for the DCI-OS

77

- set Desired State Operational control from an operator’s point of view is
achieved by defining the desired state.

R.710

- change Desired State Desired state can be changed any time. Changes in desired
state will likely trigger action in the associated managed
system.

R.720

- Lifecycle control of a
 topology

Lifecycle control is a main aspect of operational control. It
allows to start and to stop a system.
Lifecycle control affects all elements of a topology. Its sub-
aspects refer to individual components as well as to the
topology as a whole. Lifecycle control begins after deployment
and ends after termination.

R.800

 - ignition Ignition is the transition from an undefined state into a defined
initial state. An example is bootstrapping a server. Ignition
always starts with an ignition signal issued by an initiating
device. Various ignition technologies exist such as PXE for
network server ignition.

R.810

 - start Start is the transition from a defined initial state to an
operational state.

R.820

 - state detection State of a topology as well as of individual components must
be detectable any time.

R.830

 - termination Termination is the transition from a defined or undefined
operational or error state into a defined terminated state, in
which state of the topology still is in the system.
Termination is the counter operation to start.

R.840

 - destruction Destruction is the transition from a terminated state where state
is still present in the system to a non-existing state where no
state of a topology is maintained in the system.
Destruction is the counter operation to deployment of a
topology. Destruction does not remove model data maintained
about a topology.

R.850

Table 8: DCI-OS requirements supporting the management of infrastructure services.

The sets of requirements established in Table 7 and Table 8 present a comprehensive set
of capabilities for a data center automation solution which go far beyond the capabilities
the early UDC could achieve. Some of the requirements required deeper research,
particularly for the planning and design phases, because these areas have not been
covered by existing operating systems or IT management systems.

Chapter 4: Requirements Analysis for the DCI-OS

78

The following chapter presents the architecture of a DCI-OS based on these requirements.
Concepts used in the architecture refer back to structural, functional and organizational
concepts found in operating systems and reinterpreted for the context of a data center.
Major building blocks of the DCI-OS are presented followed by a discussion of how they
support the requirements. A number of innovative properties result from the combination
for a DCI-OS which are discussed at the end of the following chapter.

Chapter 5: Architecture of the DCI-OS

79

Chapter 5

 Architecture of the DCI-OS

Figure 7 displays the architecture of a Data Center Infrastructure Operating System. The
architecture presents two columns: a data center management-related part (on the left)
and a part that is related to the management of infrastructure services (on the right).
An Infrastructure Service (IS) is a fully operational execution environment for an
application service. It includes all necessary resources (servers, storage, and networks) in
an operational state with proper configurations as well as all necessary application
software and data made available and operational on those resources. An Infrastructure
Service is the basic abstraction produced by a DCI-OS. It is comparable to a execution
environment for a fully operational process created by an operating system in a
computing machine
Multiple infrastructure services typically coexist in a data center supporting multiple
application services. Consequently, the Data Center (DC) part is shared amongst all
infrastructure services of this data center. The figure displays the shared data center part
on the left and one infrastructure service as a representative on the right. There are
connections between both parts through which information is exchanged and control is
mitigated.
The vertical structure in Figure 7 in a DC and IS-related column supports reuse,
portability and multiplicity of infrastructure services in a data centers. It is complemented
with a horizontal structure in form of layers which reflect a further breakdown in each
part into tasks and components.
Components in layers are further differentiated by different colors1 in Figure 7.

1 Green color in the architecture diagram in Figure 7represents operational technical modules that are part
of the DCI-OS. Red color represents the information (models) needed to drive the technical modules.
Brown color represents physical infrastructure components that are part if the data center infrastructure and
external to the DCI-OS such as servers, storage and network devices. They are, however, subject to
configuration and control from the DCI-OS modules.

Chapter 5: Architecture of the DCI-OS

80

The architecture consists of five layers. Adopting the concept of layers as architectural
pattern is a first reference to modern architectures of operating systems, which also use
layers to achieve abstraction, separation of concerns, modularization and reusability.

Figure 7: Architecture of a Data Center Infrastructure Operating System (DCI-OS).

Planning
and
Design
Layer

Infra-
structure
Services
Layer

DCI-OS:

Inf. Model
Layer

DCI-OS
Resource
Managemnt
Layer

DCI-OS
Resource
Pool
Layer

Driver
Modules

Data Center
Component
Layer

Data Center
Components

Acquisition Mgr
- req. allocation
- req. assignment

Deployment Mgr
- preparation
- configuration

Task Automation
Controller
- operational
 run-time control

Run-time Driver
RT for deployment and mgmt control RT resource acq./rel.

Resource Pool Managers (one per pool)
Generalized Resource Pool Interfaces
Resource Management: scheduling, accounting, etc.
Resource Inventory Management

Resource Pool Drivers
Fill pools with resources, monitor and report to DCIM;
Resource Transformation: virtual & higher-ordered res.
Component Drivers

Data Center (DC)
Capacity Planning

Component Interfaces
Components: server, storage, SAN, LAN switches, routers,

 firewalls (fw), load balancers (lb);

Resource Pools, of servers, VM, partitions, disks.

DC Inventory
Management

DC Operational
Management

Data Center Information Model
-- (DCIM) --

Infrastructure Service Information Model
-- (ISIM) --

IS Planning and
Sizing

IS Operational
Mgmt Policies

IS Logical Design
and Configuration

Infrastructure Service providing
the Application Services Execution
Environment.
A Resource Topology is the blueprint
(model) of an Infrastructure Service.

Data Center (DC)-related Part (one instance) Infrastructure Services (IS)-related Part
(multiple instances)

Chapter 5: Architecture of the DCI-OS

81

The three layers of the architecture are:
• Planning and Design Layer – teams of people are involved in planning and

designing at both sides, data centers as well as infrastructure services in data
centers. People gather, share, exchange and transform information at this layer
using a variety of practices and planning and design tools.

• Infrastructure Services Layer – comprises an environment of configured and
operational resources forming the execution environment for an application
service. An Infrastructure Service is the basic abstraction produced by the DCI-
OS and can be seen as the analogy to the execution environment an operating
system provides to an operating system process.
A Resource Topology is a blueprint (a model) of the set of resources of an IS
along with their configurations and policies which allow automated processes
for deployment and management later.
A Run-time Driver as part of the IS provides the interface to the central DCI-OS
modules. A difference to operating systems is that substantially more complex
logic is needed for an IS to provide capabilities for acquiring and releasing
resources, deploying them and providing task coordination capabilities. This
functionality is shown in form of the Acquisition Manager, Deployment
Manager and the Task Automation Controller. Furthermore, an information
model complements the IS, which is shown as the Infrastructure Service
Information Model (ISIM) in the architecture. This information model provides
the connection between the IS and the DCI-OS in the data center in which it is
deployed.

• Information Model Layer – maintains all relevant information of the Data Center
Information Model (DCIM) and the models of Infrastructure Services (ISIM),
which are known in the DCI-OS. Models include information about plans and
designs (the future), as well as information about inventory and present
operational conditions. They may also contain information about past conditions
(logs, traces, etc.) for audit, accounting or other purposes.

• DCI-OS Resource Management Layer – presents an interface to a resource pool,
which is a collection of resources of the same type. The Run-time systems of IS
can acquire and release resources through this interface. Resource pools
maintain information about current and future allocations of their resources.
The DCI-OS Resource Management Layer consists of a Resource Manager
managing Resource Pools, which are another component of this layer. Resource
Pool Drivers supply resources into pools as needed. They also perform the
complex operation of Resource Transformation when resources needed by pools
are of a complex nature and need to be constructed by performing configuration
and other operations on more elementary resources. Examples of such complex
resource types are virtual machines that are constructed based on physical
servers, disks, images on disks and networks in combination with virtual
machine software and proper configuration and operational management.
Resource construction and resource transformation to create the desired resource
abstractions for resource pools is task of the Resource Pool Driver modules.

Chapter 5: Architecture of the DCI-OS

82

In operating systems, a similar idea is used to manage machine resources in
pools such as disk blocks, memory segments or processor time. Resource
transformation processes also exit such as creating a hierarchical file system
abstraction based on linear block storage devices.

• Data Center Component Layer – is comprised of basic data center components
("raw" resources) that can be transformed into resources for pools by applying
proper configurations. The Data Center Component Layer corresponds to the
device driver layer in an operating system which task it is to provide generalized
interfaces to the variety of component interfaces in computing machines.

The following sections discuss the architecture, its components in more detail. They also
discuss where principles were adopted from architectures from operating systems and
where differences exit.

5.1 The Planning and Design Layer
The planning and design layer shows people in the data center-related part and the part of
infrastructure services. For the data center part, these are teams in a data center IT
organization, who are involved in data center planning, design and operational
management. These teams of people are responsible for tasks such as capacity planning,
inventory and customer management, operational management, facilities, supply chains,
accounting and all other aspects of data center management. Here, the focus is on tasks
related to Data Center Capacity Planning, Inventory Management and Operational
Management.
People at the side of the Infrastructure Service are involved in planning and designing
infrastructure services and deploying them into data centers. People include (teams of)
solution architects at planning, sizing and design stages as well as IT specialists for
subsequent configuration, deployment and operational management of the infrastructure
service. Focus here is on Planning and Sizing (sizing is the discipline to determine the
resource needs to support an anticipated workload), Logical Design and Configuration,
which includes making the right choices based on which resources an Infrastructure
Service will be built on and developing the configurations for those resources, and
Operational Management Policies, which determines the policies (guidelines) based on
which the Infrastructure Service will operate. Examples are expected service levels,
maintenance policies, monitoring policies, etc, which need to be determined.
Groups of people on both sides are concerned with complex information. At planning and
design stages, it is only information that exists and that needs to be gathered, shared and
transformed. In today's practice, only rudimentary support is provided for managing this
information. In many cases, information is gathered and shared informally as documents
and spreadsheets and is communicated among teams via email.
Richer information management systems need to be developed for a DCI-OS enhancing
the information from informal to more formal. We use Models to refer to formalized
information. The lack of formalized information is partially due to the lack of tools
supporting architects and specialists on both sides. Lack of use of formalized information
prevents that tools are being built. However, over time and with advantages coming from
more formalized approaches, the situation will improve. Today, the lack of tools and the
lack of formalized (modeled) information remains a major obstacle for improving the

Chapter 5: Architecture of the DCI-OS

83

disciplines in the Data Center Planning and Design Layer. Lack of formalized
information is also a major inhibitor of subsequent automation leading to the effect that
many tasks in data center and application services' management need to be performed
manually today.
As part of research, design tools for complex resource topologies and methods for policy-
based configuration have been developed aiming at supporting the creation of valid
formalized information about data centers and infrastructure services.

5.2 The Infrastructure Services Layer
An infrastructure service is a fully operational execution environment in which an
application service can operate. As application service is understood a fully operational
application system proving a service of interest, such as a Customer Relationship
Management (CRM) application. The application service is comprised of a number of
software and data components (application server, data base, etc.) which require a
number of properly configured resources underneath, such as servers with the right
software installed, load balancers with the right configuration, storage arrays with the
proper disks provisioned and images installed, networks that are properly configured
allowing all these components interact seamlessly. This is what an infrastructure service
provides as the execution environment for an application service. It includes all needed
resources (servers, storage, and networks) with proper configurations as well as
application software and data made available and operational on those resources.
An Infrastructure Service is the basic abstraction produced by a DCI-OS.
The blueprint of an Infrastructure Service is defined by a model which is called a
Resource Topology, which describes all needed resources along with all necessary
configurations in order to make resources function together. Since a Resource Topology
is a model, it can be instantiated multiple times leading to multiple infrastructure services
that can coexist in one data center or can be deployed in multiple data centers.
Goal of the Resource Topology is to enable and drive automation over a large extend of
the lifecycle of an Infrastructure Service, from provisioning the resources needed to
driving their configuration and deployment through to subsequent operational
management.
For this purpose, a number of DCI-OS components need to be provided that allow these
functions as part of the IS. These components are:

• Acquisition Manager – manages the allocations and assignments of resources
from resource pools managed in the data center to an infrastructure service.

• Deployment Manager – manages activities related to the preparation and
execution of deployment tasks. Deployment is an activity that applies
configurations onto resources in order to make them function in context of the
IS.

• Task Automation Controller – coordinates the workflows of the IS-part of the
DCI-OS such as deployment or activation of an infrastructure service.
Workflows can be initiated by an operator through a console or can be triggered
programmatically through an external interface. The Task Automation
Controller operates based on the concept of a closed loop controller that

Chapter 5: Architecture of the DCI-OS

84

correlates observed state with desired state. Operators define the desired state in
the information model as part of the management policy for the Infrastructure
Service.

• Run-time Driver as part of the infrastructure service – provide the connection to
the managed infrastructure service when it is in existence. The run-time system
has two main tasks. First, to determine and report the current state; and second,
to execute control operations received from the operational management
controller. Examples are basic lifecycle operations such as start, stop, suspend or
resume the infrastructure service.

For comparison, one can see the resources provisioned into a running operating system
process as an analogy of an Infrastructure Service in operating systems. There is no
analogy of the concept of an explicit blueprint or a model of a Resource Topology in the
operating system context.

5.3 The Information Model Layer
Systems, such as a DCI-OS, require formalized information in order to operate. A
framework is needed in which all relevant information can be represented and managed
and also allows driving subsequent automation processes. We use Models as such a
framework. The Information Model Layer consists of models from the data center and the
IS side and comprises a major building block of a DCI-OS.
Operating systems require information as well. But they maintain a light-weight model in
form of simple in-kernel data structures such as a list of process control blocks, structures
of memory mappings, i-nodes or device descriptors. IT management systems typically
maintain an information model in a database such as a Configuration Management Data
Base (CMDB) or, in a lighter-weight form, as data structures defined by a Management
Information Base (MIB). A number of information modeling frameworks exist, most
prominent in system management is the Common Information Model (CIM) defined and
standardized by the Distributed Management Task Force (DMTF), which has been a
standard in the IT industry for many years.
The Information Model of a DCI-OS is shown in Figure 7 as a layer with two connected
components: the Data Center Information Model (DCIM) and the Infrastructure Service
Information Model (ISIM). Connecting models means that the design of an infrastructure
service must take into account which resources are available in a data center at the
projected time of its deployment and operation. Resource Topology designs should allow
for flexibility in their resource needs (types, quantities) in order to produce working IS
under varying resource supply conditions in data centers. Other factors must be taken into
account as well. The data center information model exposes current and future
capabilities of a data center. The infrastructure service information model presents
requirements of its needs. Exchanging information about both, data center capabilities
and infrastructure service requirements, forms the connection between both models.
Requirements and capabilities are then interpreted at the other side.
Information models from multiple infrastructure services can connect to the information
model of a data center at the same time. This connection occurs early already during
planning and design stages and continues during operation. The connection is dissolved

Chapter 5: Architecture of the DCI-OS

85

when no information about an infrastructure service needs to be maintained in a data
center any more, which can be long after the service has been retired.
In contrast to operating systems as well as IT management systems, the information
model for a DCI-OS can not only incorporate information about conditions and elements
that currently exist in the managed environment, or which have existed in the past, it
must also incorporate information about designs and plans, which reflect state and
conditions in the future. One reason for this need is to support automation of the creation
of infrastructure services. At the time of creation, the infrastructure service does not yet
exist, only information about its planned and designed states exists. A second reason is
the coordination that is required with the data center when multiple infrastructure
services are to be deployed. It must be coordinated ahead of time when which service is
scheduled and which resources they are allocated to use. A third reason is the automated
resource pool management, which primarily relies on forecasted or known information
about capacity and capability planned and/or needed in the future for making the right
allocation decisions.
Controlling the creation process through models addresses two important problems. First,
it allows the system to create the desired environment based on a reusable blueprint,
which can be validated to be correct. Second, by doing this, the system not only can
observe what is being and what has been created, it also knows what is expected to be
created based on the topology design it deploys. Consequently, the deployment process
cannot only be automated, it can also be observed and correctness during execution be
verified. Failure can be detected and corrected, in some cases automatically as well.
Not knowing the concept of a design (of what should be created) is a major shortcoming
of existing IT management systems. They typically lack upfront modeled information
about designs and rather discover the managed environment at run-time in order to
establish their internal information models. Discovery delivers information about the
current conditions, which elements are there and which state they are in. Discovery
cannot determine the elements that were expected to be there and the expected states they
were supposed to be in. Hence, neither creation can be automated, nor can be validated
by the system whether that what is there are indeed the desired elements. Only operators
have the contextual knowledge about plans and designs and hence can relate this
information to the current state and modify the environment accordingly.
This contextual information operators have today exclusively, particularly about
blueprints, designs and future desired states, must be formalized and made available to a
DCI-OS enabling it to automate the creation of designs, but also to detect errors and
intervene with corrective action is needed as part of automated operational management.
Evolving to more formalized models about designs in IT management not only enables
automation of the creation process, it also allows automatable verification whether what
has been created is in compliance with the design.
Consequently, extending the information model from reflecting only current states to also
incorporate future and expected (desired) states in combination with representing designs
and plans is a fundamental change that has to occur in IT management systems. A
management system must be able to make a determination whether an observed state is
also the desired state. If this information is present, operational management automation
can rely on feedback loops which is constantly comparing observed states against what

Chapter 5: Architecture of the DCI-OS

86

had been planned, designed and is expected. Automated corrective action can be deduced
from differences between observed and desired states.
Operating systems on the other side maintain a number of internal data structures
representing the current state of the machine environment. They also incorporate built-in
policies for managing resources, such as processor scheduling or memory scheduling.
None of the data structures is comparable to the complex information models that are
maintained by IT management systems. Reason is that the environment of a single
machine, although it can be complex, is largely standardized, the variety of components
is known and typically not changing over the lifetime of the machine. The situation in a
data center is very different. Components are not known which may become available at
some point and the inventory is constantly changing requiring constant adjustments to the
data models in the information base.
Consequently, for a DCI-OS, the information model must incorporate information about
designs and plans as well as desired and observed states for automating operational
management later. Supplementing information models with information about plans and
designs as well as desired state is another major enhancement of the DCI-OS information
model over other infrastructure automation solutions.

5.4 Resource Management Layer
As the DCI-OS assumes that people provide information input in form of models in the
planning and design layer, it also assumes that its technical modules make use of these
models and supplementing them with current information obtained from the various
systems. The layer below the Information Model Layer consists of DCI-OS modules
carrying out tasks needed in the data center part of the DCI-OS to support the various IS
deployed in that data center. Modules operate based on the information supplied from the
information models.
Following modules constitute the DCI-OS Resource Management Layer:

• Resource Pool Managers – manages pools of resources and allocations and
assignments of resources from pools to infrastructure services.

• Resource Pools – collections of simple or complex (transformed) resources of
the same type for purpose of allocation into IS.

• Resource Pool Drivers – produce the resources for resource pools. Resources
can be basic resources (as they are found as components in the data center) or
can be transformed resources created on basic resources.

5.4.1 Resource Pool Managers
Resource Pool Managers provide the capabilities to allocate and assign resources from
resource pools to Infrastructure Services. Requests for resources are accepted from
Resource Pool Managers via Acquisition Managers as part of Infrastructure Services.
In contrast to an operating system, where requests for resources are typically of a simple
nature, e.g. the request for more memory or the request for a new file, usually fulfilled
instantly if the resources are available, resource requests in a DCI-OS are more complex.
First, they refer to more complex resource types, which are results of transformation
processes in the Resource Pool Drivers. Second, requests can refer to future times and

Chapter 5: Architecture of the DCI-OS

87

scheduled accordingly when it is known when resources will be needed. Third, resource
requests can be of an abstract nature, such as "an Intel-based machine", allowing the
Resource Pool Managers more flexibility in fulfilling the request 2 . And fourth, a
distinction is made between an allocation of requested resource quantity and assignments
of actual resource instances from the pool to accommodate for change in resource
inventory, which is typically not the case in an operating system, but which is typical in a
data center.
Resource Allocation means a commitment of a defined set of resource quantity to an
infrastructure service for an allocation period. This quantity is subtracted from the
resource pool capacity for that period. Allocations are used to coordinate future resource
use where actual resource instances (inventory) may not be known and may change.
Allocation operates based on generalized resource properties such as general type,
capacity or quantity and an allocation period. At the time of allocation it is not known
which resource instances will be made available at the time of fulfilling the allocation.
Resource Assignment then occurs when the infrastructure service actually needs resources.
Individual resource instances are chosen from pools. While resources must exist in pools
for assignment, for allocation they need not. An allocation must precede an assignment.
An allocation also spans the time of assigned resources, when resources are actually used
by an infrastructure service. Reason is that capacity is still bound to the infrastructure
service during use. Allocation can only end when all assigned resources have been
released. Allocations as well as assignments may be dynamic and change over time.
Capacity of assigned instances cannot exceed capacity of allocated instances.
The information about allocations in the future also guides planning and capacity
management in a data center since it reflects future demand for resources.
The decoupling and late binding between resource allocation and resource assignment is
another enhancement over existing resource management systems.

5.4.2 Resource Pools
A resource pool is a collection of resources of the same type. Basic resources can be
directly maintained in pools such as pools of physical servers. Resources in pools can
also result from transformations performed by DCI-OS resource pool drivers. New
resources are created that are based on underlying basic resources. Like in operating
systems, two main categories of transformations exist: resource generation and resource
virtualization. Resource generation produces resources with new qualities while resource
virtualization multiplies one kind of resource by either expanding its capacity of
multiplying the number of instances.
Examples of generated resources in an operating system are files and file systems
generated in block devices. Examples of generated resources in a DCI-OS are disks

2 A process called Grounding is applied to map requests for higher-ordered resources into resource types
that are available in pools.

Chapter 5: Architecture of the DCI-OS

88

created in a storage array or a subnet generated in a network infrastructure. For this
purpose, the storage array or the network switches and routers must by properly
configured in order to generate the desired disks or subnets. Resource pool drivers as part
of the DCI-OS perform this task of properly configuring data center components and by
doing this producing the transformed resources that are then managed in pools as well.
Examples of virtualized resources in a data center are virtual machines, which are
generated by deploying and configuring virtual machine software on physical servers.
Higher-ordered resources may be generated as well which can be database or application
server instances (in their standard configuration) which are also created by DCI-OS
resource pool drivers and managed in pools like other resources.

5.4.3 Resource Pool Drivers
Resource pool driver modules produce the resources and add or remove them to pools.
Pools of basic or transformed resources are fed and maintained by Resource Pool Drivers,
which have the ability to produce more resources of certain type when requested by
Resource Pool Managers, e.g. when pools run low in inventory.
The concept of a resource pool is a single abstraction used by the resource pool manager
module of a DCI-OS. The resource pool manager module manages capacities of pools
and allocations and assignments of resources to infrastructure services from pools.

5.5 Data Center Component Layer
The data center component layer is comprised of the basic data center components as
they are found in a data center. These components can directly be used as resources
managed in pools (performing a "null" transformation) or they can be used as basis for
complex resource transformation by the Resource Pool Drivers.
Particularly for transformation, but not only for this purpose, resources need to be
instructed, controlled, managed and configured by the Resource Pool Drivers requiring
an interface and a connection to exist.
For most basic resources, these interfaces use standard protocols such as SNMP and
WBEM, but usually implement proprietary functionality which needs to be addressed by
the Resource Pool Driver responsible for a certain basic resource type.
The analogy to operating systems are device drivers which provide generalized interfaces
in established abstractions to device drivers on one side (e.g. the file interface in Unix
with operations of open, close, read, write, ioctrl, etc.) and specific interfaces to the
device on the other side.
A difference to operating system drivers is that resource transformations are not
performed in the device driver layer (e.g., block device to file system). Resource
transformations in operating systems in general are of a simpler nature than it is the case
for a DCI-OS.

5.6 Summary and Discussion
This section relates concepts used and developed for the architecture of a DCI-OS with
concepts known from operating systems and IT management systems and the benefits
that result from the synergies leading to its main innovations.

Chapter 5: Architecture of the DCI-OS

89

5.6.1 Benefits Resulting from the DCI-OS Architecture
The architecture in Figure 7 significantly draws on concepts known from operating
systems. It supports separation of concerns by applying the concept of layers and
principles of information hiding and abstraction enabled by layers. This allows a number
of benefits that originate from the architecture.
One major benefit is that infrastructure services can be developed and maintained
independently as modules from a particular data center and from each other. And vice
versa, data center evolution can also better be decoupled from the legacy of applications
running in them.
Reusability of infrastructure services, replication and thus packaging as separate modules
that are pre-tested are further benefits significantly improving today's practice of tightly
coupled application deployments in data centers today.
Modularization on the data center side also allows the data center infrastructure to evolve
more independently from the modules of infrastructure services hosting the various
application services. The vertical and horizontal boundaries help identifying explicit
interfaces and placement of functionality into the proper compartments of the architecture.
The separation of concerns achieved by this architectural pattern is a major enhancement
over prior, more monolithic data center automation solutions such as HP's Utility Data
Center [UDC].
A significant benefit of the architecture is that it enables automation in driving the
processes of transforming resources into types requested and required by application
services, managing those resources automatically in resource pools and allowing
consuming infrastructure services to allocate, use and release resources as needed by
dynamically assigning and binding them to underlying resource instances rather than
using static assignments used in data centers today.

5.6.2 Concepts Adopted from Operating Systems
The following list summarizes concepts from operating systems that have been adopted
for the architecture of a DCI-OS:

1. The concept of structural layers and modules within layers was adopted as a
structural principle to achieve modularization, isolation, separation of concerns as
well as the ability to formulate defined interfaces between the technical
components of the system.

2. The concept of a common "kernel" shared between all application processes was
adopted and reflected in the Data Center-related Part and the part of Infrastructure
Services.

3. The Planning and Design layer was added, which is not typically considered in
operating systems. This layer also links the DCI-OS system early with the people
who are in charge planning and design processes in IT.

4. The concept of a resource was adopted as well as concepts of resource abstraction
from

a. Basic resources into
b. Transformed resources constructed based on underlying more basic

resources providing higher resource abstractions.

Chapter 5: Architecture of the DCI-OS

90

5. The concept of a resource was extended by the introduction of a definition in form
of a blueprint for a Resource Topology, which is represented as a formal model.

6. The concept of a resource was extended by the introduction of planning and
design stages occurring before resources can be requested.

7. The basic idea from operating systems to manage resources as pools was adopted
as well as the approach introduce an abstraction layer in form of drivers isolating
generic functionality resources provide from underlying vendor-specific
interfaces and protocols which need to be accommodated when interacting with
those resources in the environment.

8. The concept of requesting resources was refined by introducing a distinction
between resource allocation (which refers to a commitment to provide a quantity
of a certain resource type at the requested time frames) and assignment occurring
shortly before use (late binding of actual resource instances from pools to fulfill
an allocation) allowing the system the flexibility to incorporate future resource
needs at early stages and making them known in the system as well as dealing
with the latent issue of changing inventory in data centers, which does not occur
in an operating system.

9. The concept of a run-time system from operating systems providing means for the
application service to interact programmatically with the underlying operating
system were accommodated and adopted such that requests and releases of
complex resources can me formulated and transmitted to the DCI-OS, as well as
management functionality can be accessed on own resources.

10. The concept of a run-time system needed to be significantly extended in order to
accommodate capabilities to deploy configurations onto resources as well as
control complex automated task flows. New components of an Acquisition
Manager, a Deployment Manager and a Task Automation Manager were
introduced.

11. The concept of "kernel"-data structures in operating systems was significantly
extended into a two-fold information model comprised of the Data Center
Information Model and the Infrastructure Services Information Models capturing
current and future, desired states along with management policies for the data
center part and the part of infrastructure services.

5.6.3 Supporting Requirements
The previous chapter provided a list of requirements for a DCI-OS. The following
discussion relates the architecture back to these requirements. Discussion was separated
into the discussion of requirements supporting aspects of data center management and
requirements supporting individual Infrastructure Services and their binding into the
environment of a data center.
The first category of requirements related to overall requirements of data center
management and their reflection in the architecture of a DCI-OS in the Data Center-
related part (or column) in Figure 7.

• R.110 – R.120: resource capacity planning and inventory planning is directly
supported in the data center planning layer of the architecture of the DCI-OS.

Chapter 5: Architecture of the DCI-OS

91

Resource capacity and inventory planning are essential tasks in data center
management. They can be supported by tools and methods such as discussed in
Chapter 7 (The Planning and Design Layer). A particular consideration is given to
the fact that planning refers to a state of future existence and needs to be taken
into account over current practice in IT management systems to only know about
current resource inventory and use. One consequence of this aspect is that
resource capacity must be separated from specific resource types which may not
be known. The methods presented in Chapter 7 pay specific attention to this
fundamental aspect.

• R.120 – R.140: a DCI-OS must create resources as needed by Infrastructure
Services. Requirements in this category address fundamental organizational
properties of resource abstractions, their categorization and modeling, which are
fundamental building blocks of the Data Center and Infrastructure Services
Information Models forming the Infrastructure Model Layer in the architecture of
the DCI-OS. In the particular realization, the Common Information Model (CIM)
[CIM], an established modeling framework in IT Management by the Distributed
Management Task Force (DMTF) [DMTF] was used to represent models for both
sides, the Data Center Information Model and the Infrastructure Services
Information Model. Chapter 8 (The Infrastructure Services Layer) provides a
more detailed view on how the abstractions were represented in the CIM
modeling framework.

• R.140 – R.170: address fundamental aspects of resource organization in a data
center in an abstraction of pools from which resources can be acquired and
released back. Resource Pools also form the fundamental abstraction of resource
management in the architecture of the DCI-OS and is supported by the DCI-OS
Resource Management Layer and the DCI-OS Resource Pool Layer.

• R.170 – R.190: describe requirements that management of resources in pools is
automated like in an operating system. These requirements are addressed in the
architecture by the Resource Pool Managers which are software components
which automatically manage resource pools, accept or deny requests for resources
from pools for Infrastructure Services and in turn request or release resources
back into the data center environment.

• R.190 – R.200: address the requirement that for automated management resource
components in a data center must be programmable, which is addressed in the
architecture by the Resource Pool Driver modules and the Component Interfaces
providing access to the actual physical data center resource components.

• R.200 – R.220: these requirements reflect that resources must be discovered
automatically in the data center environment as well as their use must be
monitored and accounted. Both requirements are supported by Resource Pool
Managers in the architecture of the DCI-OS which perform both functions.

Chapter 5: Architecture of the DCI-OS

92

In summary, the following requirements for the side of data center management are
supported by the architecture of a DCI-OS:

- Support for capacity management and data center planning.
- Ability to deal not only with current inventory, but also with projected future

inventory.
- Manage capacity rather than inventory, particularly in the future.
- Single abstraction for data center resources: Resource Pools.
- Automated resource pool management.
- Support for transformed resources, specifically virtual resources in pools.
- Support for sharing resources.
- Exclusive access to data center components through programmatic management

interfaces eliminating direct human access to data center components.
- Automated discovery and consolidation of current with projected inventory in the

data center information model.
The second category of requirements related to Infrastructure Services and their
reflection in the architecture of a DCI-OS in the Infrastructure Services-related part (or
column) in Figure 7.

• R.300 – R.400: address aspects of descriptions (designs) of the resource
environment needed by an Infrastructure Service. In the architecture, this is
represented in the building blocks of Application Planning and Sizing and the
Logical Design and Configuration in the Planning and Design Layer. The basic
abstraction of a Resource Topology reflects this set of requirements. Expressions
of policy-based management have the purpose to express operational management
policies (R.360 – R.370). The also have the purpose of expressing rules of
refinement of higher-ordered expressions for resources as part of a Resource
Topology allowing their automated refinement into particular resource types, a
process which was introduced as Grounding. Chapter 7 has a detailed discussion
of the realization of these advanced automated techniques.

• R.400 – R.500: reflect requirements for automated resource acquisition and
release by Infrastructure Services, which is supported in the architecture of the
DCI-OS by the Acquisition Manager in the Infrastructure Services Layer, which
is part of the run-time environment of an Infrastructure Service connecting it to
the Resource Pool Managers in the particular data center where the Infrastructure
Service is deployed.

• R.500 – R.600: describe requirements of automated deployment of Infrastructure
Services into data center environments, which is the task of the Deployment
Manager of the Infrastructure Services Layer. Its task is to create (~deploy) the
settings needed by Infrastructure Service in order to create an instance. For this,
the Deployment Manager, as part of the run-time environment of the DCI-OS for
an Infrastructure Service, interacts with the acquired resources deploying the
configurations from the Resource Topology of the Infrastructure Service. Having
explicit models of those configurations allows for automation of deployment

Chapter 5: Architecture of the DCI-OS

93

processes, which has been one of the key motivators behind a DCI-OS: data
center automation.

• R.600 – R.700: addresses requirements referring to the ability of controlling and
coordinating the automated deployment processes on the resource set assigned to
an Infrastructure Service. In the architecture of the DCI-OS, this task is provided
by the Task Automation Controller, which is part of the run-time environment of
the Infrastructure Service Layer.

• R.700 – R.900: describe requirements for automated operational control, such as
lifecycle control over Infrastructure Service instances. These tasks are also
provided by the Task Automation Controller, which implements a declarative
approach rather than a process-oriented approach by providing expressions of a
"Desired State" to which the controller constantly observed the "Current State" of
the associated Infrastructure Services components keeping them in alignment of
what has been declared as Desired State. Chapter 9 (The DCI-OS Layer) provides
a detailed description of the realization of such a Task Automation Controller.

In summary, the following requirements are supported by the architecture of a DCI-OS
for the side of Infrastructure Services:

- Model-driven design and management based on a common abstraction: Topology.
- Modularity and reuse of topology designs.
- Openness and modularity of model layer.
- Multi-instantiation and multiplication of topology designs in a data center.
- Portability of a topology design into other data centers.
- Support for transformed resources, specifically virtual resources.
- Isolation between resource specifications and bindings to actual resource

instances; late binding between resource allocations and resource assignments.
- Apply formal methods to ground and size a topology for requirements.
- Automated resource acquisition.
- Automated deployment (concept of an automation controller).
- Automated, policy-driven operational management including automated

correction of certain error conditions.

Chapter 5: Architecture of the DCI-OS

94

Chapter 6: Research, Realizations and Case Studies

95

Chapter 6

 Research, Realizations and Case Studies

The purpose of this chapter is to provide an overview of the research, experiments,
realizations and case studies that have been conducted between 2002 and 2007 in context
of the architecture of the DCI-OS. The results of this research have been documented in a
number of publications over the years. Some are documented here.
Figure 8 relates the layers of the architecture to the discussions in the following chapters.
Chapter 7: The Planning and Design Layer
 - Performance Engineering for Data Centers (7.3)
 - Systematic Approach to IT Configuration (7.4)
- Resource Topology Design (7.5)

 - Policy-based Configuration (7.6)

Chapter 8: The Infrastructure Services Layer
 - Task Automation Controller (8.1)
 - Deployment Manager (8.2)
 - Resource Acquisition Manager (8.3)

Chapter 9: The DCI-OS Layer
 - DCI-OS Information Model (9.3)
 - Resource Management Sub-Layer (9.4) with:
 - Resource Pool Manager (9.4.1)
 - Resource Request Workflow (9.4.2)
 - Resource Allocation (9.4.3)
 - Resource Assignment (9.4.4)
 - Data Center Component Sub-Layer (9.5)

Figure 8: Discussion of research in context of the layers of the DCI-OS architecture.

Chapter 6: Research, Realizations and Case Studies

96

The architecture of the DCI-OS also guides the discussion of the following chapters
addressing research, realizations and case studies which have been conducted. Chapter 7
will address research related to The Planning and Design Layer, which is the top-layer of
the architecture. Chapter 8 will address the next layer, the Infrastructure Services Layer,
and chapter 9 presents the DCI-OS Layer, according to the architecture.
Research and prototypes have been documented in a number of publications over the
years providing proof points and validation. This chapter presents a broad overview of
research topics which have been addressed. A selection of this research which involved
the author is then discussed in more depth in subsequent chapters.
It should be noted that the research and prototyping work occurred before the architecture
described in this thesis was developed. The architecture presented in chapter 5 is the
result combining a number of research efforts towards data center automation into an
architectural framework guided by concepts from operating systems and IT management.

6.1 Overview of the Research
The research was conducted under the name of a research program called Quartermaster
in HP Labs. An overview of the architecture, purpose and goals can be found in the IM
2005 paper “Quartermaster – A Resource Utility System” [Sing05], [Sing04].
The conceptual architecture of this system was documented in “Conceptual Architecture
of Quartermaster” [Gra03b] and is presented in section 9.3 describing novel concepts
and abstractions developed in the Information Model for the DCI-OS. This work formed
the core part of Quartermaster since it developed the fundamental abstractions of the
information model as entities and relationships the DCI-OS has to deal with in order to
perform its functions.

6.2 The Planning and Design Layer
The Planning and Design Layer addresses issues of pre-operational stages from the data
center perspective and from the perspective of infrastructure services.
In a data center, planning, deploying, managing and improving data center resources is a
continuous process. Capacity planning is the process of estimating future needs for
resource capacity and making decisions about acquisition plans and their implementation,
including facilities, power and supplies for the data center.
Research for the Planning and Design Layer is presented in detail in chapter 7.

6.2.1 Performance Engineering for Data Centers
There has been a long tradition of research in HP Labs around performance engineering
and workload characterization and prediction. Research was applied to a number of
systems and in context of Quartermaster further developed into techniques for aggregated
demand characterization and prediction for shared IT infrastructure.
Papers resulting from this research have been “Capacity Management and Demand
Prediction for Next Generation Data Centers” [Gma07], “A Capacity Management
Service for Resource Pools” [Rol04], “Capacity Management for Adaptive Enterprise
Resource Pools” [Rol05], “A Composite Framework for Application Performability and

Chapter 6: Research, Realizations and Case Studies

97

QoS in Shared Resource Pools” [Cher06] or “A regression-based analytic model for
dynamic resource provisioning of multi-tier applications” [Zhang07].
Basis of discussion in section 7.3 forms a paper “APE: An Automated Performance
Engineering Process for Software as a Service Environments” [Rol08].
Part of the research has been in collaboration with the University of Munich which
resulted in a PhD dissertation “Managing Shared Resource Pools or Enterprise
Applications” [Gma09]. Recent and ongoing work addresses problems of “Integrated
Capacity and Workload Management for the Next Generation Data Center” [Zhu08] and
“An Integrated Approach to Resource Pool Management: Policies, Efficiency and
Quality Metrics” [Gma08].
Early work on data center modeling which also incorporated energy awareness was
jointly addressed with the smart data center team and has been documented in “The
Smart Data Center” [Pat03] and “Energy Aware Grid: Global Workload Placement
Based on Energy Efficiency” [Pat03a].

6.2.2 Systematic Approach to IT Configuration
Goal of this work was to develop automated approaches to derive IT configurations from
higher-level specifications such as business processes supplemented with non-functional
requirements such as expected numbers of users determining the “size” of an application
configuration as input for configuration generation tools as part of the design process of
applications before deployment. There are a number of well understood processes such as
the application sizing and reusable best practices templates. However, these are isolated
and their tool chains not integrated.
In a joint collaboration with SAP Research, an integrated approach has been developed
using a model-driven approach. Basis of section 7.4 is a paper describing the approach
for “Deriving IT Configurations from Business Processes” [Gra08] and “Business-driven
IT for SAP – The Model Information Flow” [Bel07]
Prior work is related to policy-based design and configuration generation techniques,
which have been investigated as part of the research program.

6.2.3 Resource Topology Design
One of the core abstractions developed during research is the concept of a Resource
Topology, as a model of a configured environment of IT resources. A Resource Topology
included a set of instances of resource types with their relationships, such as network
connections. A Resource Topology is an analogous model to a model of connected
circuits used in hardware design, but applied to resources used in data centers.
With the development of the concept of a Resource Topology, models of resource
environments can be designed by application architects reflecting the resource needs
application services instances have in a separate design step, independently of a data
center environment where the Resource Topology would be deployed.
The separation of design and implementation of resource configuration, which has not
occurred in the IT practice today, allows the creation of explicit model representations of
Resource Topologies as part of the Information Model of the DCI-OS. It allows reuse in
terms of repeatable deployment of resource configurations, significantly accelerating the
today manual deployment process.

Chapter 6: Research, Realizations and Case Studies

98

Introducing Resource Topologies as designs (models) of configured resource
configurations also allows (and requires) the creation of graphical design tools, which
was one part of research. Since Resource Topologies (as models) allow the explicit
representation of a configured resource environment, another research domain addressed
the automated generation of Resource Topology models, which was called Policy-based
Configuration.
The main work for the graphical design tool was published under “Policy-based
Resource Topology Designer for Enterprise Grids” [Gra05], which also forms the basis
of discussion in section 7.5.
Another design tool was developed as a prototype for infrastructure (resource)
environments for SAP standard deployments, which has been described in
“ModelWeaver – A Service Design Environment for SAP” [Gra08a].

6.2.4 Policy-based Configuration
Policy-based configuration referred to a line of research to programmatically generate IT
configurations, enabled by the presence of explicit models of Resource Topology
designs. A number of approaches were explored incorporating constraint satisfaction
solvers. The approach finally chosen was to capture a number of feasible configuration
patterns for known standard configurations, e.g. for standard SAP deployments, in form
of templates. A number of templates could exist for a configuration reflecting various
sizes or target architectures. For choosing a specific template, policy information is used
provided as input by a solution architect. Policy information then also guided the
refinement process for the chosen template to generate the final Resource Topology.
The selection and refinement steps were approached with a constraint satisfaction solver
operating on input which was transformed from models.
A number of publications document this research area. Basis of discussion in section 7.6
is the paper “Policy-based Resource Topology Design for Enterprise Grids” [Gra05].
Further work included “Cauldron: A Policy-based Design Tool” [Ram06], “Using Object
Oriented Constraint Satisfaction for Automated Configuration Generation” [Hin04],
“Automated Generation of Resource Configurations through Policies” [Sah04] and
“Automated Policy-Based Resource Construction in Utility Environments” [Sah04a].

6.3 The Infrastructure Services Layer
The Infrastructure Services Layer provides support for Infrastructure Services. Its
capabilities include acquiring and releasing resources from the data center environment
through the Acquisition Manager, support for deployment tasks by the Deployment
Manager on acquired resources (deployment of specific configurations for the
Infrastructure Service) and the overall coordination of service lifecycle operations
provided by the Task Automation Controller.
Research for the Infrastructure Services Layer is presented in detail in chapter 8.

6.3.1 Task Automation Controller
Typically, task automation in IT has been addressed by programming or scripting tasks
and, for more developed environments, specification and execution of workflows.

Chapter 6: Research, Realizations and Case Studies

99

HP has a long tradition in building IT automation systems and solutions based on
workflows. The Utility Data Center was discussed in section 4.1 as starting point for the
requirement analysis. A major problem with workflow-based automation systems in IT is
that they usually describe the flow of successful operations, which is called the “happy
path”. As long as operations execute without failure, the workflow can continue and
produce the desired result at the end without human involvement.
When operations in executing workflows fail, however, or do not succeed in desired time
frames, or report success without actually succeeding in the managed environment, then a
significant problem occurs of how to handle these situations. Capturing failure cases in a
workflow specification makes the specification complex and also only can reflect those
cases when the failure of an operation is known ahead of time and has been considered in
the workflow specification.
Usually, the workflow terminates on occurrence of a failure. While this is sufficient from
the perspective of the workflow engine, it does not affect the state changes that have been
made to the managed environment as result of prior succeeding operations. For example,
disks might have been created in a storage array as result of a succeeding step, but a
subsequent step of attaching the LUNs for those disks to server machines fail stalling the
workflow execution. In this case, the disk creation operation has permanently altered the
state of the disk array and must be rolled back in order to clean up. Achieving roll-back
semantics with workflows is difficult since the roll-back logic must be fully-specified in
the workflow with explicit statements.
Another problem with workflow-based automation in IT is the asynchronicity of
operations due to the fact that most operations on IT resources require long execution
times, e.g. copying an image onto a disk requiring minutes to complete. Components also
may fail after they have succeeded, e.g. a sudden server crash after the server has been
deployed successfully by a workflow. In this case, the deployment operation rightfully
reported success such that the workflow can continue, but a failure occurs with the server
later on. In workflows, there is no appropriate mechanism to catch and handle
asynchronous events from the managed environment after operations have succeeded.
All these problems have caused substantial difficulty in creating robust task automation
systems based on workflows. The Utility Data Center was one example allowing
automation as long as all operations succeeded, but required manual interference to clean
up the environment after failures causing significant difficulty (and time required) by
operations staff to determine the state in the managed environment that has been altered
and removing this state cleanly. One operator stated that this difficulty often required
more time than manually deploying a configuration in the first place avoiding automation
workflows altogether.
For these reasons, a research thread was initiated to consider alternative and more robust
automation patterns. The research led to a controller pattern, which also formed the basis
for the realization of the Task Automation Controller implementation. Research and
realization of Task Automation Controllers has been published in a number of papers and
led to a number of patents.
In contrast to a workflow, a controller pattern allows the declarative specification of a
“Desired State” against which a currently “Observed State” is constantly compared and
actions are initiated when elements of the desired and the observed state differ. This way,

Chapter 6: Research, Realizations and Case Studies

100

the controller continuously aims to keep the managed environment (reflected by the
observed state) in alignment with what has been set as desired state. The controller
simultaneously observes events reported from the managed environment and can also
respond in parallel to observed state changes occurring in multiple managed elements.
Basis of the detailed presentation of the Task Automation Controller in section 8.1 is a
paper published at IM’2007 “Automation Controller for Operational IT Management”
[Gra07]. This paper describes a realization of a controller using a Petri-net description
and a Petri-net execution engine which was implemented for this purpose.
Earlier architectural work on automation controllers has been developed and described in
an architectural specification “Specification of the Service Delivery Controller (SDC)”
[Col05] and published in [Tho05].

6.3.2 Deployment Manager
The Deployment Manager allows applying specific configurations from the Resource
Topology model of an Infrastructure Service environment onto resources. This capability
requires an interface which can interact with the resource(s) and a capability to interpret
the model of a Resource Topology.
Basis for the discussion in section 8.2 is a specific deployment system which has been
used from HP’s product portfolio. This deployment system was called Radia Deployment
Manager and later renamed into OpenView Configuration Manager (OCM).
In order to use this system in context of a DCI-OS, an adapter has to be implemented to
perform necessary transformations between the DCI-OS Resource Topology models and
the data models Radia required.
Since Radia has been an existing management system fulfilling a particular task in
context of a DCI-OS, it was also explored under the perspective of integrating existing
management systems and tools into the framework of a DCI-OS. Research addressed
interface and data integration as well as transformation of data models.
Integration aspects were addressed using web services management middleware
(specifically OGSI [OGSI]) and are described in “Model-driven Software Configuration
With the Radia SDC” [Gra05b]. Necessary extensions and an encapsulation turning the
Radia Deployment Manager into a component following the controller pattern have been
documented in “Extending Radia Into A Service Delivery Controller” [Gra05a].
Earlier work on resource and service deployment included “Massive Deployment of
Management Agents in Virtual Data Centers” [Gra01] and “Resource-Sharing and
Service Deployment in Virtual Data Centers” [Gra02].

6.3.3 Resource Acquisition Manager
The Resource Acquisition Manager is another part of the Infrastructure Services Layer.
Its task is to provide the access to the data center’s resources, acquire and release them
dynamically as needed. Dynamic resource acquisition in data centers has been difficult in
the past in contrast to operating systems, where most resources are requested and
allocated dynamically. Reason for this situation is that data center resources required
further manual deployment steps in order to be usable in the context of an Infrastructure
Service. With the automation of these steps, data center resources can now also be
requested and allocated more dynamically.

Chapter 6: Research, Realizations and Case Studies

101

From the perspective of an Infrastructure Service, two main operations are important, the
acquisition of resources when needed (planned or dynamically on demand) and the
release of resources.
The Resource Acquisition Manager also follows a controller pattern where a desired level
of resource supply is constantly compared with the actual resource usage consumed by
the Infrastructure Service.
Basis of the discussion in section 8.3 are papers “Adaptive Control System for Server
Groups in Enterprise Data Centers” [Gra03a] and “Adaptive Control for Server Groups in
Enterprise Data Centers” [Gra04c] which demonstrated the controller for a specific
resource type server. The process of dynamically adding and removing servers based on
workload was called server flexing.
The aspect of integrating this controller into the environment of a DCI-OS using standard
web services-based management middleware is documented in “Using HP's Web
Services Management Framework for Adaptive Control” [Gra04].

6.4 The DCI-OS Layer
The DCI-OS layer forms the “core” part for the DCI-OS. According to the architecture of
the DCI-OS, it includes the Information Model layer, the Resource Management Layer
and the Data Center Component Layer. Its purpose is to produce and manage the
resources in the data center and making them available to the Infrastructure Services
requesting them.
A number of related research threads have been pursuit in order to explore and define the
foundations of this layer.

6.4.1 DCI-OS Information Model
The Information Model is the core part of the DCI-OS layer. It has turned out that
substantial complexity arises in the Information Model Layer with the enhanced
capabilities this layer provides. For example, the capability to manage not only current
resource inventory in the data center, but also information about availability of future
resources and making them available for advanced allocation creates the need to manage
a time domain with the resources. Furthermore, in order to extend resource management
from resources which exist as physical devices (e.g. physical servers) to resources which
can be created (e.g. virtual machines, software infrastructure stacks), the concept of
resource constructions had to be introduced capturing the mapping relationships of
constructed resources onto physical resources. And, as a final example, the capability to
automate creation and deployment processes with resources required the introduction of
descriptive information for final resource environments, called Resource Topology
(model), which comprised the set of resources needed for construction including their
connection relationships and the presence of configuration information in a Resource
Topology.
These new and complex information types also lead to the need to define complex
resource request formats for Resource Topologies.
In order to achieve the desired reusability of Resource Topologies for repeated
deployment of standard configurations in the same or in different data centers caused the
need to abstract and decouple resource and topology descriptions from actual physical

Chapter 6: Research, Realizations and Case Studies

102

inventory present in a particular data center in form of (abstract) quantities of resources
and connection types. Explicit steps were required to allocate quantities in particular data
centers and bind them to specific instances at a late stage before actual deployment.
Fundamental conceptual work has been done by the author of this thesis around those
concepts creating the conceptual foundation of the Information Model of the DCI-OS and,
through it, the foundations for achieving the technical capabilities that have been desired
from the DCI-OS and which were described in detail in chapter 4.
This fundamental conceptual work is independent from the specific choice to select the
Common Information Model (CIM) [CIM] as a standardized information modeling
framework to represent the desired abstractions in a particular technical framework.
CIM models were defined for the basic abstractions at the meta-class, class and instance
levels, which are presented in detail in section 9.3.
The fundamental conceptual framework for the Information Model of the DCI-OS has
been defined in a detailed architectural document: Graupner, S., Singhal, S.:
“Architecture Concepts of the Quartermaster Resource Utility System”, Conceptual
Information Model, architecture document, May 7, 2003 [Gra03b], which also forms the
basis for discussion in section 9.3.
A number of modeling and support tools have been built around this methodology
including the Resource Topology Design Editor in 2003 [Gra04a], the
Quartermaster/CIM Model Browser and Constraint Satisfaction engine as well as the
ModelWeaver in 2007 [Gra08a]. Both, the OpenPegasus CIM repository [Pegasus] and
the SNIA CIM repository [SNIA-OM] have been used as CIM Object Manager
(CIMOM) implementations.
All DCI-OS modules and tools have been built based on the CIM information
repositories.

6.4.2 Resource Management Layer
The Resource Management Layer is a sub-layer of the DCI-OS Layer. In itself, it consists
of sub-layers of:

o Resource Pool Managers and
o Resource Pools.

Its main function can be described by a Resource Request Workflow, which consists of
stages of creating a request for resources by an Infrastructure Service, allocating
resources as quantities of abstract resource types and later assigning resources instances
as physical resources or constructed resources to these allocations before deployment
steps can be applied to the resource environment finalizing it for the requesting
Infrastructure Service.

6.4.2.1 Resource Pool Manager
The Resource Pool Manager layer is described in section 9.4.1 and based on work
published in a number of papers, including “Managing Shared Resource Pools for
Enterprise Applications” [Gma09], “An Integrated Approach to Resource Pool
Management: Policies, Efficiency and Quality Metrics” [Gma08], “A Capacity
Management Service for Resource Pools” [Rol04], “Capacity Management for Adaptive

Chapter 6: Research, Realizations and Case Studies

103

Enterprise Resource Pools” [Rol05], “Supporting Application QoS in Shared Resource
Pools” [Rol06] and “Specifying and Monitoring Guarantees in Commercial Grids
through SLA” [Sah03].

6.4.2.2 Resource Request Workflow
The Resource Request Workflow is described in section 9.4.2 as part of the Resource
Management Sub-Layer. Important concepts have been developed, refined and
implemented during this work such as the concepts of a complex resource request format,
the concept of resource demand and capacity profiles as well as the concept of an
allocation calendar, able to not only manage individual allocations of single resource
types, but also dependencies between multiple allocations of multiple resource types as
part of a resource request for a Resource Topology.
The work section 9.4.2 is based on is the result of a student internship and a following
Master’s Thesis: Ralf König “Resource Management for a Resource Utility System”
[Kön04].

6.4.2.3 Resource Allocation
The section on the Resource Request Workflow also mainly addresses the two stages of
requesting resources: Resource Allocation and Resource Assignment, which are
discussed in sections 9.4.3 and 9.4.4, respectively.
The Master’s thesis [Kön04] credited above form the basis for section 9.4.3 as well as
other work such as “Predicting Resource Demand in Dynamic Utility Computing
Environments” [Andr06].
Section 9.4.3 specifically addresses Resource Allocation.

6.4.2.4 Resource Assignment
Resource Assignment is another step in the Resource Request Workflow which identifies
actual resource instances in the data center (or fractions of them, or constructions) and
binds them to the so-far abstract quantifications of resource types managed in committed
resource allocations.
In research, resource assignment was largely considered a selection or placement
problem, which was investigated also for optimization, meaning the optimal placement of
resource requests onto resources or the optimal selection of resources for resource
requests. A relatively large body of optimization work has been conducted such as
“Optimal Resource Assignment in Internet Data Centers” [Zhu01], “Algorithms for Self-
Organization and Adaptive Service Placement in Dynamic Distributed Systems”
[Andr02], “Resource Assignment for Large Scale Computing Utilities” [Zhu03],
“Policy-based Resource Assignment in Utility Computing Environments” [San04],
“RAMP-A Solver for Automated Resource Assignment in Computing Utilities” [San05]
and “Adaptive Service Placement Algorithms for Autonomous Service Networks”
[Gra05c].
Section 9.4.4 specifically addresses Resource Assignment.

Chapter 6: Research, Realizations and Case Studies

104

6.4.3 Data Center Component Layer
The Data Center Component Layer is also a sub-layer of the DCI-OS Layer. In itself, it
consists of sub-layers of:

o Resource Pool Drivers and
o Component Interfaces.

6.4.3.1 Resource Pool Drivers
Resource Pool Drivers represent software modules in the DCI-OS which are executing on
dedicated management machines and which interact with associated physical components
in the managed data center environment via programmable APIs. Resource Pool Drivers
apply component-specific configurations onto their associated data center components as
well as issue control instructions. In reverse direction, the managed component reports
back monitoring data and events indicating state changes in the component.
Resource Pool Driver implementations are highly dependent on the type and model of the
associated physical data center components. Issues of compatibility and interoperability,
versioning as well as recoverability from failures or unknown states need to be addressed
in this layer, which are more engineering issues than research challenges.
[Gra04] describes a Resource Pool Driver which made server resources from the Utility
Data Center [UDC] available as Grid resource via a standardized interface. Other
implementations of Resource Pool Drivers, which were developed in part by product
groups, were not published. There were realized as part of the efforts described below in
section 6.5 about Case Studies which have been realized to validate the research.

6.4.3.2 Component Interfaces
Over the years, a number of standards have been proposed and developed for interacting
programmatically with managed components. Purpose of a Resource Pool Driver is to
interact with the associated physical components in the data center via management the
specific management protocols this component supports.
Section 9.5 addresses standard management patterns and protocols, including the
discovery of managed components in the data center (section 9.5.1), standardized
management protocols such as SNMP [SNMP] and WBEM [WBEM] (section 9.5.2) and
newer interface implementations using web services standards such as OGSI [OGSI]
management (section 9.5.3).
A broader coverage of web services-based management standards was documented in the
book “Web Services in the Enterprise: Concepts, Standards and Management” [Gra04b].
Other publications addressed the broader domain of web services-based middleware used
for management purposes. Reason for this broader investigation has been that Hewlett-
Packard’s newer system management product lines should be based on open middleware
platforms rather than proprietary middleware implementations.
As part of the research, a number of specific investigations have been conducted related
to specific web services management standards and frameworks which had become
available at the time. Those were related to standardization efforts in OASIS leading to
the standards for Web Services Distributed Management (WSDM) [WS-DM], Web

Chapter 6: Research, Realizations and Case Studies

105

Services for Management (WS-Management) [WS-MAN], the Web Services Resource
Framework (WSRF) [WS-RF] and (earlier) WBEM: CIM-XML [xmlCIM].
Implementations were developed using the publicly available Globus Toolkit [GT4]. The
work has been documented in “Web Services-based Management for Adaptive Control”
[Gra04e], “Management Middleware for Enterprise Grids” [Gra06] and “Platform for
Delivering IT Management Services” [Gra06a].

6.5 Case Studies
A number of case studies have been conducted using the techniques developed from the
research. Case studies mainly served the purpose to validate research, receive feedback,
but also create ideas and new approaches. Case studies were jointly conducted with
business units in HP, HP’s partners and with customers.
All case studies have been implemented and demonstrated internally to business units and
to customers. Two of the case studies continued to productization. Experiences and
learned lessons provided a valuable opportunity to guide the research.
Case studies have partially been documented and published. They are briefly listed in the
sections below, but not further detailed in this thesis.

6.5.1 Adaptive Infrastructure for SAP
Purpose of this collaboration with SAP was the connection of SAP’s Flexible Computing
Controller to HP’s Blade Automation Infrastructure. The Flexible Computing Controller
allowed fine-grained reporting of transaction processing times and workload
measurements on performance critical components of a SAP solution, which could be
reported through an external interface. At the same time, the controller was able to deploy
SAP components onto newly supplied server machines expanding processing capacity of
its web server and application tiers. HP’s Blade Automation Infrastructure allowed
acquiring and releasing server machines on request.
The task of this case study was to create a supervising controller to coordinate both, HP’s
and SAP’s components such that they interplayed properly to achieve dynamic server
resource provisioning based on workload measured and reported from the SAP system. In
this case, the SAP system also deployed the SAP components onto the newly acquired
servers.
This case study has been documented in “Adaptive Infrastructure Meets Adaptive
Applications” [Edw07], [Bel07a]. The case study has been presented at HP’s TechCon
Technology Conference 2007 and at SAP’s Technology Conference TechEd in 2007.

6.5.2 Operational Management Controller for Oracle Application
This case study was similar to the one before, but with an Oracle database deployment
and a cooperating team form Oracle. It preceded the engagement with SAP. Its goal was
to demonstrate the integration of management systems and solutions from HP and Oracle
to achieve a coordinated behavior of dynamic resource provisioning under fluctuating
workloads.
Main challenges were the integration aspects of systems from both sides and the
coordination of their interactions. The integration aspects were addressed by using the (at

Chapter 6: Research, Realizations and Case Studies

106

that time newly released) web services management middleware OGSI [OGSI] and
creating OGSI adapters as wrappers around HP’s and Oracle’s systems. The coordination
aspect was addressed by creating those adapters based on the controller pattern, which
was a novel approach to an integration problem.
Up until this point, the controller pattern had been applied to the typically numerical
control problems such as adjusting server capacity based on workload measurements. It
had been a major milestone to extend the controller pattern beyond numerical ranges to
discrete state spaces and develop a methodology of how correcting actions can be derived
from differences between desired and observed state spaces. The approach used Petri nets
and is described in detail [Gra07]. It forms the basis for the Task Automation Controller
presented in section 8.1.
The case study for the Operational Management Controller for an Oracle application was
documented in “IT Utility Services Using Model-based Automation, Service-Oriented
Architecture and Grid” [Cook06] and “Applying Service Delivery Controller in a Blade
Automation Case” [Cook06a]. The case study has been presented as a proof-of-concept at
HP’s TechCon Technology Conference 2006 and at OracleWorld in the same year.

6.5.3 Automated Management of Virtual Desktop Solution
This case study was conducted with a large financial services customer. Goal was to
demonstrate an integrated management solution for a large-scale virtual desktop
deployment. A virtual desktop deployment removes physical access of employees to
desktops or laptops and rather only allows a remote terminal to a desktop session which
actually runs on a data center machine. Since desktop sessions usually do not incur high
workloads, one server machine in the data center can host a number of virtual desktop
sessions, each executing in a separate virtual machine.
Goal of this case study was to demonstrate fully automated management of dynamic
provisioning of desktops and freeing data center servers for other deployments when
demand for desktops declined, mainly over night in the main working time zones. During
those times, financial simulations were run as batch jobs on the same set of physical
machines. A number of challenges had to be overcome. One was to avoid long provision
times for new desktop sessions when users were login into their virtual terminals. Pools
of preloaded sessions had to be created ahead of the typical beginning of working days
such that sufficient preloaded virtual desktops were available before people entered their
workplaces. With logging in, user-specific profiles had to be deployed in the otherwise
identical desktop environments, which required the coordination of a number of systems
from outside the solution from user management, to file servers from which user files
were accessible. Windows customizations had to be applied such as the user’s favorite
background screen and other preferences.
The focus of this work mainly was on the integration and automation aspects.
This work has been documented in “Virtual Desktop Initiative: Desktops as Services in a
Utility Computing Environment” [Sah05] and “Virtual Desktop System: Consolidating
Enterprise User Desktop” [Sah06].

Chapter 6: Research, Realizations and Case Studies

107

6.5.4 Flexing Interface and Controller for Blade Server Automation
Purpose of this case study with the HP blade server automation business unit was to
demonstrate the feasibility of the controller pattern as an approach to solve the problems
with workflow-based automation, which was discussed before.
In this case study, a server flexing controller was built which allowed dynamically
increasing and decreasing the number of servers which were actively participating in a
three-tier standard web application. Adding a new server was triggered when the
observed workload passed an upper threshold. It required assigning a server from a pool
and deploying the proper configurations onto this server allowing to server to act as part
of the web-server or application server tier. When the server was ready, configurations
had to be applied to the application environment, such as the load balancer, making the
server part of the application environment and serving workload. Reversely, when the
observed workload fell below a lower threshold, a server was un-configured from the
application environment, wiped clean and returned to the pool of available servers. When
the pool of available servers filled above a certain level, servers were powered down in
order to save energy.
This earlier case study was described as part of the paper “Adaptive Control for Server
Groups in Enterprise Data Centers” [Gra04c].
The following chapters will present more detail about the layers of the DCI-OS. Chapter
7 will address research related to The Planning and Design Layer. Chapter 8 will address
the Infrastructure Services Layer, and chapter 9 presents the DCI-OS Layer.

Chapter 6: Research, Realizations and Case Studies

108

Chapter 7: The Planning and Design Layer

109

Chapter 7

 The Planning and Design Layer

The Planning and Design layer addresses issues of pre-deployment stages from the data
center perspective and the perspective of infrastructure services.
In a data center, planning, deploying, managing and improving data center resources is a
continuous process. Capacity planning is the process of estimating future needs for
resource capacity and making decisions about acquisition plans and their implementation,
including facilities, power and supplies for the data center. Inventory management is
critical to maintain an oversight of the acquired resources in the data center, not only for
IT management purposes, but also for financial accounting and reporting. Most inventory
management approaches consider current inventory and records about past inventory.
Future inventory is rarely considered. Data center capacity planning has been explored as
a research area and results are discussed in more detail in this chapter.
Operational management in data centers is a continuous process of managing the
operation of a data center. For inventory and operational management, practices have
been developed over the years which are well understood and documented in best
practices such as ITIL. They have not been explored as part of research in more detail
and are thus not discussed in this chapter.

Figure 9: The Planning and Design Layer.

On the side of Infrastructure Services, planning and design tasks are needed as well.
These are tasks primarily performed by solution architects who are familiar with the
requirements from the application side as well as choices of implementations. Sizing is a
process performed by solution architects in which workload requirements for an
application are translated into tested and documented system configurations. Sizing
guidelines are regularly published by vendors of hardware and software systems, often

Chapter 7: The Planning and Design Layer

110

based on benchmarks. These published configurations describe workloads, such as an
expected number of users simultaneously accessing a system. Applications and
infrastructure services must be sized to match customer expectations with published
configurations in order to make the appropriate choices.
Quantitative analysis and decision making help understand the resource capacities needed
for an infrastructure service, but they are not sufficient for determining the design of an
infrastructure service. Resource capacity estimates are result of the sizing process. Those
(abstract) capacities must be further refined into actual resource quantities of certain
resource types such as numbers of servers of a certain type. This is a second step after
sizing, which also takes into account price and vendor preferences. Once these resource
quantities of certain types have been determined, the blueprint for their connections must
be developed and documented. This blueprint of sets of resources in combination with
their connections (or wiring) is called a Resource Topology. Resource Topology is
similar to wiring plans of electronic circuits, except that it is applied to resources as part
of an infrastructure service design. It should be noted that Resource Topology is a design
and represented as a model. It exists before actual resources in a data center are affected.
Resource Topology at the design stage has been a key part of research and is thus
discussed in detail.
Another research area related to Resource Topologies concerned the generation of
Resource Topologies based on formalized requirement specifications and known
refinement rules automating the task of the solution architect of sizing infrastructure
services and developing their blueprints.

7.1 Requirements for Plannning and Design
This section highlights a number of specific conditions and requirements that must be
taken into account for the Planning and Design layer.

• Resource pools in enterprise data centers are large heterogeneous resource sets.
For instance, different kinds of servers exist in an enterprise data center with
different processors, architectures, resource proper-ties, operating systems, etc.
Different kinds of storage resource exist. Multiple interconnect fabrics exist that
are important resources and sometimes bottlenecks for connecting machines (via
LAN) to machines and for connecting storage to machines (via SAN). Specialized
devices such as firewalls or load balancers are important resources as well that
need to be assigned and configured for enterprise applications.

• Enterprise resources provide substantially more capabilities that must be
configured. Networks can be “programmed” as well as storage associations to
machines. Different configurations can be applied to machines and devices
depending on application requirements.

• Enterprise applications are composed of heterogeneous components that
themselves are applications requiring resources. Enterprise application
components requires different resource sets and different configurations (such as
for the web tier, the application server tier, and the database backend).

Chapter 7: The Planning and Design Layer

111

• Applications have specific needs for resources in terms of resources they require
at different times as well as in terms of specific configurations they assume on
resources.

• Resources specifically need to be configured for enterprise application
components. Examples are attaching specific disk images to servers, or creating
and linking servers into specific networks.

• Resources need to be isolated when shared among different enterprise
applications. Although this is a desirable goal, clusters typically do not provide
application isolation due to lacking support in the infrastructure. A variety of
techniques exist in enterprise data centers for isolating applications from each
other. Virtualization is one important technique, ranging from using virtual LAN
isolating IP address spaces to encapsulating applications in virtual machines.
Application server containers are another example providing light-weight
isolation among application components.

• Resource may need to be constructed and may be constructed in different ways
for enterprise applications. For instance, an application component may require an
“IA32 Linux PC”. This resource may simply be taken from a pool as a physical
resource, or it may be constructed using a Virtual Machine. Choices for creating
virtual machines may exist (examples are VMWare’s or Microsoft’s Virtual PC
virtual machines). Another option may be a user-level Linux partition. Choices
for constructing resources must be explored.

• Resource constructions such as virtual machines are application processes
themselves posing their own requirements onto resources. When a construction is
chosen, the additional resource requirements of the constructions must be
considered. Different costs can be associated with different construction choices
in terms of resources constructions consume or licenses they require.

• Requested resource may not physically exist also for other reasons than
constructions are being chosen. Resources may simply have not become part of
the resource inventory in a data center yet, but are known to exist in future (e.g.
when purchases are planned).

• Requests for Resources for enterprise environments are longer-term than
traditional compute jobs (months/years vs. hours/days) leading to longer-term
planning and allocation cycles for applications in enterprise data centers.
Resource schedulers must accommodate long allocation cycles during which
resource inventory may change.

• This also links to the consequence that resource requests may refer to resource
inventory that does not currently exist, but is know to exist in future and hence
can already be allocated. This case is important for enterprise environment facing
continuous inventory replacement and turnover cycles.

7.2 Data Center Capacity Planning
The systems management discipline of capacity planning involves the planning of
various kinds of resource capacities for an infrastructure [Schie02]. It is defined as

Chapter 7: The Planning and Design Layer

112

follows: capacity planning is a process to predict the types, quantities, and timing of
resource capacities that are needed within an infrastructure to meet forecasted workloads.
Resource capacity involves four elements that are used in this definition:

• type of resource capacities required, such as servers, disk space, or bandwidth,
• the size or quantities of the resource in question,
• the timing of when the additional capacity is needed; and
• decisions about capacity that are based on forecasts of anticipated workload

demands.
Data center capacity planning can be seen as the summation of all the capacity planning
activities for all the applications hosted in the data center. It is particularly difficult, as
pointed out in [Schie04]:

- Analysts and planners are too busy with day-to-day activities.
- Users are not interested in predicting future workloads.
- Users who are interested cannot forecast accurately.
- Capacity planners may be reluctant to use effective measuring tools.
- Corporate or IT directions may change from year to year.
- Planning is typically not part of an infrastructure culture.
- Managers sometimes confuse capacity management with capacity planning.

While the task of data center capacity planning has been addressed by practitioners and
documented in guidelines [TQ04, Bla98] and best practices [HP08], the topic remains an
important task in the Planning and Design Layer and has thus been addressed by research
from different perspectives:

• the perspective of a data center [Gma07],
• the perspective of resource pools [Rol04] in data centers.

Likewise in IT management in general, capacity planning has been a fragmented process
that has widely been performed independently of business considerations resulting from
evolving and changing business processes conducted through IT systems as ultimate goal
of IT. The need for more systematic and more integrated approaches to data center
capacity planning is further emphasized by growing scale of next generation data centers.
The desire towards more integrated approaches to IT management also implies a more
integrated approach to capacity planning and management, which has been addressed in
more recent research, which is also highlighted in this section about data center capacity
planning:

• develop automated performance engineering processes and tools for next
generation data center management systems [Rol08],

• develop a systematic approach to derive IT configurations, including non-
functional requirements, from business needs and processes [Gra08], and

• develop methods for integrated capacity and workload management for next
generation data centers [Zhu08].

Chapter 7: The Planning and Design Layer

113

In the following sections, some research areas related to the Planning and Design Layer
are discussed which had been investigated in more detail:

• Performance Engineering Processes for Data Centers [Rol08],
• Systematic Approach to Derive IT Configurations from Business Processes

[Gra08], and
• Resource Topology Design [Gra05].

7.3 Performance Engineering for Data Centers
As data centers grow in resource scale (~capacity), human labor cannot scale
proportionally in order to be cost effective. Developing a systematic process that provides
the basis for automation has been the goal of this research effort called Performance
Engineering Process [Rol08] assuming that in future IT infrastructure will be purchased
as services from external and internal service providers. The Performance Engineering
Process is for transaction oriented enterprise applications that supports infrastructure
selection, sizing, and performance validation for customized service instances in hosted
software environments. It enables the rapid deployment of a customized service instance
while lowering performance related risks by automating the creation of a customized
performance model and customized benchmark model. Case study results demonstrate
the effectiveness of the approach for a TPC-W system.
For today's IT service providers, at best, service level agreements include service uptime
guarantees. Performance is rarely addressed. However, performance will become more
critical to support key business functions realized through IT services. For service
provides arises the question how to accommodate performance needs from the
applications side by sufficient and yet economical capacity of resources in their
infrastructures.

7.3.1 Related Work
A range of topics contribute to automated performance engineering for services. These
include benchmarking, workload generation, performance models, software performance
engineering, automatic model generation, regression, as well as topics that relate to
services including tenancy models and model-driven automation.
Benchmarking is a well accepted method for evaluating the behavior of software and
hardware platforms [Grac96]. In general, the purpose of benchmarking is to rank the
relative capacity, scalability, and cost/performance of alternative combinations of
software and hardware. It does not attempt to directly predict performance behavior for
any customized use of platforms. Instead, benchmarks aim to stress key features of
platforms that are likely to be bottlenecks. Dujmovic describes benchmark design theory
that models benchmarks using an algebraic space and minimizes the number of
benchmark tests needed to provide maximum information [Duj99]. Dujmovic's seminal
work also informally describes the concept of interpreting the results of a ratio of
different benchmarks to better predict the behavior of a customized system but no formal
method is given to compute the ratio.
Krishnaswamy and Scherson [Kri00] also model benchmarks as an algebraic space but
also do not consider the problem of finding such a ratio. Krishnamurthy et al. [Kri06]

Chapter 7: The Planning and Design Layer

114

[Kri04] introduce SWAT which includes a method that automatically selects a subset of
pre-existing user sessions from a session based e-commerce system, each with a
particular URL mix, and computes a ratio of sessions to achieve specific workload
characteristics. For example, the technique can reuse the existing sessions to
simultaneously match a new URL mix and a particular session length distribution and to
prepare a corresponding synthetic workload to be submitted to the system. They showed
how such workload features impact the performance behavior of session based systems.
APE exploits the ratio computation technique in this work to automatically compute a
ratio of benchmarks that enables the creation of customized performance and benchmark
models for a service instance. However, APE is more than the use of the ratio
computation technique. APE is the overall approach for organizing and exploiting various
kinds of model information to enable automated performance engineering.
Queuing Network Models (QNM) have been used as predictive models for enterprise
computing systems since the early 1970's [Buz73], [Rei79]. Predictive models such as
Layered Queuing Models (LQM) [Wood95], [Rol95] enhance queuing network models
by taking layered software interactions into account. These include synchronous and
asynchronous interactions between client, web, application logic, and database servers
and have been shown to improve the accuracy of performance predictions for multi-tier
environments [Kri08]. Tiwari et al. [Tiw06] report that layered queuing networks were
more appropriate for modeling a J2EE application than a Petri-Net based approach
[Tiw06] because they better addressed issues of scale. Balsamo et al. [Bals04] conclude
that extended QNM-based approaches, such as layered queuing models, are the most
appropriate modeling abstraction for multi-tiered software environments. The customized
performance models considered here are LQMs.
Software Performance Engineering (SPE) offers a systematic approach that supports the
design and sizing of enterprise software systems [Smith90]. Software control flow
diagrams are used to describe execution paths through software modules that cause the
use of system resources, e.g., CPU and memory. Modules that are expected to affect
performance most are considered in greatest detail. The resulting information is used to
create predictive performance models. By representing control flow and resource usage,
the impact of software design or hardware changes on performance can be explored.
Vetland [Vetl93] considers the challenge of systematically creating a library of resource
demand models for a system's software components so that they can be integrated
through SPE based methods to support design and sizing. Hrischuk et al. [Hri99] explores
methods for automating the capture of control flow in software design environments and
support automated model building. Petriu et al. [Petr07] consider the use of UML and
other techniques to better enable software designers to directly exploit performance
engineering concepts.
SPE related techniques all require methods to predict the resource demands of software
components. However, predicting the resource demands of business objects in a software
system is a challenging task. The two main reasons are: CPU and input-output usage are
not typically measured with respect to software operations; and, per request demands are
not deterministic. Measurement is difficult because today's application servers are
complex. They are typically multi-threaded, execute on hosts that often have multiple
CPUs, may execute on virtualized hosts, and have many layers of caching that frequently
delay input-output activity. Furthermore, demands by requests for the same operation can

Chapter 7: The Planning and Design Layer

115

often cause very different resource demands depending on the state of the system. For
this reason it is very difficult to create reusable resource demand models for software
components that can be composed to reflect specific behaviors.
Research has looked towards statistical regression to estimate resource demands. Early
work used regression techniques to estimate difficult to measure CPU demand overheads
in a virtualized mainframe environment [Bard78]. Rolia, Vetland, and Sun used Ordinary
Least Squares (OLS) [Rol98] and the Random Coefficients Method (RCM) for regression
[Sun99] to estimate per-method resource demands for objects with many methods to
support the creation of LQMs. RCM aims to overcome issues of non-determinism in
demands. However, they found the general use of regression methods for the
characterization of demands to be problematic because the assumptions of regression are
violated, e.g., deterministic distribution for per-request demands. Furthermore, it can be
difficult to decide how to group data for the regression. Stewart et al. considered Least
Absolute Residual (LAR) regression techniques to predict demands for systems with
different request types [Stew07]. A case study showed good results when characterization
could be done under conditions where there was little contention for system resources,
which they note is often the case for production environments. They also integrate an ad-
hoc queuing formula into the regression formula to also predict response times. For the
data they considered, they found that characterizing the demands for different types of
requests enabled better utilization predictions than not distinguishing demands by request
type, that using LAR worked better than OLS, and that their response time prediction
technique behaved best for systems with low utilization levels. Zhang et al. apply a non-
negative OLS regression technique to estimate the per-URL demands of a TPC-W system
[Zhang07]. They used the demand estimates to create a simulation model and a QNM for
the system. The simulation and QNM models resulted in similar prediction accuracy.
Both predicted the throughput of emulated users often up to high system utilization.
Mean response time estimates were not compared with measured values for the analytic
model.

7.3.2 Approach
The Automated Performance Engineering process differs from the straightforward
application of SPE and doesn't have to use a regression technique to predict demands. In
contrast to SPE, the process focuses on system configuration and sizing through the
selection of pre-existing business processes rather than on software design from scratch.
It is assumed that each business process has a pre-existing control flow model that
describes its expected execution of business process steps - based on the usage behavior
of other service instances. If typical control flows are not representative of how a
particular business will use business processes, they can be altered using SPE techniques.
The resulting control flows and impact would automatically be taken into account.
The Automated Performance Engineering process helps to overcome the demand
estimation problem by raising the abstraction level and predicting resource demands
aggregated over many business objects rather than predicting per-business object
resource demands. Business objects are rarely used in isolation so it can be difficult to
characterize them separately and then predict their joint resource usage. This new
approach to demand estimation is evaluated later.

Chapter 7: The Planning and Design Layer

116

Multi-tenancy hosts many service instances on one instance of a software platform.
Isolated-tenancy creates a separate service platform for each service instance. A hybrid
may share some portion of a platform such as a database across many service instances
while maintaining isolated application servers. Multi-tenancy systems can reduce
maintenance and management challenges for service providers, but it can be more
difficult to ensure customer specific service levels. Isolated-tenancy systems provide for
greatest opportunity for customization, performance flexibility and greatest security, but
present greater maintenance challenges. Hybrid-tenancy approaches have features of both
approaches. The Automated Performance Engineering process focuses on isolated-
tenancy systems that operate in shared virtualized resource pools. However, the technique
could also be adapted to reduce the performance related risks of the multi-tenancy and
hybrid-tenancy paradigms as well.
Model-driven techniques have been considered by many researchers and exploited in real
world environments (salesforce.com and SAP ByDesign [SAP08]). In general, the
techniques capture information in models that can be used to automatically generate code,
configuration information, or changes to configuration information. The general goal of
model-driven approaches is to increase automation and reduce the human effort needed to
support IT systems. Automation reduces costs, decreases the likelihood of errors when
making changes to systems, and increases the rate at which systems are able to adapt
based on business needs.

7.3.3 The Model Information Flow
This section describes a model-driven provisioning approach for hosting service instances.
The approach implements a Model Information Flow (MIF) that provides the context for
APE [Bel09]. The MIF presents a sequence of models and model transformations that
support lifecycle management for information about a service instance. It captures
requirements for a service instance, information about software platforms that may
implement the instance, alterative feasible infrastructure designs, and information about a
shared environment for hosting service instances. Model transformations support the
manipulation of information about a service instance as it traverses its lifecycle. This
section describes pertinent models and transformations that explain the following.

• How to choose an infrastructure design alternative for a service instance and
estimate its number of resource instances so that it meets throughput requirements
and response time goals.

• How a performance validation test can be deduced for a deployed service instance.
The MIF's lifecycle models include general, custom, unbound, grounded, bound, and
deployed models. These models correspond to lifecycle stages for service instance
information. Figure 10 illustrates the MIF. Model information is propagated from left to
right as a service instance evolves towards deployment. Model transformations are used
to support this evolution [Bel07]. In general, each model can be expressed using different
formalisms, such as BPMN, CIM, or EMF.

Chapter 7: The Planning and Design Layer

117

Figure 10: The Model Information Flow (MIF)

The transformations translate between formalisms as well as providing value added
functions, e.g., design alternative selection. Information about a service instance may also
move from right to left to support on-going management and maintenance. The lifecycle
models are augmented by additional platform models that capture information about
expected customer usage, and configuration and performance information about the
vendor specific software and infrastructure platforms that ultimately realize the service
instance. The focus is on the models and transformations that explain the APE approach
to automated performance engineering for transaction oriented enterprise applications
and services.
The general model describes business processes that can be deployed in an automated
manner. It is a collection of business process models. Each business process model may
have many variants and configuration alternatives that are captured in its model. Each
variant has business process steps that must be realized by a software platform. Sales and
distribution is an example of a business process. It may have business process variants
that deal with orders, with orders for preferred customers, and with returns. Its business
process steps may require information about items, may update an order, and may cause
an order to ship.
The custom model includes only those business process variants needed by a particular
service instance for a business. Additional business specific information is included in the
customized model that expresses non-functional requirements such as each chosen
variant's expected throughput and mean interactive response time goal.
The unbound model elaborates further on how software platforms implement the chosen
business process variants. This model relates the variants to software platform business
objects and technologies needed to implement the variants, e.g., Web servers, application
logic servers, and database servers.
The grounded model is a design for the system. It relates the unbound model to a
particular infrastructure configuration alternative from a catalog of feasible alternatives
that can be automatically deployed to the shared environment. The grounded model
includes estimates for the number of resource instances needed to support non-functional
requirements. In includes information that enables the deployment of the service instance.
The bound model captures the assignment of real resource instances from a shared
resource environment to the service instance. Bound resource instances are configured
with software needed to participate in the software platform and management software
needed to support ongoing management.

Chapter 7: The Planning and Design Layer

118

The deployed model describes resource instances participating in an operational service
instance. Finally, a service for a business may have several deployed instances operating
in parallel. Different instances may correspond to development, testing, and production
environments. For example, a deployed service instance may be used for a performance
validation test then discarded. Platform models augment the lifecycle models with vendor
specific platform information. Examples of platform models are the business process
control flow model; the software platform model; the software platform benchmark
model; the infrastructure design alternative model; and the benchmark-infrastructure-
alternative model. They directly support APE.
The business process control flow model describes the expected execution paths of
customers through business process steps. For example, a control flow model may
express loops to indicate that a step is executed multiple times and branches to indicate
different alternatives for execution. The control flow models have estimates for loop
counts and branch probabilities that are based on typical customer usage. Each business
process variant has as at least one control flow model. Multiple control flow models may
reflect the differing usage of a business process variant by different industries such as
manufacturing or utilities.
The application packaging model expresses how a particular software platform
implements business process variants from the general model using business objects and
how the business objects relate to application servers. For example, a business process
step that requires information about an item needs to access a business object for items.
The software platform vendor also needs to estimate the number of visits to each business
object by each process variant that it implements. The number of visits must correspond
to the business process control flow models for the typical use cases of the variant.
Finally, the aggregate business object usage for the software platform may require a
particular subset of application server and database technologies. Such information is
known by software platform vendors and is also an input to this approach.

Figure 11 Models contributing to business object mix M.

Chapter 7: The Planning and Design Layer

119

Figure 11 Models contributing to business object mix M. illustrates the relationship
between the general, business process control flow, custom, software platform, and
unbound models. It shows how information from the general model, business process
control flow, custom model and software platform model are used to compute a desired
business object mix M for a customized service instance. The custom model includes a
subset of process variants from the general model with specific control flows from the
business process control flow model. Each of the variants is annotated with a required
throughput, e.g., number of sales orders per hour, and a mean response time goal for
interactive response times. Each business process variant causes visits to one or more
business objects from the packaging model. The product of throughput and visits enables
the computation of M. Finally, the identity of the business objects that are used also
determines which of the software platform's software servers are needed in an
infrastructure design alternative.
Benchmarks for a software platform help to automate the creation of customized
performance models and customized benchmark models. The software platform
benchmark model includes many benchmarks for a software platform. The benchmarks
are chosen to provide coverage over the platform's business objects. Each benchmark is
fully automatable in its execution and can be run on many different infrastructure
alternatives. Each benchmark exercises a small number of objects in a manner typical for
the platform. Together, the benchmarks exercise all the objects of the platform. Each
benchmark aims to exercise an infrastructure to achieve the highest throughput while
certain response time expectations are satisfied. Further details about benchmark design
are given in the following section.
The infrastructure design alternative model expresses different ways in which a software
platform can be realized in the shared resource environment. For example, one
infrastructure alternative may have all software platform technologies executing entirely
on one host with a specific capacity. This is referred to as a centralized design alternative.
A distributed design alternative may use many hosts to realize a more scalable multi-tier
system with each instance of a web, application, and database server running in a separate
host. Furthermore, some alternatives may use hosts that are implemented as virtual
machines. Finally, each infrastructure design alternative has a predictive performance
model that is used to predict the behavior of the infrastructure when operating with
different numbers of resource instances. Figure 12 illustrates the components of the
infrastructure design alternative model. The figure illustrates some of the details
considered in a model, e.g., logical and physical resources, resource capacities and
networking relationships. The performance model reflects the behavior of the resources
and their relationships.
The creation of infrastructure design alternatives is the role of the service provider. The
service provider must create and test a number of alternatives that are appropriate for the
hardware platform and that satisfy the needs of various customers for throughput and
responsiveness. Once the alternatives are defined, they can be re-used and customized for
many service instances.

The benchmark-infrastructure-alternative model acts a repository of reusable
performance information for APE. All benchmarks from an application platform
benchmark model are run against each infrastructure design alternative. The results of

Chapter 7: The Planning and Design Layer

120

each run include measured resource demands that are used as parameters for the
corresponding predictive model. This process is automated with benchmarks being
executed during non-peak periods for the shared resource environment. As new
infrastructure design alternatives and different resource types and/or capacities are
introduced, more benchmark runs are needed to keep the repository up to date.

Figure 12: Benchmark performance models for infrastructure alternatives.
Figure 12 illustrates the relationship between the infrastructure design alternative model,
software platform benchmark model and the benchmark infrastructure alternative model.

7.3.4 Case Studies
The case study has the following three objectives: 1.) demonstrate the effectiveness of
computations for the workload integration ratio R; 2.) demonstrate the accuracy of APE's
demand prediction approach and compare with regression; and 3.) demonstrate the
effectiveness of the performance models by validating with respect to benchmark
measurements.
For the case study, measurements from two different TPC-W [TCP] systems were used
that were collected for unrelated studies [Kri06], [Zhang07]. Measurement data was
gathered for these systems for other purposes but is reused to demonstrate and validate
the concepts.
The first TPC-W system was deployed at Carleton University in Ottawa, Canada [Kri04],
[Kri06]. The second system was deployed at HP Labs in Palo Alto, USA [Zhang07].
These systems are referred to as C-TPC-W and H-TPC-W, respectively. The results
presented for these systems are not intended to be compliant TPC-W benchmark runs.
The TPC-W bookstore system merely serves as an example system for the study.
Detailed descriptions for the systems are available in their given references.
For each of the systems a LQM was created as a performance model. Performance
estimates for the models are found using the Method of Layers [Rol95]. However, the
TPC-W systems are complex session based systems. These systems have bursty request

Chapter 7: The Planning and Design Layer

121

behavior that is not well addressed using straightforward QNM or LQM-based
technologies. As a result, for performance evaluation, the LQMs are combined with a
population distribution estimation technique, conceptually related to the hybrid Markov
Chain-QNM technique. The technique used is called the Weighted Average Method
(WAM) [Kri08]. It improves the accuracy of performance predictions by taking into
account the impact of bursts of competition for resources. Such bursts are typical for
these session based systems. A more detailed description of WAM is beyond the scope of
this discussion.
1) C-TPC-W Experimental Setup
The C-TPC-W experimental setup consists of a client node, a Web and application server
node and a database (DB) node connected together by a non-blocking Fast Ethernet
switch. The switch provides dedicated 100 Mbps connectivity to each node. The client
node is dedicated exclusively to an httperf Web request generator that submits the
workloads to the system and records request response time measures. The
Web/application server node executes the Web and application server. It implements the
TPC-W application's business logic and communicates with the TPC-W DB. The
database node executes the DB server which manages the TPC-W DB. Finally, a
performance monitoring utility is employed that collects a user-specifiable set of
performance measures from both server nodes at regular specified sampling intervals.
The TPC-W application is deployed on Web, application, and DB servers that are part of
a commercial off-the-shelf software product. The name of the product has been withheld
due to a non-disclosure agreement with the vendor. The system is configured to not serve
images. Image requests were not submitted in any of the experiments. The workloads that
are considered are variants of the TPC-W workloads that include Hi-Mix, Med-Mix and
Low-Mix workloads [Kri06] with high, medium, and low resource demand variation,
respectively.
The number of server processes and the threading levels are set in the system as follows.
The number of Web server threads is 1000. This was much greater than the maximum
number of concurrent connections encountered in the experiments. The number of
application server processes is fixed at 16, an upper limit imposed by the application. The
number of DB server threads for the DB server was set to the upper limit of 32. The
primary performance metric of interest for the study is the user-perceived mean response
time (Rmean) for the requests at the TPC-W system. This metric is of interest for system
sizing, capacity planning, and service level management exercises. Response time is
defined as the time between initiating a TCP connection for a HTTP request and
receiving the last byte of the corresponding HTTP response. The measured response time
is a good indicator of the delay suffered by the request at the TPC-W system because the
network and the client workload generator nodes are not saturated for the examples
considered.
Figure 13 shows the LQM for the C-TPC-W system. LQMs are extended QNMs that
include information about logical resources such as threading levels for application
servers and software request-reply relationships. The LQM for the TPC-W system
includes a think time centre and hardware resources. The logical resources in the model
are the client browsers, Web server threads, application server threads and DB server
threads. Threading and replication levels other than one are shown by placing a value

Chapter 7: The Planning and Design Layer

122

near the upper right hand side of an icon. For example, the Web/App server node has two
CPUs. In this model, there are blocking requests between software resources and between
software resources and hardware resources.

Figure 13: LQM for C-TPC-W System.
In Figure 13, one client browser corresponds to each concurrent session using the system.
The number of client browsers is illustrated as a * and is managed by the WAM
performance evaluation process. A customer using a client browser may visit its node's
CPU or may think. A HTTP request causes a blocking call to the Web server. If a Web
server thread is available then the request is accepted. The thread uses some CPU
resource from the Web /application server node CPUs and then makes a request to the
application server. If an application server thread is available then the request is accepted.
The application server thread uses some CPU resource from the Web /application server
node CPUs and then makes a request to the DB server. If a DB server thread is available
then the request is accepted. The thread uses some CPU and disk resource from the
database server node and releases the calling thread. The released calling thread from the
application server can then complete its first phase of work and release the calling thread
from the Web server.
From Figure 13 after finishing its first phase and releasing the calling thread from the
Web server the application server thread continues on to a second phase of service. The
second phase of service keeps the application server thread busy so that it cannot service
another calling thread. However at the same time the calling thread from the Web Server
that was released after the first phase of service can complete its work and release the
calling thread from the client browser. This completes an HTTP request. The reasons for
modeling the request-reply relationship of the application server in this manner are
discussed shortly.
During an HTTP request, if a thread is not available when a server is called, the calling
thread blocks until a thread becomes available. Once a thread completes its work it is
available to serve another caller. Such threading can lead to software queuing delays in
addition to any contention for hardware resources that are incurred by active threads. The
numbers of threads used for each tier in the model reflect the actual application settings.
To obtain resource demand values for the model, each measured run collects CPU
utilization for the Web server threads, application server threads, and the DB server
threads. CPU and disk utilizations were measured as well for the Web/application server
node and the database server node, the elapsed time of the run, and the number of request
completions. This enables us to compute the average resource demand per request for the

Chapter 7: The Planning and Design Layer

123

Web server threads, application server threads, DB server threads, and for the
Web/application server node and database server node as a whole.
Finally, from measurement runs with one concurrent session was observed that the mean
response times were often lower than the aggregate demand upon the hardware resources.
This is an indication of two phases of processing at a server. This is reflected in the LQM
by placing 25% of the application server thread demands in a second phase of service
[Rol95], [Wood95]. This modeling choice was found to produce good model predictions.
2) H-TPC-W
H-TPC-W [Zhang07] was deployed on different software and hardware platforms than
the C-TPC-W system. Furthermore, it also included image requests as part of its
workload. Key features of the system are described here along with the performance
model for this infrastructure alternative. The H-TPC-W system had two client nodes for
emulated browsers, a Web/Application server running on a Web/App server node, and a
DB server running on a Database node. This Web/Application server had a flexible
number of server processes that varied with load. However, the actual number of server
processes was not monitored during the measurement experiments. The DB server had a
fixed number of processes that was large compared to the number of emulated browsers
causing sessions. Measurement runs used the standard TPC-W workload generation
method with parameters as defined by the TPC-W benchmark. Measured values included
CPU and disk demands for each of the nodes and a response time value for each HTML
request.

Figure 14: LQM for H-TPC-W System.
The LQM for the H-TPC-W system is shown in Figure 14. The model differs from the C-
TPC-W system in several significant ways. Firstly, it did not require a second phase of
processing for the Web/Application server. Second, the H-TPC-W system had image
requests. To reflect the impact of image requests it was necessary to have two classes of
customers in the LQM. The first class represented the HTML requests. The second class
represented image requests that operated in parallel with the HTML requests. The
emulated browsers permitted up to four image requests to be active in parallel for each
active HTML request. Since the actual number of Web/Application server processes was
not known, the numbers of Web/Application server processes and DB processes was
adjusted to 4 and 4. This offered accurate mean response time and throughput predictions
for the full suite of experiments. Finally, Figure 14 introduces the package concept into
the LQM. A package groups modeled entities together in a manner that they can be
replicated in unison. The dual client node is reflected in the model as a package with 2
replicates. Within each client node there are * active HTTP requests, each with 4 active

Chapter 7: The Planning and Design Layer

124

image requests. During the performance evaluation process, the value of * is varied by
the WAM technique.

3) The Effectiveness of Computing a Workload Integration Ratio R
This section demonstrates the effectiveness of using a set of benchmarks to synthesize a
business object mix. 100 sessions were used chosen randomly from TPC-W Browsing,
Shopping, and Ordering measurement runs to act as a surrogate for software platform
benchmarks of Figure 12. Each of the 100 TPC-W URL sessions corresponds to a
benchmark. Each of the multiple URLs in a session, i.e., benchmark, corresponds to a
business object of the software platform model of Figure 11. Two examples were
considered.
The first example uses the workload matching technique with 100 benchmarks to
synthesize the Browsing, Shopping, and Ordering mixes, respectively. The Browsing,
Shopping, and Ordering URL mixes act as business object mixes. It was expected that the
matching did very well at synthesizing the mixes since sessions used as the benchmarks
were obtained from a workload generator that created sessions that corresponded to the
specifications for these mixes. The second example presents detailed results for these
three cases and 7 additional, but more diverse, business object mixes. The second
example shows that workload matching can synthesize mixes for complex service
instance scenarios.
Figure 15 shows the desired and synthesized business object mixes that correspond to the
TPC-W Browsing, Shopping, and Ordering mixes. As expected, the 100 benchmark
sessions were able to match the desired mixes precisely.

Figure 15: Using 100 benchmarks to synthesize TPC-W business object mixes.
Figure 16 shows 10 business object mix values for M and the corresponding mixes
synthesized by workload matching, using the 100 benchmarks.
Each column in the data portion of the table corresponds to a business object, i.e., a URL.
The numbers indicate desired and achieved business object mixes in percentages. The
workload matching permits a specification of a tolerance, per business object, for
matching each business object's mix. Even if an exact match cannot be found, close
matches are typically possible as is shown in the table. To illustrate a diversity of mixes,
note how the percentages associated with business object 4 goes from 0% in Mix1
through to 14% in Mix10. The percentages for business object 7 go from 31% in Mix1
down to 6% in Mix10. The percentages for other business objects also change. Mixes 2, 5,
and 8, correspond to the standard Browsing, Shopping, and Ordering mixes defined by
TPC-W, respectively. Mix11 and Mix12 are discussed in the next subsection.

Chapter 7: The Planning and Design Layer

125

Figure 16: Synthesized mixes for 10 business object mixes.

7.3.5 Evaluation
The results for APE turned out to be better than regression for C-TPC-W and comparable
for HTPC-W. Furthermore, the APE method is easier to apply within the automated
approach. In particular, no decision is needed regarding the selection of the time duration
for the rows of data. With regression, different capacity attributes sometimes benefit from
different time durations. The regression techniques may sometimes require resource
demand data be collected at short timescales. APE does not have this requirement.
Furthermore, regression based techniques assume demands are deterministic and suffer
from the problem of multi co-linearity as the number of variables grows. However,
regression has an advantage that it can be used more readily to estimate demands for
mixes than the APE approach which requires measurement runs for many mixes. Further
study is needed to more definitively compare the accuracy of the two approaches.

7.3.6 Summary
The Automated Performance Engineering (APE) process supports infrastructure selection,
sizing, and performance validation for customized service instances in hosted software
environments. It enables the rapid deployment of a customized service instance while
lowering performance related risks by automating the creation of a customized
performance model and customized benchmark model. APE is described within the
context of a model-driven approach for automating the deployment of service instances in
a shared environment. The approach implements a model information flow that organizes
the information needed for APE and other aspects of management. APE supports:

• choosing an appropriate infrastructure design from a set of alternatives for a
service instance;

• estimating the numbers of resources that are needed for the alternative to satisfy
throughput requirements and response time goals;

• creating a validation test that can be executed against a corresponding deployed
service instance to verify its resource usage and performance characteristics.

Service providers can apply APE to estimate the initial resource needs of a service
instance, predict the impact of changes to requirements for a service instance upon

Chapter 7: The Planning and Design Layer

126

resource needs, and to predict the impact of changes to a software or infrastructure
platform on resource needs for all service instances.
APE depends on the ability to compute a workload integration ratio as a vector R, the
ability to estimate the resource demands for a customized service instance, and on the
ability of performance models to predict the behavior of complex multi-tier session based
systems. Previously existing measurement results from two significantly different TPC-
W systems were used to demonstrate the following: the effectiveness of the workload
matching method for computing R; the effectiveness of the new method for predicting
demands; and, the effectiveness of APE's customized performance models for predicting
throughput and mean response time for customized service instances. The demand
estimation technique performs well with respect to regression techniques for demand
prediction and is easier to use. It is also less sensitive to the problem of multi-colinearity
that exists when applying regression to benchmark runs [Stew07]. APE's performance
models, along with WAM, outperformed other performance models that used the same
data sets.
It can be concluded that the technologies needed to support APE are promising. Their
effectiveness has been shown for two TPC-W systems. Further work is needed to better
validate the new demand prediction approach.

7.4 Systematic Approach to Derive IT Configurations
This section extends the work described in the previous section about an automated
performance engineering processes for capacity planning. This section extends this work
by developing a systematic approach to derive IT configurations, including non-
functional requirements such as performance and required capacity estimates, from
business processes and other non-functional requirement specifications. It describes how
the analytical work performed in the research is mapped into and automated process and
the prototype implementation of tools, specifically for a case study related to SAP
applications [Gra08].
When considering the traditional approach of how data centers are planned and how
applications are being developed, built and integrated, three primary roles can be
identified. A business consultant’s role identifies and describes participants, processes,
and non-functional requirements for qualities of service from the business’ point of view.
An application platform consultant’s role is to customize application artifacts to realize
the desired business processes. A solution architect’s role then specifies and builds IT
systems that support the processes with the desired qualities of service. This may include
building new systems, implementing processes in existing or integrating across systems.
A major challenge is that information captured within the context of one role is often
captured informally and communicated informally to those with other roles. As a result
building solid and reliable enterprise applications remains to a large extent an art that
relies on the knowledge and expertise of the consultants and architects. Published
guidelines and established change management practices help mitigate risks [Sad06].
Goal of this research effort has been to develop a more integrated approach to the
planning and design, configuration, and later deployment and management of data center
applications.

Chapter 7: The Planning and Design Layer

127

Models described in the Model Information Flow (MIF – see previous section) are used
to capture the specification information about processes, application platforms and IT
infrastructures. Model transformations are used to automate many of the mundane steps
currently performed by consultants. By automating the steps the aim is to reduce the time,
costs, and risks associated with change. It is recognized that not all aspects of design and
management can be automated.
The approach assumes several stages of descriptions in form of MIF models and the
transformations between them. Models capture the various aspects of designing IT
systems based on functional (business-logic) and non-functional (such as performance,
capacity, sizing, but also security or availability) requirements. The MIF describes a
chain of models ranging from the business process definition through various stages of
refinement to a deployable and finally managed solution.

7.4.1 Related Work
A large body of work exists in the domain of business process design [Sche06], business
process automation [Sche04] and business process management [Wes07]. Business
process languages have widely been proposed and used, particularly in context of web
services [Ley01]. Formal work on business processes has been done in the academic
domain [Aal99]. More recently, collaborative business process environments have been
proposed [Sad06].
On the other hand, IT automation and automated IT systems have become relevant trends
in recent years in the IT industry. Initiatives such as Adaptive Infrastructure or
Autonomic Computing reflect the situation enterprise customers face in growing
complexity in IT systems along with increasing cost. Industrial research in this field
reflects the need to support management of IT systems and ideally automate it [Sing05],
[Gra07], [Gol04]. Integrated Service Management (ITSM) aims to streamline and
standardize processes in overall IT management [ITSM] addressing not only the
technical , but also organizational aspects in order to make IT management more efficient
in enterprises.
However, although both worlds of business processes and IT systems are closely linked
today in enterprises, they still remain widely disconnected conceptually organizationally
and technically. Different groups of people with different background and skills work in
the different domains.
 The resulting fracture between the business layer and the IT layer already causes
substantial pain today, and it is projected to become even more painful in future as the
interactions between businesses continue to evolve. Only few intersection points have
emerged between the domain of business and enterprise applications and IT systems such
as business process monitoring or business-driven management [Bart04a].

7.4.2 Supplementing Business Processes with Non-Functional
Requirements

A business process specification typically describes the functional requirements for a
process. This is not sufficient for deriving an infrastructure configuration. In addition,
non-functional requirements must supplement to the process definition such as
information about performance, security, availability.

Chapter 7: The Planning and Design Layer

128

To narrow the problem space, the research focuses on performance aspects as part of the
non-functional requirements. This section explains how a business process definition
from the Customized Process Model is supplemented with performance requirements,
which then allow to us to select, evaluate and parameterize a valid IT system
configuration design, which is called the Grounded Model. Formalization through models
enables the exploration of the design space for the Grounded model using techniques
such as Layered Queuing Models (LQM) [Herz01], policy-based design [Gra05] and
genetic algorithms [Vos99].

Figure 17: Example of Sales and Distribution (SD) process from SAP.
Figure 17 shows a simple business process (SD – “Sales and Distribution”) which is used
to benchmark traditional SAP systems. The process consists of 16 consecutive steps.
Most steps are actions a user performs via the SAP user interface. These actions cause
SAP transactions that are executed by dialog worker operating system processes
(Dialog_WPs) within SAP Application Servers. The SAP transactions are application
platform components that implement the business process.
Figure 18 shows a schematic view of the SD process as Customized Process Model in the
Model Information Flow. The figure shows a UML fragment on the left introducing three
classes (AI_Serivce, AI_BusinessProcess, AI_BPStep) and the associations between
them. This definition is part of the schema definition of the Customized Process Model
(see [Bel07] for the details of this model). The part on the right shows the model of the
SD process in a business process editor (in a simplified form).

Figure 18: Supplementing demands for the SD process.

Chapter 7: The Planning and Design Layer

129

Figure 18 shows two kinds of relationships that are occurring in the process definition:
• invocations – such as SDUser invokes a process; arrows crossing layers represent

invocation relationships, and
• process logic – such as CreateSalesOrder is followed by a business process step

CreateOutboundDelivery; the arrows within a layer represent relationships
between process steps.

The business consultant’s view only shows the process logic relationships, not the
invocation relationships. However, internally, the process definition is expanded to also
reflect invocations based on knowledge about the external relationships of a business
process. In a simple case, there is at least one entity (the node in the top layer) that will
invoke the process, and there is at least one entity (the node in the second layer) that
marks the entry point(s) into the process (the nodes in the third layer).
The demand information attached to the SDUser to SDProcess relationship is shown as
the large arrow box in Figure 18. It contains few attributes expressing the desired number
of users, mean think time, and required mean dialog response time that is expected for the
process. Furthermore, the sequencing information for the business process steps is
permitted to include loops and branches. For these expected values for loop counts and
branching probabilities must also be specified. Together, requirements for users for each
role along with the expected values for looping and branching gives the ratio of
invocation for the business process steps. These values are entered into an editor by the
business consultant as part of the overall requirement gathering process for the
Customized Process Model.
It is important to note that non-process related information is not directly visible in the
business consultant’s view. Information that includes the relationship between business
process steps and application platform components is added to the Unbound Model and
attached internally to the customized process definition. This information comes from
application platform vendors and may be manipulated by application platform consultants.

7.4.3 Component Performance Models: Capturing Component
Demands

Component Performance Models are used to characterize detailed invocations among
application platform components and demands upon infrastructure. Measurement based
methods are used to characterize the demands of application platform components on the
resource types supported in resource pools. Thus, different choices for resource types
yield different demand values. Characterizations of resource usage are stored in the
component performance model repository so that they can be reused. The values are then
integrated to create customized process model specific application performance models
for the design.

7.4.4 Design Templates: Describing Infrastructure Capabilities
Design templates are models that describe enterprise IT system variants that can be
deployed in an automated manner. As examples, there may be a centralized design that
deploys all application platform components and required application and database
servers to a single operating system image. A distributed design would have application
servers and a database residing in different operating system images. The templates are

Chapter 7: The Planning and Design Layer

130

designed to emphasize support for specific non-functional requirements. For example, a
template may include firewalls than another to support a higher level of security.
The templates specify legal ranges for performance related configuration values such as
the number of application servers, number of dialog work processes per server, and the
concurrency level supported by the database. The choice of values depends on the
system’s non-functional performance requirements, its use of the application platform
components, and the capacity of the resources used to support the system. The
specification of these values plus the application platform information from the Unbound
Model completes a Grounded Model. This is sufficient information to automatically
proceed to Bound and Deployed Models.

7.4.5 Automated Evaluation of Configurations
In order to perform an evaluation of a configuration design, the three sources of
information must be fused:

• Customized Process Model (business process steps and relationships with
application components),

• Component Performance Model (application component demands on underlying
system),

• Design Templates (IT system design including specific resource types).
Figure 19 shows the process of evaluating configuration designs based on the models.

Figure 19: Automation process of deriving grounded models.

The Fuser reads the information from the three sources and merges it into an initial
configuration design.
The Variator then consumes this initial configuration design and triggers the evaluation
of the design. The Varitator will also identify possible permutations of configuration
choices altering the initial configuration design and feed them into evaluation as well.

Chapter 7: The Planning and Design Layer

131

The Evaluator evaluates a configuration design. A Layered Queuing Model (LQM)-
based tool [Rol95] named the Method of Layers (MOL) tool is used for that purpose. The
result of the evaluation is list of latencies expected at the different components, e.g. at the
database. Those latencies then can be compared against requirements leading to the
exclusion of the evaluated design.
The Validator then can compare those latencies against requirements from the
Customized Process Model.
If all the requirements are met by a design, LQM also provides information about initial
numbers of instances of components such as numbers of application server instances
needed to support the design. Those numbers then are supplemented into the evaluated
design template turning it into a candidate for a Grounded Model which potentially could
be deployed when it is selected. Initially, Grounded Models were considered produced by
this method as a proposal to solution architects enabling them to make better founded
decisions about infrastructure configuration choices. However, in future these Grounded
Models may flow directly into deployment systems where their actuation can be
scheduled.
Since the Model Information Flow is build on formalized models, interactions between
its components can be automated. The automated evaluation of configuration designs is
an example of that. The design space of the current research prototype is still limited.
However, potentially large design spaces may exist in future which can be explored and
automatically evaluated by this method.

7.4.6 Evaluation
As a case study, the evaluation of a SAP system was considered for a centralized system
design. The table in Figure 20 shows several specifications for non-functional
performance requirements along with corresponding performance configuration values.
In all cases the mean customer think time was 10 seconds per dialog step as is typical for
the SD benchmark.

Num User

Dialog Resp.
Time Requ.

Num of
Dialog WP

Num of
Update WP

Num of
Enqueue WP

Num of DB
Process

1000 2000 8 2 3 12
1775 2000 83 3 16 102
1775 2500 55 2 4 61

Figure 20: LQM results.

The table in Figure 20 shows for 1000 SD users and a mean dialog response time
requirement of 2000 milliseconds the enterprise IT system under study required 8 Dialog
Work processes, 2 Update Work Processes, and 3 Enqueue Work Processes. The
database had to be able to support up to 12 concurrent transactions. The considered
resource type was able to support up to 1775 users with a mean dialog response time limit
of 2000 milliseconds. For that scenario, significantly more Work Processes and
concurrency at the Database was required. This suggests that the resource type must have
significantly more memory (e.g. nearly 10x) than for the 1000 user scenario. By reducing
the mean dialog response time requirement to 2500 milliseconds the number of Worker
Processes and hence memory requirements drops considerably.

Chapter 7: The Planning and Design Layer

132

For a given set of non-functional requirements the LQMs enable us to report on how
much capacity is needed for each design template alternative. The template that best
satisfies non-functional requirements with the lowest requirement for capacity is
recommended to the IT solution architect.
The IT solution architect interacts with the LQM evaluation tools though an Excel spread
sheet. The input into the LQM spreadsheet is automatically filled in using the process
shown in Figure 12. Figure 21 shows the spreadsheet that is presented to the IT solution
architect.

Figure 21: The LQM results as spread sheet.
Interaction with the evaluation results also allows to change parameters such as number
of users for which a configuration is sized and re-running the evaluation. Designs can
thus be changed and re-evaluated at a much faster pace then implementing them as test
systems and exploring configuration choices in a real system.

7.4.7 Summary
The work presented in this section aimed at an intersection point between the business
process domain and the domain of IT configuration design by establishing the linkage
between both domains in form of the Model Information Flow.
The goal is to derive IT configurations from business configurations. In order to enable
this function, additional information must be supplemented in form of the Model
Information Flow. This information formalizes knowledge IT solution architects use to
properly plan, design and size and implement enterprise applications. Information
includes the structure of application stacks and performance characteristics of application
and infrastructure components. All this information is then fused together using
transformations.
A particular evaluation technique LQM has been presented within the context of the
Model Information Flow that allows computing configuration parameters such as
numbers of work processes to meet non-functional performance requirements provided in
form of numbers of users and expected mean response time. A bounded space of design
choices can automatically be evaluated. The final result is then used to configure the
chosen infrastructure design.

Chapter 7: The Planning and Design Layer

133

7.5 Resource Topology Design
A Resource Topology [Gra05] is a model of a configured resource environment. Purpose
of this model is to drive provisioning and deployment processes automatically rather than
manually. A resource topology encompasses the entirety of resources (the resource set)
with types and quantities of types as well as their connection relationships.
Resource Topologies must be designed and formally specified using a language and
referred to in requests for resources for activation periods. A number of modeling
frameworks and languages have been explored for representing Resource Topologies,
including open formats such as RSL (Resource Specification Language [RSL]), DCML
(Data Center Markup Language [DCML]), WSRF (Web-Services Resource Framework
[WS-RF]) as well as proprietary formats such as the internal representation FML (Farm
Markup Language) [FML] used in HP's Utility Data Center (UDC) [UDC].
Design tools are needed in order to develop Resource Topologies. Figure 22 shows an
early tool which has been developed in HP Labs based on Microsoft's Visio environment.
The Resource Topology Designer provided a library of symbols of typical data center
resources such as servers, storage and network devices. Thos symbols are shown in the
right panel. They could be drawn into the main design panel and placed into an
arrangement. Properties of resources could be accessed and changed by right-clicking. In
addition, connections could be added representing network connections between
machines, attachments of disks to machines or locations of virtual machines on physical
machines. The meaning of a connection was derived from the devices at its endpoints. By
right-click, attributes of connections could be defined as well.

Figure 22: Resource Topology Designer prototype with Resource Topology.

Chapter 7: The Planning and Design Layer

134

Figure 22 shows a screen of an early version of the Resource Topology Designer which
has been developed as part of research and demonstrated around 2004. It shows a
resource topology and a formal specification in a language called RSL (Resource
Specification Language, [RSL]).
Figure 23 shows the product-level realization of the Resource Topology Design prototype
that has been developed earlier as part of the research.

Figure 23: Product-level Resource Topology Designer used in the UDC.
Once the Resource Topology has been constructed in the main design panel, internal code
analyzed the drawing and constructed a formal representation of the design, which can be
seen in the panel on the right using the Resource Specification Language.
It is important that not only physical resource items are represented in a Resource
Topology, but also software items such as an image placed onto a disk or an application
placed into an image. Configuration flows could later be derived from this information
automating the deployment processes when the Resource Topology was instantiated in a
data center.
Another important aspect is that resource symbols used in Resource Topologies represent
quantities of concrete types of resources, but not specific instances. Resource Topologies
as designs should be reusable and multi-instantiatable in the same data center and across
data centers requiring late binding of resource types used in the Resource Topology to
actual resource instances of same types in an actual instantiation.
The decoupling of resource types and resource instances is also an essential enabler for
dealing with virtualized environments [Gra03].

Chapter 7: The Planning and Design Layer

135

The formal RSL specification of the Resource Topology then could be exchanged and
stored in a library of reusable Resource Topology Designs. Solution architects could
download fitting designs and refine and customize them for their particular cases.
The process of refining and specializing Resource Topology Designs is also referred to as
Grounding. The term Grounding originated in Grid computing from the need to
formulate resource availability on one side and resource demands on the other in higher
terms than specific hardware properties. For example, an application written for the Intel
architecture would run on a number of processors with different properties from different
vendors. Rather than promoting and requesting specific resource properties, such as
vendor, clock speed or cache sizes, more abstract properties would need to be promoted
and requested such as compliance to the Intel architecture instruction set, leaving more
choices for matches. The idea of Grounding was adopted and extended to other resource
types than processors.

7.5.1 Design Cycle of a Resource Topology
At the end, designs could be submitted to a provisioning system in a particular data center
where the binding to actual resource instances occurred.
The binding process included the allocation of resources (either full physical resource
entities or portions on shared resources) for the intended lifetime of the application
instance. Allocation is the process of reserving a full or partial resource for an application
instance for a given period of time. Allocation is a planning process as well. It affects
resource assignments in the future, but not current resource use or assignments. A granted
resource allocation is a commitment of the allocation system in a data center to fulfill a
request for resources at the agreed time. A Resource Topology design can only
successfully be allocated in a data center when all its resources can be allocated. In order
to make this determination, instances for all resource types must be found available for
the desired time periods and reserved.
The second stage of binding is activated shortly before resource allocations become due.
At this point, actual resources must be taken from the environment and configured with
the parameters from the Resource Topology Design. It is only at this point that actual
resources in a data center become affected.
The process of applying specific configurations from the Resource Topology Design to
actual resources is called deployment.
The planning and design stages of a Resource Topology Design are comprised of a
number of stages:

• Resource Topology Designs are created using design tools and store them in a
library of reusable Resource Topologies. Resources used in the design have the
nature of concrete types and quantities of those types. They are decoupled from
later bindings into full or partial resources from the environment of a particular
data center.

• A solution architect selects a Resource Topology fitting his case and refines and
specializes it to the design of infrastructure services for a particular Application
Service. This process is called Grounding.

Chapter 7: The Planning and Design Layer

136

• The specialized Resource Topology design is submitted for allocation into a
particular data center where a two-stage process of late binding occurs, which
consists of stages of allocation and assignment:

o Allocation grants or denies the Resource Topology design. It grants the
allocation only when it can determine that all resource types and quantities
used in the design are present and available for the desired time periods. If
the allocation is granted, the full or partial resource quantities are marked
as used and allocated.

o Assignment occurs shortly before resource allocations become due for use.
At this point they need to be underpinned with actual full or partial
resources. For this second stage of binding the inventory of currently
available resource instances must be examined and choices must be made
to identify the resource instances matching the granted allocations.
Choices for making those selections can include placement decisions, such
as placements of servers resources for particular use from the Resource
Topology Design, e.g. for use as a database server, onto certain physical
servers in a data center. A decision whether a server resource is rendered
as a physical server or a virtual server also belongs to the scope of the
assignment (discussed as resource construction later).

o Information about the selected set of resource instances is then
supplemented into the Resource Topology Design making it "complete" to
drive the subsequent stage of deployment.

o Deployment (from the resource perspective) is the process of applying
configuration information from the Resource Topology Design to assigned
resources in order to produce the desired resource properties.

7.5.2 Automated Resource Topology Lifecycle
Automating the Resource Topology Designs at Planning and Design Stages has been a
goal or research. Figure 24 shows a workflow along which Resource Topology
information flows. Once the resource topology design has been completed using a design
tool, the “non-grounded” resource topology will be routed to a resource composition
engine that performs resource grounding. After grounding, the final resource topology is
either forwarded directly to a resource allocation service or to a broker for locating
resources in data centers.

Chapter 7: The Planning and Design Layer

137

Figure 24: Automating the Resource Topology lifecycle.

The automation workflow shown in Figure 24 links to another research area addressed in
this area: policy-based configuration.

7.6 Policy-based Configuration Generation
Goal of policy-based configuration is the ability to automatically generate grounded
Resource Topology Designs from more abstract blue prints or templates. The technique is
based on a policy engine (the Resource Composition Engine shown in Figure 24) which
has been developed as a research prototype [Ram06]. Specifically the area of resource
Grounding has been considered for policy-based configuration.
As mentioned, the term Grounding originated in Grid environments where requests for
resources are specified in terms of quantities of actual compute nodes with certain
properties: [CPU=IA32, MEM>2GB, DISK> 250GB, OS=Linux]. A Grid request could
include 128 nodes of this type. Grid’s early Resource Specification Language [RSL]
allowed to describe resource requirements in those terms.
Resource requests in RSL can then be sent to a Grid Resource Allocation Manager
(GRAM) representing a pool of resources for allocation. The GRAM evaluates the
request and decides about acceptance. A variety of GRAM implementations exist as
schedulers such as PBS [PBS] and Maui [Maui].
Co-allocation in a Grid allowed exchanging resource request among GRAM’s (with or
without broker) for identifying a resource pool in a Grid that would support the set of
requested resources.
Other work extends match-making between resource requests and available resources
using the semantic web framework [Ver01].

provide

provide

*

Resource Topology
Designer

Resource
Composition Engine

Resource Allocation
Service

desired application
properties

solution templates

Final Resource
Topology

Non-Grounded
Resource Topology

OGSI (Grid) Interface

OGSI (Grid) Interfaces Resource Broker

Resource Pool (Data Center)

advertise

application
engineer : role

solution
provider : role

design application with
desired properties

*

Chapter 7: The Planning and Design Layer

138

Described techniques in Grids are not sufficient for enterprise environments for following
reasons:

• Heterogeneous sets of resources must be requested as entirety for hosting an
enterprise application.

• Resource requirements requested by applications must be separated from
realizations (and eventual constructions) of resources supporting requirements.

• Choices that exist for realizing each required resource must be evaluated in terms
of conflicts that may exist to constructions of other resource, in terms of cost
associated with constructions, and in terms of overall impact of constructions on
the application system.

• Further requirements may need to be obeyed in terms of isolation and overall
placement of resources in the data center.

7.6.1 Resource Properties for Policy-based Configuration
Policy-based configuration takes a request for an abstract resource into a request for
grounded resources. A resource can be abstract in several ways:

1. Abstraction and polymorphism: A resource topology can be requested that can be
realized in several different ways and which way to exactly realize it is left to the
discretion of the grounding system. To understand this better, consider the
analogy of abstract classes (classes that are defined as abstract) in object-oriented
languages. A request for an instance of an abstract class can only be satisfied by
creating an instance of one of its derived classes. The requestor does not
necessarily care about which derived class is instantiated. An example of a
polymorphic resource that could be grounded in two different ways is present in
use case U1.1 below.

2. Aggregation: A resource topology can be requested that is aggregated from
several other component resources. Instead of asking for each of the component
resources, a requestor could simply ask for the aggregate resource. An example of
this is in use case U1.2.

3. Restriction: A resource topology can be requested that satisfies certain constraints
– for e.g., constraints on a resource’s properties, on the methods it supports, or on
the relationships it has with other resources. The requestor is not aware of the
exact resource that satisfies all these constraints. An example of this is in use case
U1.3.

4. Combination of the above: A request can be made for an aggregate resource that
in turn contains polymorphic resources. In addition, the requestor could specify
constraints that limit the choices of grounding. An operator could specify an
additional set of constraints that further restrict the grounding choices.

Few use cases should illustrate the use of grounding. Grounding is the stage after a
resource topology has been designed.

7.6.1.1 Polymorphic Resources
A requestor requests a firewall to be provisioned. The resource pool contains CISCO
6509 switches that can be configured as firewalls. The pool also contains servers that can

Chapter 7: The Planning and Design Layer

139

be turned into firewalls by installing Checkpoint software. In other words, the abstract
firewall has to be grounded into one of the two types of firewalls by the grounding
subsystem.

7.6.1.2 Aggregate Resources
A requestor requests a “three-tier farm”. A three-tier farm is known both to the requestor
and the operator as a group of servers arranged and connected in a special way as shown
in the Resource Topologies in Figure 22 and Figure 23. The three-tier farm has three tiers
– Web server tier, application server tier, and database tier. Each tier consists of a number
of servers that are connected to one or more subnets. The Web server tier is connected to
a subnet1 and subnet2. The application server tier is connected to subnet2 and subnet3.
The database tier is just connected to subnet3. In addition, each server in the Web server
tier should have Web server software (polymorphic) running on any operating system
(polymorphic). Similarly, servers in the application server tier should have application
server software and servers in the database tier should have database software installed
on them.

7.6.1.3 Constrained Resources
A requestor requests a firewall as in Use case U1.1, but this time constrains the firewall
to have the ability to support a certain traffic rate and a certain cost. Satisfying this
constraint may require the grounding subsystem to make the choice of using Checkpoint
software based firewall rather than CISCO switch. In addition, it may restrict the choices
on which platform to use for the server and which operating system to install on it. This is
because each platform and operating system has a certain cost associated with it. Also,
not all operating systems can be installed on all platforms, which further constrains the
possible choices. In this example, some constraints are intrinsic to resources (for e.g.,
which operating systems can be installed on which platforms), some are specified by the
operator (for e.g., the costs associated with each type of firewall), while others are
specified by requestors (for e.g., desired traffic rate and desired cost).

7.6.2 Resource Construction Model based on Constraints
When resources are combined to form other higher-level resources, a variety of rules
need to be followed. For example, when operating systems are loaded on a host, it is
necessary to validate that the processor architecture assumed in the operating system is
indeed the architecture on the host. Similarly, when an application tier is composed from
a group of servers, it may be necessary to ensure that all network interfaces are
configured to be on the same subnet, or that the same version of the application is loaded
on all machines in the tier. To ensure correct behavior of a reasonably complex
application, several thousand such rules may be necessary if the construction of such
applications is to be automated. This is further complicated by the fact that a large
fraction of these rules are not inherent to the resources, but depend on preferences
(policies) provided by the system operator or by the customer as part of the request itself.
In this section, a model for combining resources is proposed which allows specification
of such rules in a distributed manner. By capturing the construction rules as part of the
specification of resource types, and by formalizing how these rules are combined when

Chapter 7: The Planning and Design Layer

140

resources are composed from other resources providing a very flexible model for policy-
based resource construction.

Figure 25: Conceptual model for resource construction.

Figure 25 shows the basic conceptual structure of the model. Each resource is defined in
the model by a resource type definition. It is assumed that resources are described by
attributes that are part of the resource type. These attributes reflect configuration or other
parameters that are meaningful for resource construction. It is also assumed that
resources can be composed from aggregates of other resources, and that new resource
types can be constructed by combining other resource types.
Instances of construction policy are associated with each resource type. Construction
policy instances contain constraints that are defined using the attributes present in the
resource type definitions. When a resource is instantiated, the resource management
system ensures that all constraints specified for that resource are satisfied. Because
resource types can be derived from other resource types, this implies that all constraints
for all composing resources are also satisfied. Because the resource manager creates the
union of all (relevant) constraints when instantiating resources, it can also accommodate
a variety of operator and user level policies during instantiation.
Construction policy is modeled as shown in Figure 26. Every instance of a construction
policy is associated with an instance of one or more resource types. Construction policy
is modeled as an aggregate of one or more constraints that are defined using one or more
attributes in policy.
Policy attributes usually refer to attributes of the associated resource type, but may also
be internal to the policy definition for convenience.
A policy applies to all the associated resource types. When the resource type is
instantiated, the instantiated resource is defined to be in compliance with the construction
policy if all policy constraints that refer to the attributes of the corresponding resource
type are satisfied by the resource instance. Conversely, an instantiated resource is defined
to be in violation of construction policy if any constraint that refers to an attribute of the
corresponding resource type is violated by the resource instance. Note that it is possible
for an instantiated resource to be in compliance, while the construction policy is in
violation if the violation occurs as a result of a constraint that does not depend on any
attribute of the resource. Additionally, if the constraint causing the violation refers to
attributes in multiple resources, it may not be possible to uniquely determine which

Chapter 7: The Planning and Design Layer

141

resource is causing the policy violation. Unlike traditional [Slo01] models of policy, no
action is defined in the construction policy model.

Figure 26: Elements of construction policy.

Constraints form the core of the policy specification and are defined using expressions
that use policy attributes as variables. During the instantiation process, the attribute
values from the corresponding resource instances are used to validate policy. Constraints
contain first order predicates, arithmetic and logical operators, and other structural
constructs defined below:
Data types. Data types may be imposed on attributes as constraints that have to be
satisfied by the corresponding attribute, e.g. constraints can specify if a particular
attribute should be a String, integer, float etc. This allows validation of data types when
different underlying components are used to provide similar functionality.
Constants: Numeric or string constants may used in constraints for defining the values or
thresholds for attribute values.
Quantifiers: Quantifiers are often used in constraints, e.g. (for all), (there exists), etc.
Operators: A number of operators can be used to combine attributes in defining
constraints. These operators fall in the following categories:

• Arithmetic operators (+, -, *, /): These operators can be used for constructing
arithmetic expressions on literals of the allowed data types.

• Comparison operators (<, >, <= , >=, ==, !=): Comparison operators can be used
to compare other expressions, and result in a boolean value.

• Boolean Operators (&&, ||, ! (unary not)): Provide logical expressions in
constraints.

• Implication Operators (==> (logical implication), <== (reverse implication), <=>
(equivalence, or if-and-only-if)): These operators allow expression of
dependencies between attributes, e.,g.

• (name == Solaris) ==> version \in {5.7,5.8};
• instanceOf Operator: The <: operator is used to denote “an instance of”

relationship. This allows constraints to be created that enforce data types on

Chapter 7: The Planning and Design Layer

142

components or their attributes, e.g., ensure that component “server” is an instance
of type Appserver<: AppServer;

• Set Operator: \in operator may be used to constrain values of an attribute to be
always in a set.

Structural Constructs: Other structural constructs (e.g., let in, if then else etc.) are used
mostly for syntactic convenience. These familiar programming constructs simplify the
task of the constraint writer when complex constraints have to be expressed in policy.
Operationally, this model allows constraints to be specified in a distributed and
hierarchical manner. The instantiation process is shown in Figure 27.

Type
Database

Request

Resource Manager

Policy
Manager

Grounded
Request

Deployment
System

Figure 27: Resource construction process.

The resource manager contains a type database containing the resource type definitions
(and the associated construction policies). A user submits a request to the resource
manager for some resources. The request may contain additional policy constraints
desired by the user (using constructs similar to the ones in the resource type database).
The resource manager extracts the corresponding types from the database, and sends the
resource request and the types to the policy engine [Sah04]. The policy engine treats the
constraints and types requested by the user as a goal to be achieved. It treats the problem
as a constraint satisfaction problem, and uses a constraint satisfaction engine [Hen89] to
assign values to all attributes in the resource type definitions, such that all of the policy
constraints are satisfied. The output of the constraint satisfaction engine is a request
specification (a grounded request) where all attributes have been filled out. This
grounded request is then handed to the deployment manager [SF04] for actual
instantiation.
Note that because the policy engine assigns values to all the attributes such that all the
constraints are satisfied, explicit condition-action pairs are not needed in construction
policy. Thus, the model allows complex configurations to be built without requiring the
user or the operator to pre-specify which combinations are valid and/or having to
explicitly specify how such combinations can be achieved.

7.6.3 Examples of Applying Construction Policies
In this section, a number of examples is discussed to highlight how the model of
construction policy can be used in practice.

Chapter 7: The Planning and Design Layer

143

7.6.4 Resource Composition
When composing higher-level resources from other resources (e.g., an e-commerce site
from servers), a variety of resources need to be put together. However not all possible
combinations are valid. Policies can be attached to component types to ensure that the
resulting construction is valid. To illustrate this principle, an example is assumed to
create a number of servers. A server is simply defined as a computer system with an
operating system on it. In order to create servers, computers need to be selected and
operating system images need to be installed on them. A Server resource entity is thus
constructed out of an underlying Computer resource and an OperatingSystem resource.
However, not all computer types may be available in the resource pool, and not all
operating system images would work on a given computer. Thus constraints need to be
defined that identify which computer and operating system image combinations are valid
for constructing a Server. Figure 28 show one possible way of doing this.

Figure 28: Example of a composition policy for a server resource.

In the Figure, a Server is a resource type that is composed from two other resource types:
a Computer, and an OperatingSystem. A Computer has an attribute processor while an
OperatingSystem has an attribute called osType. A policy associated with the Computer
type states that the attribute processor can only take values in the set {IA32, IA64,
SPARC, and PA-RISC}. Note that this constraint is specified by the system operator
(perhaps because only these instances are available in the resource pool). Similarly, the
construction policy associated with the OperatingSystem resource type states that the
attribute osType can only take values in the set {Linux, HP-UX, Solaris, and Windows}.
Again, the set is defined by the operator based on available operating systems within the

Chapter 7: The Planning and Design Layer

144

environment. When the Server resource type is created, the type definition includes
policy constraints that specify which osType can exist with which processor In order to
create a valid instance of Server.
Suppose a request specifies that it needs a resource of type Server with the additional
constraint that Server.Computer.processor = PA-RISC. From the constraints specified as
part of the Server, the policy system determines that the only valid value for
OperatingSystem.osType = HP-UX, and automatically fills that value.
This example shows a number of aspects of constraint-based construction policies:

• By associating policy constraints with the individual component types,
construction using those types can be controlled. By changing the allowed policy
constraints, valid (or available) configurations can be maintained by the operators,
and easily changed as needs change without extensive code or system-level
modifications about how the new types are handled.

• Policy constraints for a resource type depend only on the attributes of that type, or
the attributes of the underlying resource types. This simplifies hierarchical
specification of types, because such dependencies can usually be localized in the
type hierarchy. The designer of a new type only has to deal with the preceding
types it is using and the corresponding constraints on them. The policy system
automatically accounts for other dependencies that are created through
transitional relationships.

• The policy system checks all constraints for validity when handling resource
requests. Because it can locate constraints that are being violated, the request
specification can be checked for “correctness” with respect to those constraints.
Similarly, during the instantiation of new resource types, the policy system can
aid the designer by validating that at least one valid instance of the new type can
be created.

• The system can also fill in attribute values based on correctness of constraints.
This means that the requestor has the freedom to only specify the attributes that
are meaningful, and let the system fill in the gaps. This simplifies the requests.

The requestor can add additional constraints for the policy system as part of the request.
Because the policy system forms the union of all constraints when constructing the
system, request-specific policy can be easily incorporated during construction. Many
additional constraints can be added to this simple example to account for items such as
licenses, software versions, or other attributes such as memory and CPU speed. In
addition, higher level resources can be constructed in a similar manner. For example, a
Server may take the role of a webServer, an applicationServer, or a databaseServer if the
corresponding images are installed on it. Furthermore, by adding topology constraints
(e.g. web server tier precedes an app server tier which in turn precedes a data base tier),
one can construct much more complex resource types like a three-tier architecture or a
highly available server and treat them as higher-level resources. These complex resource
types may then be instantiated and deployed.

7.6.5 Component Selection
Multiple components that offer the same base capability are often available in the
resource pool. Examples may be different types of servers, firewalls, or network switches.

Chapter 7: The Planning and Design Layer

145

However, these components frequently differ in the capabilities (e.g., security,
availability, throughput) offered by them. Such capabilities can be captured by the
attributes of the components, and depending upon the capabilities desired by the
requestor, the appropriate components can be selected to meet the users’ requests.
In order to demonstrate component selection, four examples are discussed in detail to
highlight how policies can be used to provide construction choices for components.
Examples presented in the following four subsections include:

• Capability-based component selection.
• Hardware and software partitions in a server.
• Multi-function and polymorphic resources.
• Class-of-service based resource selection.

7.6.5.1 Capability-based Component Selection
Suppose multiple types of switches are available in the resource pool. The switches offer
different levels of security capabilities. For example, some switches may have Kerberos
authentication or secure shell capabilities implemented, while others may not. Rather
than forcing the user to understand all the details of the switches, the system could allow
the user to simply specify that she wants a switch fabric that supports secure shell access,
and automatically select the appropriate components to meet that request. This is shown
in the example below, where three different kinds of Cisco Catalyst switches are
available, and the security capabilities needed are specified in the request.

<<code>>

// this component captures various switch attributes. Most likely extended from CIM
Switch {
 manufacturer: String;
 switchFamily: String;
 model: any;
 security: SwitchSecurityCapability
 // other attributes
}
// this component captures security capabilities of switches
SwitchSecurityCapability {
 PortSecurity: boolean;
 TACACSauthentication: boolean;
 AdvancedLayer3and4ExtendedAccessList: boolean;
 DynamicACL: boolean;
 PolicybasedRouting: boolean;
 NetworkAddressTranslation: boolean;
 SNMPv3: boolean;
 secureshell: boolean;
}
// this component defines the capabilities of available Catalyst switches
CiscoCatalystSwitch extends Switch {
 enum availableModels {WSC3750G24TSE, WSC2950ST24LRE, WSC4912G};
 satisfy (manufacturer == "Cisco");
 satisfy (switchFamily == "Catalyst");
 satisfy model \in availableModels;
 // security capability support in the available models

Chapter 7: The Planning and Design Layer

146

 satisfy (model == WSC3750G24TSE) ==>
 (security.portSecurity == true && security.ACL == true &&
 security.kerberos == true &&
 security.TACASauthentication == true);
 satisfy (model == WSC2950ST24LRE) ==>
 (security.portSecurity == true && security.SNMPv3 == true &&
 security.ACL == true && security.TACASauthentication == true &&
 security.secureshell == true);
 satisfy (model == WSC4912G) ==>
 (security.portSecurity == true && security.SNMPv3 == true &&
 security.TACASauthentication == true &&
 security.secureshell == true);
}

// request: This example shows how the security policy in a request
// selects a switch for the implementation. “main” is a special component
// that defines the system requested
main {
 sw: Switch;
 // this constraint specifies the desirable security
 // capabilities needed for switch
 satisfy (sw.security.ACL == true && sw.security.secureShell == true);
}

Figure 29: Capability-based component selection.

The example has been written using the grammar specified in [Gra05] to show how the
components (and the request) could be formulated. Again, note that:

1. In this example, if switches with other capabilities become available, the operator
can simply add those types to the system with their corresponding capabilities.

2. Because the policy system finds attribute values that satisfy all constraints, an
appropriate model of the switch is automatically selected.

3. If multiple switches satisfy the user’s request, the policy system is free to choose
(an arbitrary) switch from the list of switches that satisfy the request. Other
policies (such as cost of the solution) can be added in the policies to further
restrict how the selection takes place. Note however, that the constraint
satisfaction engine does not solve an optimization problem. Thus it is currently
not possible to ask for a “minimum cost” solution, although “cost < 500” is an
appropriate constraint. Merging optimization and constraint satisfaction problems
remains a subject of research.

Transient or virtual resources (e.g., virtual machines) are instantiated, allocated and
removed just like other resource instances. However, unlike other resources, transient
resources do not have underlying a-priori resource instances in the resource pool. Let us
consider an example related to server partitioning. A Server not only can be allocated and
used as a single resource; it may be partitioned for better resource utilization. Server
partitions enable multiple applications to run on the same server while maintaining
isolation among them, thus improving server utilization. A Server can support both
hardware and software partitions. Multiple software partitions may be supported within a
hardware partition. A hardware partition is termed an nPartition (nPar) and a software
partition is termed a Virtual Partition (vPar) as shown in Figure 30.

Chapter 7: The Planning and Design Layer

147

nPartition VirtualPartition

Server Server

Figure 30: Hardware and software partition overlays for a server resource.

Usually, there are restrictions on the number of nPars and vPars that may be created on
top of different types of servers. For example, an nPar may be restricted to have 2, 4, 8 or
16 CPUs in it.

7.6.5.2 Hardware and Software Partitions in a Server
The following example shows how such restrictions can be described as policy
constraints in the types defining virtual servers.

<<code>>

// A virtual partition
VirtualPartition extends Partition{
 // at least one CPU in the virtual partition
 int numCPU;
 cpu : CPU[numCPU]; satisfy numCPU >= 1;
 // A virtual partition has its own oS Image
 osImage: OperatingSystemImage;
 // software images may be installed in a virtual partition
 swImage: SoftwareImage;
}
// a nPartition can have virtual partitions
nPartition extends Partition{
 // at least 4 CPUs in a nPartition
 int numCPU;
 int numOfvPars;
 cpu: CPU [numCPU];satisfy numCPU >= 4;
 vpars: VirtualPartition [numOfvPars];
 satisfy numOfvPars > = 0;
 // total number of CPUs in the virtual partitions
 // and the nPartition is the same
 satisfy (numOfvPars > 0) ==>
 (numCPU == (+ i: 0<=i< numOfvPars: vpars[i].numCPU)) ;
}
// A Server can have a number of either nPars or vPars
Server{
 int numCPU ;
 cpu: CPU[numCPU]; satisfy numCPU > 0;
 manufacturer: String;

Chapter 7: The Planning and Design Layer

148

 memory: int; // in GB
 model: any;
 int numOfPartitions;
 partitions: any[numOfPartitions];
 parttitionType: any;
 satisfy partitionType <: nPartition || partitionType <: VitualPartition;
 satisfy if partitionType == nPartition then partitions <: nPartition[];
 else partitions <: VitualPartition[];
 satisfy numOfPartitions >= 0;
 // if there are partitions
 satisfy numOfPartitions > 0 == >
 (numCPU == (+ i:0 <= i < numOfPartitions: partitions[i].numCPU) ;
}
HPrpServer extends Server{
 enum hprpTypes {rp8400, rp7410};
 satisfy model \in hprpTypes;
 // only nPartition can be created on this type of server
 satisfy (partitionType <: nPartition);
 // At max of 2 nPartitions may be created
 satisfy (numOfPartitions >= 0 && numOfPartitions <= 2);
 // maximum 16 virtual partitions
 satisfy (model == rp8400) ==>
 ((+ i: 0<= i < numOfPartitions: partitions[i].numOfvPars) <= 16);
 // maximum of 8 virtual partitions
 satisfy (model == rp7410) ==>
 ((+ i:0 <= i< numOfPartitions: partitions[i].numOfvPars) <= 8);
}
Superdome extends Server
{
 enum SuperdomeTypes {16way, 32way, 64way};
 satisfy model \in SuperdomeTypes;
 satisfy (model == 16way) ==> (numCPU==16) && (memory == 64);
 satisfy (model == 32way) ==> (numCPU==32) && (memory == 128);
 satisfy (model == 64way) ==> (numCPU == 64) && (memory == 256);
 satisfy (partitionType <: nPartition) || (partitionType <: VirtualPartition);
 // number of CPUs in a partition is recommended to be 8
 satisfy numOfPartitons > 0 ==>
 ((+ i: 0<= i< numOfPartitions: partitions[i].numCPU) == 8);
 // number of virtual partitions in an nPartition is recommended to be 8
 satisfy (numOfPartitions > 0 && partitionType <: nPartition) ==>
 (forall i :0<= i < nPartition: partitions[i].numOfvPars == 8));
}
main {
 server: Server;
 satisfy server.partitionType <: VirtualPartition;
 satisfy server.numOfPartitions == 4;
}

Figure 31: Example for policy for hardware and software partitions in a server.

This example shows how relatively complex constraints on creation of resources can be
easily specified as construction policies. Additionally, because the rules specify the
maximum number of partitions that can be created on an underlying resource, the policy
system will automatically restrict the number of such transient resources.

Chapter 7: The Planning and Design Layer

149

7.6.5.3 Multi-function and Polymorphic Resources
Multi-function devices and polymorphic devices are resources that need special
consideration. Multi-function devices are devices that have multiple capabilities and are
capable of performing many functions simultaneously, while polymorphic devices are
those that are reconfigurable so that at any given point in time, they can appear as one of
a number of different resources. For a given request, multi-function and polymorphic
devices may be configured to take on the appearance of one or more resources required
for that request.
In the following example a Virtual Service Switch (VSS) is described that is a multi-
function device uses Virtual Service Modules (VSM) to offer multiple capabilities. VSM
are software modules that can be loaded dynamically an existing VSS.

<<code>>

// The software virtual service modules that may be installed on a
//VirtualServiceSwitch are Firewall, Intrusion Detection and Prevention
//(IDP), VPN, Virtual Global Server Load Balancer, Virtual Server Load
//Balancer, Virtual SSL, Web Acceleration
 VirtualServiceModule extends ManagedElement {
 enum types {firewall, idp, vpn, vgslb, vslb, VirtualSSL, webAcceleration};
 vsmType: types;
 vsm: any;
 // In the most generic case, assuming that Firewall, IDP, VPN, VGSLB,
 // VSLB, VirtualSSL, WebAcceleration Resource Types have been already
 // defined separately and they all extend ManagedElement
 satisfy (vsmType == firewall) ==> (vsm <: Firewall);
 satisfy (vsmType == idp) ==> (vsm <: IDP);
 satisfy (vsmType == vpn) ==> (vsm <: VPN);
 satisfy (vsmType == vgslb) ==> (vsm <: VGSLB);
 satisfy (vsmType == vslb) ==> (vsm <: VSLB);
 satisfy (vsmType == VirtualSSL) ==> (vsm <: VirtualSSL);
 satisfy (vsmType == WebAccel) ==> (vsm <: WebAcceleration);
}
// A virtual Service Switch is a polymorphic device and may have any
// combination or all of the modules installed e.g. Inkra Virtual Service Switch

VirtualServiceSwitch {
 number : int ;
 installedVSM: VirtualServiceModule[number];satisfy number > 0;
}
// A Virtual Service Switch may be configured in whichever way, in
// that sense it behaves like a multi-function device. If there was a
// resource type defined that was often used we can pre-define the
// Virtual Service Modules on it
FirewallVPNServiceSwitch extends VirtualServiceSwitch {
 satisfy number >= 2;
 satisfy (installedVSM[0].vsmType == firewall);
 satisfy (installedVSM[1].vsmType == vpn);
}

Figure 32: Example for multi-function and polymorphic resources.

Chapter 7: The Planning and Design Layer

150

7.6.5.4 Class-of-service-based Resource Selection
It is important to allocate resources to users based on certain criteria. These criteria may
relate to the class of the user or the corresponding QoS implications. Often simple classes
of users are defined (e.g. platinum, gold, silver etc) and users are provided with QoS
guarantees based on that classification. The next example demonstrates how different
types of servers could be assigned to satisfy a request based on the user classification. In
the example, the user class is contained in a context, which is modeled as a policy
element that also contains the request. This enables the policy engine to account for the
user classification during component selection.

<<code>>

// context defines the user context within which the user request is made
Context {
 userType: any;
 enum userTypes {platinum, gold, silver};
 request: any;
 // for silver users, satisfy server requests with basic servers
 satisfy (userType == silver) && (request <: RequestForServer) ==>
 request.grade == basic;
 // for gold users, offer a medium grade server
 satisfy (userType == gold) && (request <: RequestForServer) ==>
 request.grade == medium;
 // for platinum users, provide an advanced grade server
 satisfy (userType == platinum) && (request <: RequestForServer) ==>
 request.grade == advanced;
}
// The following maps different grades of servers to different requests
RequestForServer {
 enum grade {basic, medium, advanced};
 server: any;
 // a basic server is provided for basic grade requests
 satisfy (grade == basic) ==> (server <: Server) && (server.grade == basic);
 // A simple advanced server is provided for medium grade requests
 satisfy (grade == medium) ==> (server <: Server) && (server.grade == advanced);
 // A fail-over advanced grade server is provided for advanced grade requests
 satisfy (grade == advanced) ==>
 (server <: FailOverServer) && (server.grade == advanced);
}
// base definition of a server
Server {
 grade: any;
 model: String;
 processor: any;
 numOfProcessors: int;
 memory: any;
 memtypes: any;
 powerSupply: any;
 powerSupplyTypes: any;
}
// Proliants can offer different capabilities to satisfy different grades
Proliant8500Server extends Server {
 satisfy grade \in {basic, advanced};

Chapter 7: The Planning and Design Layer

151

 // scaling up of ProliantServer
 satisfy numOfProcessors \in {1, 4, 8, 16};
 satisfy memtypes \in
 {onlineSpareMemory, HotPlugMirroredMemory, HotPlugRAIDMemory};
 satisfy powersupplyTypes \in {usual, redundantPowerSupply, UPS};
 // advanced grade Proliants have the following capabilities
 satisfy (grade == advanced) ==>
 (memtypes \in {HotPlugMirroredMemory, HotPlugRAIDMemory}) &&
 (powerSupplyType <: UPS) && numOfProcessors == 16;
 //basic grade Proliants have the following capabilities
 satisfy (grade == basic) ==> (memtypes \in {onlineSpareMemory}) &&
 ((powerSupplyType <: usual) ||
 (powerSupplyType <: redundantPowerSupply)) && (numOfProcessors <= 8);
}
// a failover server actually contains two servers—one as a backup
FailoverServer extends Server {
 // a failover server
 server: Server;
 backupServer: Server;
}
// goal specified as a request
main{
 context: Context;
 satisfy context.userType == platinum;
 satisfy context.request <: RequestForServer;
}

Figure 33: Example for class-of-service based resource selection.

Similar examples can be constructed for other capabilities such as availability, response
time, throughput, processor speed based selection of components. These metrics have to
be considered when constructing complex resources for different classes of users.
Additionally, other metrics that have to be managed at run-time may be specified using a
similar constraint language.

7.6.6 Implementation Issues
A prototype resource manager has been implemented to validate the automatic
construction of resource topologies discussed in this section. The resource model extends
the Common Information Model [CIM], which is an object-oriented information model
standard for IT systems from Distributed Management Task Force [DMTF]. Because
CIM defines information models for a large number of IT resources (including models
for devices, networks, databases, and users), all conforming to a single meta-model, it
allows us to rapidly incorporate a large number of resources in the prototype without
having to construct resource models from scratch. All resource type definitions map to
classes in CIM (typically those under CIM_System class). Many types needed already
exist as CIM classes, but others (e.g., appserver, webserver, tiers, e-commercesites etc.)
have been added on top of the existing CIM classes.
Because construction policy is associated with the resource type definitions, it is
convenient to combine the policy specification for resource construction with the type
definition of the resource. In order to validate the approach, policy constraints need to be
defined for the existing CIM resource types in addition to the types that were added to the

Chapter 7: The Planning and Design Layer

152

CIM class hierarchy. However, the CIM meta-model does not provide for associating
policy instances with the type definitions. In this work, construction policy constraints are
explored that can be specified within the framework provided by CIM.
One possible approach is to represent constraints as properties within CIM classes, but
“tag” these special properties as constraints. CIM allows qualifiers for adding such
special tags to properties, and a new qualifier called “constraint” can be added on a
property to indicate that its value is a constraint as opposed to a typical property. The
following example demonstrates how a constraint such as “If the total visible memory
size of a machine is less than 10 MB, then its OS cannot be OS/390” using this approach.

<<code>>

Qualifier Constraint : boolean = false,
 Scope(property),
 Flavor(DisableOverride);
Qualifier ConstraintLanguage : string = NULL,
 Scope(property),
 Flavor(DisableOverride);
class CIM_OperatingSystem : EnabledLogicalElement {
 [Static, Constraint, ConstraintLanguage(“Text”)]
 string constraint1 =
 “if TotalVisibleMemorySize < 10000 then OSType != 60”;
}

Figure 34: Example of Managed Object Format (MOF).
This example is written in Managed Object Format (MOF) – a language used to describe
CIM models. The first two Qualifier declarations declare two qualifiers – “Constraint”
and “ConstraintLanguage”. This has to be done once so that the MOF parser understands
these qualifiers. The declaration of the class “CIM_OperatingSystem” includes a property
called constraint1, whose value contains the constraint expression. The “Static” qualifier
indicates that this constraint holds true for all instances of the class. The “Constraint”
qualifier indicates that this property has to be interpreted as a constraint. For simplicity,
the constraint itself is expressed in plain text (as indicated through the
“ConstraintLanguage” qualifier), although more formal constraint languages such as the
one described in this section or the Object Constraint Language [OCL] can be used to
represent the constraint expression.
The advantage of this approach is that it does not require a change in the CIM meta-
model. All existing CIM and MOF tools (such as parsers, repositories, and browsers) will
continue to work with this extension without any modification. However, they will not be
able to interpret the meaning of a constraint nor would they be able to parse or check
their syntactic correctness. For example, the MOF parser, which parses a MOF file and
stores the defined classes into a CIM repository, would treat these constraints as strings
and will not check for the correctness of the constraint expression. For a large number of
constraints, this approach would make creating and maintaining policies difficult.
Another approach to incorporate constraints into CIM is to change CIM’s meta-model. In
addition to classes containing properties and methods (as is currently the case),
constraints would need to be added as first class entities. This would require changes to
the MOF syntax as the following example demonstrates:

Chapter 7: The Planning and Design Layer

153

<<code>>

class CIM_OperatingSystem : EnabledLogicalElement {
 [ConstraintLanguage(“Text”)]
 satisfy “if TotalVisibleMemorySize < 10000 then OSType != 60”;
}

Figure 35: Example of a constraint expression added to a class.
The example shows a constraint expression added to a class in a more natural manner
using a “satisfy” keyword. Qualifiers can be used to add additional information about the
constraints, just like they are used to add additional information to properties and
methods. This approach would require changes to existing CIM tools, but is nevertheless
a more elegant and complete solution.
In addition, it needs to be explored how the constraints themselves will need to be
represented. One possibility is to use OCL. OCL is being proposed to DMTF as an
extension to CIM for defining constraints. OCL offers most of the constructs necessary
for construction policy; however, like CIM, it is complex. For the prototype, a simpler
language is used (with the grammar shown in [Gra05]). However, OCL constraints could
have been used in the prototype as well.

Figure 36: Policy engine as part of the automation tool chain.
A CIMOM based resource inventory has been implemented based on the SNIA CIMOM
[SNIA-OM]. In the inventory, the CIM resource model was extended for defining new
resource types that are required, have added constraints to the existing and new resource
types and have populated the CIMOM with these resource type definitions. A policy
engine was used that was developed in HP Labs to solve the constraint satisfaction
problem such that, given a set of constraints written in first-order logic with linear
arithmetic, it can be determined if the constraints are feasible, and if so, produce a
resource description that satisfies the request.
Figure 36 shows the basic architecture of the policy engine. When the request arrives at
the policy engine, it is parsed and checked against the resource model types available
from the type database. The summarizer captures all relevant resource types that may be
necessary to fulfill the request, collects all policy constraints from the different types, as
well as from the request, and converts them into an intermediate representation. The
formula generator uses these constraints to compose logical formulae that represent the
constraints. The solver reasons on the formulae and performs a feasibility check. If the

Chapter 7: The Planning and Design Layer

154

solver determines that a solution is feasible it uses the concretizer to create a system
specification that satisfies all the constraints [Ram06].

7.6.7 Related Work
Introducing constraints in UML specification of systems for configuration purposes is
discussed in [Fel99]. They define a set of construction rules at one place termed a domain.
In that sense the approach is similar to expert systems. In the approach, constraints were
hierarchically embedded distributing constraints on to various resource types, and taking
into account these constraints as the construction happens as opposed to creating a large
number of constraints (rules) a priori. This approach enables flexibility and extensibility
in specification of constraint and in automatic construction depending on the user
requirements. The differing user requirements may result in one construction being
different from another.
The ClassAds MatchMaking work [Ram98] assumes that the match-maker matches the
requestor entity’s request against the provider entity’s ClassAds (which are specifications
in a semi-structured language). The assumption is that all the resources (like machines)
exist a-priori and have been advertised. Some of the resource instances may not exist a-
priori (as is the case with transient/virtual resources) or may be logically constructed
resources that have to be instantiated on-demand (e.g. appserver/tier/farm/e-commerce
site). This causes a problem for approaches that undertake match-making only on
instances. The approach here enabled the construction on-the-fly by embedding
constraints hierarchically in the resource types as described here. The same concepts are
extensible to resource instances as well. It is also not clear whether the ClassAds
language supports first-order logic and linear arithmetic. As shown in the examples, it is
important to have notions of quantifiers, implications, equivalences and other first order-
logic expressions for reasoning.
There is significant work that has been done in the community in terms of specifying, and
associating events, conditions and actions for policies, namely IETF [IETFPol], CIM
[CIMPol], PARLAY [PARPol], [Slo93], PONDER [Slo01] etc. Additional work relates
to using policy for SLA management [Ver01]. These bodies of work have not considered
incorporating first-order logic and linear arithmetic based constraints in resource types
for automatic constructions of resources and have not used a constraint satisfaction
approach for arriving at a constructed resource specification. The WS-Policy [WS-Pol]
work at OASIS has focused on generic schemas for specifying arbitrary policy assertions
on web services. The constraints as specified in this article may be embedded inside these
assertions.
A CIM-based representation has been used to specify resource-level construction policies.
We have proposed an intermediate language based on first-order logic with linear
arithmetic extensions to enable reasoning and analysis on the policies and goals. As
shown in the examples, the language proposed by us is expressive enough to capture a
wide variety of resource models and policy behaviors. Once these policies have been
specified, resource construction can be framed as a goal-satisfaction problem using the
resource models for undertaking resource composition and component selection.

Chapter 7: The Planning and Design Layer

155

7.7 Summary
Modern data center environments are dynamic environments and deal with a large
number of complex heterogeneous resources. These environments have to configure
complex resources from other resource components while keeping in mind the user
requirements specified as goals, resource requirements/constraints and operator policies.
In this section the research for the Planning and Design Layer of the architecture of a
DCI-OS has been examined.
Specifically, these areas have been explored in which research has been conducted:

• Performance Engineering Processes for Data Centers [Rol08],
• Systematic Approach to Derive IT Configurations from Business Processes

[Gra08], and
• Resource Topology Design [Gra05].

It was discussed how automatic construction of complex resource environments can be
achieved in a more systematic manner by using experimental and automated methods, for
instance, by embedding constraints in the resource models themselves and using a
constraint satisfaction approach to solve the relevant constraints coming from multiple
sources. More and more advanced techniques are needed to allow better support for
decisions made in the data center planning stages.

Chapter 7: The Planning and Design Layer

156

Chapter 8: The Infrastructure Services Layer

157

Chapter 8

 The Infrastructure Services Layer

The Infrastructure Services layer primarily addresses the side of infrastructure services
with their main task to provide the execution environments for Application Services.
Figure 37 shows the layer as it was presented in the Architecture in Chapter 5. An
instance of an Infrastructure Service is shown as the set of configured resources within
the blue rectangular shape at the top of Figure 37. These resources have been acquired
from the data center resource environment and configured according to the specifications
provided by the Resource Topology which is a blueprint (a model) of the Infrastructure
Service defining the types and quantities of resources needed along with the proper
configurations as needed by the Infrastructure Service to support the Application Service.
The Resource Topology is defined as a model using the Common Information Model
(CIM) [CIM].

Figure 37: Infrastructure Services Layer with run-time support system.
As part of the DCI-OS, the Infrastructure Services Layer provides support systems which
allow acquiring and releasing resources from the data center-part of the DCI-OS as well
as deploying configurations onto those resources fitting the needs of the Infrastructure
Service. Resource acquisition and release as well as deployment tasks must be
coordinated in order to occur in the proper sequence.

Chapter 8: The Infrastructure Services Layer

158

These tasks are performed by three main modules,
• The resource Acquisition Manager – allowing the Infrastructure Service to request

and release resources of specified types and quantities;
• The Deployment Manager – allowing specific configurations to be deployed onto

freshly acquired resources; and
• The Task Automation Controller – coordinating the various activities which have

to occur when new resources are provisioned as well as coordinating the overall
lifecycle control tasks of the Infrastructure Service (create, start, suspend, resume,
stop, destroy).

More modules can be added as needed. The Run-time Driver module shown in Figure 37
establishes the connection with the Data Center-related part of the DCI-OS using web
services interfaces and protocols.
This architecture allows an Infrastructure Service to be replicated within one data center
(multiple instances are created) as well as migration of the Infrastructure Service into
other data centers. Purpose of the Infrastructure Services Layer is to provide modules
which are widely self-contained such that they can be recreated easy.
The purpose of the Infrastructure Services layer is similar to the run-time system in
operating systems. While an operating system run-time library also allows acquiring and
releasing resources from the underlying operating system, the task spectrum in the
Infrastructure Services layer is significantly broader due to the broader spectrum of
resources. In an operating system, considered resources are simple resources such as
memory, processor shares or external storage. For Infrastructure Services, resources
encompass entire machines, storage devices, and networks requiring additional
application of service-specific configurations which is performed by the Deployment
Manager in the Infrastructure Services layer.
Unlike in an operating system where the run-time system is part of the same process it
controls, the modules of the Infrastructure Services layer execute on separate
management machines which are dedicated to the DCI-OS. Reason for this decision is to
avoid interference between resources (e.g. machines) where Application Services execute
and where management functions execute. It is particularly important that the resources
of the management system remain available and functional when the resources of the
Infrastructure Service have been suspended or removed.
This chapter will discuss three particular modules of the Infrastructure Services layer:

• the Task Automation Controller,
• the Deployment Manager, and
• the Resource Acquisition Manager.

The Task Automation Controller is discussed because it demonstrates a principle of
declarative control over coordination tasks, which has been found beneficial over
traditional workflow-based coordination implementation (e.g. with workflow engines or
script executions). This declarative approach follows the pattern of a Controller which
allows setting a state (the declaration of what should be) as a Desired State and the
controller providing the logic how this state is achieved and maintained.

Chapter 8: The Infrastructure Services Layer

159

This is an advanced approach to coordination in management which often relies on
describing control flows (workflows, processes, scripts, etc.), which execute well as long
as no problem occurs. If a problem occurs, it is hard to identify where the flow broke,
which state has been altered and how to reset the affected components. Using the
declarative approach of a controller over specifying control flows has been extremely
beneficial and is one of the key insights of the development of the DCI-OS
The case of the Deployment Manager is discussed for another reason. It is presented to
demonstrate the integration of an existing management system into the architecture of a
DCI-OS for a specific role and a specific purpose. It cannot be assumed that all
functionality a DCI-OS requires will be redeveloped from ground up. Rather, a DCI-OS
will act as an integration platform of the various tools and systems which are in existence
today bringing their capabilities together for achieving deep, integrated automation
capabilities which cannot be achieved by individual management systems operated in
isolation. In this chapter, the case of integrating an existing deployment system (called
Radia) into the architecture of the DCI-OS is presented.
The task of the Resource Acquisition Manager is to provide the access to the data center
resources by communicating with the DCI-OS Resource Management Layer. The
Resource Acquisition Manager also follows a controller pattern where a certain level of
resource supply is constantly compared with the actual resource usage consumed by the
Infrastructure Service. It is an example of managing resources in a dynamic manner (like
it is the case in an operating system) in a data center rather than statically where resources
such as servers are acquired and dedicated to a specific application which cannot be
changed during use. Managing resources more dynamically and more effectively in a
data center has been a major requirement for a DCI-OS.
The discussion begins with the Task Automation Controller in section 8.1, continues with
the Deployment Manager in section 8.2 and finished with the Resource Acquisition
Manager in section 8.3.

8.1 The Task Automation Controller
This section presents the design and implementation of a specific module of the
architecture of a DCI-OS. This module, the Task Automation Controller, implements task
automation using the pattern of a controller which operates upon discrete management
states of an infrastructure service. The Task Automation Controller allows setting policy
in form of a so-called desired state in which an infrastructure service should be
maintained. Deviations from the desired state are detected by comparing the desired state
with a so-called observed state, and counter-actions are initiated automatically. If
automatic correction is not possible, such as in case of physical failure, events are
generated and propagated up in the management hierarchy.
The Task Automation Controller has been presented at IM'2007 [Gra07]. A novel
approach of this controller is that it uses an implementation based on Petri Nets in
combination with allowing setting control policy in terms of discrete management states
such as "ready" or "operational". An engine instantly starts executing the Petri Net when
state in either the desired or the observed state sets changed. Prior work to this controller
was presented in [Gra04], [Gra05a,b] and [Col05].

Chapter 8: The Infrastructure Services Layer

160

The section first gives a general introduction to IT task automation and then presents how
controllers are used to automate IT management tasks.

8.1.1 Automation in IT Management
Controllers in computer systems have mainly been explored for automating regulative
tasks such as admission control or resource supply control. The majority of IT
management tasks, however, rely on discrete management states and coordinated
transitions between those states.
The section shows how the concept of a feedback system can also be applied to automate
operational management tasks. The section introduces the concept and a realization of a
Task Automation Controller, which operates on discrete management states expressed as
a pair of models for desired and observed state. Models are represented as a special form
of Place-Transition Nets (PTN or Petri Nets). Controller logic directly executes PTN in
order to achieve and maintain alignment between desired and observed state in a
managed domain. In contrast to workflow systems, PTN combine the description of state
and actions in one model (graph).
Three operational database management tasks have been implemented as a proof of
concept in a blade server automation infrastructure using the Task Automation Controller.
The reality of IT management is dominated by a legacy of management systems which
have been designed as tools for human operators, not for automation and self-
management. Today, IT management can be seen as at a stage of mechanization where
operators use management systems as tools to carry out management tasks. Management
systems are designed as tools for operators and facilitate operations through consoles.
Some tools, and lately more and more tools, also provide API to allow programmatic
control and scripting for integration in process automation chains.
One can identify three stages of automation which are found in IT management today.

• The 1st Stage of Automation: Scripts and Workflows. Automation at this stage is
characterized by management tools that can be accessed through API or command
lines enabling scripts and workflows to describe action sequences of repeatable
management tasks. The operator initiates the script or workflow execution as
opposed to actions individually.

• The 2nd Stage of Automation: Policies. Initiation of action sequences can be
triggered by conditions reported as events from the managed system. Definitions
of Event-Condition-Action (ECA) triples are also often referred to as ECA
polices. As events are reported from the managed environment, they pass through
a sequence of conditions, and for each condition evaluating to true, the associated
action sequence is executed. ECA policies are widely used IT management
[Slo01].

First and second stage automation have no knowledge about the changes executions
cause in the managed environment. An action sequence runs once when initiated. There
is no inherent ability to detect whether the goal which caused the execution actually has
been achieved in the managed environment or not.
To some extent, conditions in ECA policies can be seen as representations of a desired
state such as thresholds that should not be passed. However, an ECA system relies on

Chapter 8: The Infrastructure Services Layer

161

external events to trigger evaluation for executing actions, which is the difference to a
controller that autonomously evaluates conditions and triggers actions in order to
maintain a managed environment aligned to its desired state.

• The 3rd Stage of Automation: Controllers. A controller has a description (model)
about a desired status of its controlled domain. It also has a reflection (model) of
the current status that is observed from the controlled domain. Both models,
which are called the Desired State Model (DSM) and the Observed State Model
(OSM), are constantly evaluated by the controller. Corrective actions are deducted
and executed as differences occur between the two models.

Intended change in the controlled domain is achieved by changing the desired state
model, either manually by an operator or programmatically by another system or
controller. Unintended change can occur any time the system that is reflected back into
the observed state model such as in case of a failure. Both kinds of changes may initiate
actions in the controller in order to maintain alignment between observed and desired
state. Controllers may not be able to achieve alignment under all conditions. Those cases
need to be detected and reported to a superior instance as uncorrectable conditions

8.1.2 The Controller Concept in IT Management
In general, a controller adjusts conditions of a controlled (or managed) element or domain
by altering control knobs as a function of measured parameters and controller settings.
Measured parameters can be interpreted as a form of observed state. Controller settings
can be seen as a form of desired state. Controller settings or desired state represents a
goal according to which the controller aligns the controlled element by adjusting its
control knobs according to the result of the evaluation of the control function. A large
body of literature exists on feedback control in computing systems [Hell04].
Controllers have been introduced to computer systems in a variety of ways:

• Regulative Controllers operate based on numeric input for measurements and
settings to their control functions, which produces numeric output for control
knobs in the controlled environment. Examples are admission controllers, which
throttle incoming workload when it surpasses processing capacity [Hell01], or
flex controllers, which expand or shrink resource supply based on workload
[Wang05]. Controller settings can only be altered from outside, not by the
controller itself.

• Adaptive Controllers can alter (tune) the control settings or even the control
function as result of reasoning upon observed behavior in the past and deriving
predictions for the future [Ast94], [Xu06]. Adaptive admission controllers have
been shown in [Wels03]. Adaptive flex controllers have been presented in
[Liu05].

• Autonomic Manager is a basic concept of Autonomic Computing [Kep03]. It
defines a closed loop with stages: monitor, analyze, plan, execute for a managed
element or domain. A number of controllers have been implemented based on this
concept, mainly regulative and adaptive controllers [Smith04].

• Task Automation Controller which is discussed in this section is similar to a
regulative controller. In contrast, it is not based on numeric control parameters,

Chapter 8: The Infrastructure Services Layer

162

settings and function; it uses two discrete state models associated with a managed
domain, the desired state model and the observed state model. The control
function represents discrete state logic that evaluates the two models and produces
a sequence of actions based on differences. A Task Automation Controller also
meets the general criteria of the Autonomic Manager concept. It is a specific form
directed to IT task automation and composition of automated IT management
process chains.

8.1.2.1 Problems With Workflow Systems
The modeling framework determines the expressiveness of models. It also determines the
mechanisms that are required for interpretation (the controller logic in this case).
Using sole declarative models entirely hides the logic for interpretation inside the
controller. A declarative model only describes a desired or observed state (data). It does
neither describe how this state should be interpreted, nor how it came to this state and
what should happen in that state. Current model-driven approaches to IT management
favor the use of declarative models [Thom05].
While this seems desirable at a fist glance, it has a number of shortcomings:

- Logic is built into controllers, typically hard-coded and cannot be customized.
- Logic is not modeled, hence remains unclear and hard to trace.
- Since logic depends on the structure and semantics of models, changes will likely

break the controller logic requiring code replacement in controller instances.
- Controllers depend on interactions with the managed environment. Sole

declarative models do not provide means to describe those interactions and
dependencies.

- Controller composition and automated IT management process chains require
coordination among controllers. Again, when logic is built into the code of the
controller, it cannot be customized making automated IT management process
chains difficult to build and maintain.

Using declarative models in combination with built-in controller logic may be desirable
for lower-level resource controllers with a fixed behavior. It is not sufficient for higher-
ordered controllers that operate at a level of automated IT management process chains
that require customization and adaptation in a customer environment.

8.1.2.2 Alternatives
To overcome the problem of separation of the model from its interpretation (logic),
models can be supplemented with the interpretation logic to avoid hard-coded logic in
controllers. Some modeling frameworks support the representation of interpretation rules.
An example is the Resource Description Framework (RDF). A rules engine like the Jena
Rules engine could execute the model interpretation rules that are part of the model.
However, dynamic behavior is hard to integrate in rule engines.
Workflows are typically used to describe configurable, dynamic behavior across systems
and execute on it. However, it is difficult to represent state in workflows, such as
observed or desired state of a managed element. Once again, it leads to the separation

Chapter 8: The Infrastructure Services Layer

163

between “state models” and “execution logic”, although the execution logic is now
configurable in a workflow engine and not built into the controller.
Another aspect with workflow languages such as BPEL is that they are designed for
business transactions, which may suit higher-level, more transactional IT management
processes, but is not a good match for the asynchronous and partially unpredictable
behavior that occurs in a dynamic management environment such as asynchronous events,
race conditions or critical sections.
A balance needs to be found that brings all those aspects together: the representation of
desired and observed management states, the description of dynamic interactions and
dependencies with other controllers, and the representation of interpretation logic in a
form which allows to execute on a generic engine as opposed to built-in code in
controllers.

8.1.3 Task Automation Controller Design and Implementation
For the Task Automation Controller, initial ideas of a Service Delivery Controller
[Col05] have been taken and generalized. The general components of the Task
Automation Controller are shown in Figure 38 with the following components:

- DSM Interface through which the desired state model is accessed (read/write);
- OSM Interface through which the observed state model is accessed (read only,

subscriptions to change events);
- Controller function (logic) which consists of:

- Differencer logic which compares the desired and the observed state model;
- Action sequencer logic which derives actions from the difference;

- Observer Connector through which the observed state model is updated from the
managed environment (polled by the controller or event-based);

- Actuator Connector through which actions are passed into the managed
environment for execution.

Figure 38: Overview of the Task Automation Controller.

Control information flows into the controller in form of desired state definitions and
changes to those definitions through the DSM interface. It also flows into the controller

+

_

Diff Action
 Sequence

Managed Environment

Desired
State Model
(DSM)

Observed
State Model
(OSM)

Observer
Connector
(OC)

Actuator
Connector

OSM / DSM Interfaces

(AC)

Chapter 8: The Infrastructure Services Layer

164

as changes to the observed state model through the observed connector. The controller's
internal control loop aims to maintain the alignment between observed and desired state
by deriving and issuing actions through its actuator connector. If this cannot be achieved,
superior instances can subscribe to event types at the observed state model interface to be
notified when those conditions occur.

8.1.3.1 Approach: Petri Nets
Place-Transition Nets provide a good approximation:

- State can be represented in a Place-Transition Net,
- Interactions with managed environment causing state changes can be expressed,
- Dynamic behavior and coordination with other controllers can be represented,
- Synchronous and asynchronous interactions can be modeled,
- Place-Transition Nets can be executed (interpreted) by a generic execution engine.

Place-Transition Nets are well proven in domains such as manufacturing and supply
chains. They have also been used in telecommunications for modeling and verifying
protocols. A large body of experience and knowledge exists, from formal techniques for
proving liveliness or reachability to simulation environments. However, despite favorable
properties, PTN have not widely been leveraged in IT management and automation,
which may partially be due to a lack of tooling and experience with PTN in the domain of
IT management.
The realization of the Task Automation Controller presented in this section applies Place-
Transition Nets as the modeling framework for representing the models for desired and
observed states and for executing controller logic by interpreting PTN. A generic Place-
Transition Net execution engine was built and included in controllers replacing their
hard-coded logic. All interactions with the managed environment as well as with other
controllers are driven by interpreting PTN.

8.1.3.2 Place-Transition Nets (PTN)
Place-Transition Nets (PTN) or Petri Nets were first introduced in [Petri62]. A Petri Net
is defined as a 6-tuple (S, T, F, M0, W, K) where S is a set of places and T is a set of
transitions. F is a set of arcs between either a place and a transition or a transition and a
place:)()(STTSF ×∪×⊆ . A token is a construct that represents state in a place.
A distribution of tokens over the places in a net is called a marking. M0 is the initial
marking, M0 : S → N with each place s∈S having n∈N initial tokens. W : F → N is a set
of arc weights Nn ∈ assigned to each arc f∈F denoting how many tokens are consumed
from a place by a transition and how many tokens are produced by a transition and added
to a subsequent place. K : S → N is a set of capacity restrictions which assigns to each
place s∈S some positive number n∈N denoting the maximum number of tokens that can
occupy that place. A net in which each of its places has some capacity k is known as a k-
bounded Petri Net.
Places may contain any number of tokens up to the capacity restriction k∈K. A marking
is altered mi → ti,j → mj, mi∈M, mj∈M when transition ti,j∈T fires. Firing a transition is
an atomic operation.

Chapter 8: The Infrastructure Services Layer

165

Transitions may fire, when they are enabled. Transitions are enabled when they have at
least the amount of tokens in each input place specified by the inbound weight of the
transition (default is 1). When a transition fires, it consumes the weight amount of tokens
from each inbound place and adds the amount of tokens specified by the outbound weight
to each outbound place (default is 1).
These fundamental properties of Petri Nets allow reasoning on properties such as
reachability, liveness or boundedness.
Execution of Petri Nets is nondeterministic. Multiple transitions can be enabled at the
same time, any one of which can fire in any order or simultaneously. Transitions may not
fire immediately when they become enabled or may not fire at all. Since firing is non-
deterministic, Petri Nets are suited for modeling asynchronous and concurrent behavior
of distributed systems [Pett81].
However, some assumptions must be made in regard to non-determinism for the practical
use of PTN for task automation. Furthermore, a combination of three extensions Colored
Petri Nets (CP-Nets), Hierarchical Petri Nets and Timed Petri Nets is used.

8.1.3.3 Colored Petri Nets (CP-Nets)
In a basic Petri Net, tokens are indistinguishable (“black”) and themselves stateless. Only
their assignment to a place at a time determines the state (marking) in the network.
A number of examples in the domains of network protocols and manufacturing supply
chains are shown in [Jen98] where distinguishable items travel through a network as
tokens following the PTN rules. Those items (represented as tokens) must carry own state
("color") in order to be distinguishable. Prof. Kurt Jensen from the University of Aarhus
has developed Colored Petri Nets [Jen97] by introducing following extensions:

- assign state (a value) to tokens that is defined by a simple or complex type,
- assign a type to places determining the type of tokens it can hold,
- allow multi-sets of tokens of same type and value by specifying coefficients, and
- assign expressions (functions) to arcs that can be bound to token values and

evaluated when tokens pass through transitions during firing.
Transitions in a CP-Net thus do not only alter the marking of the overall net and bring
tokens to other places. Evaluation of arc expressions also allows altering the state within
tokens when they pass through a transition. Those functions can alter token state.
Tokens do not share their states. States of multiple tokens can be combined as result of
evaluating arc expressions when they are part of the same transaction and hence part of
the same evaluation process. Altering states in tokens by evaluating arc expressions
allows “programming” in a CP-Net. Tools have been developed for CP-Nets that are
widely used, such as CPNTools [CPN].

8.1.3.4 Hierarchical Petri Nets
The idea behind hierarchical Petri Nets is to introduce scope, reusable building blocks
and a modular structure in larger nets. Each place can be expanded into a (sub-) net into
which tokens flow via inbound transitions, internally travel through the subnet and finally
return or produce tokens in the surrounding net. Nets and places within nets can be made
self-similar such that they can be composed hierarchically [Hub91].

Chapter 8: The Infrastructure Services Layer

166

Inbound and outbound arcs to a (subnet-) place also define the interface to an underlying
net. The structure of this net can remain hidden as long as the interface is known.
Properties of Hierarchical Petri Nets and examples of reusable subnets (such as for
critical sections or the reader-writer problem) are discussed in [Cho82].

8.1.3.5 Timed Petri Nets
Petri Nets are non-deterministic in terms of when enabled transitions fire or if they fire at
all. Again for practical reasons, Timed Petri Nets allow to define an interval within which
an enabled transition must fire. The lower bound of the interval defines the minimal and
the upper bound the maximal time an enabled transition must or can wait to fire.

8.1.3.6 Combination of Colored, Hierarchical, Timed Petri Nets
A combination of the three Petri Net extensions has been chosen as foundation for the
PTN used in the Task Automation Controller. In addition, following assumptions are
made, which are explained later in the text:

- Two types of places are introduced: regular places and connector places.
- Two types of tokens are introduced: regular and activity tokens.
- Two special transition rules are introduced called bonding and detaching.
- The ambiguity of a conflict (“confusion”) in a PTN is resolved by labeling

outbound arcs from places with disjunctive values and introducing a choice field
as part of a tokens data type. In case of a conflict, the outbound arc with a
matching choice label determines the next enabled transition.

- CP-Net multi-sets are not allowed.
- The default firing interval for transitions is [min=0, max=0], which means that

transitions fire immediately as soon as they become enabled. The firing order of
multiple simultaneously enabled transitions is arbitrary (undefined). The firing
interval can be redefined for transitions.

8.1.3.7 Workflow Patterns Expressed in Petri Nets
Figure 39 shows common workflow patterns in terms of PTN. Case (a) shows a simple
sequence. Since the default weight of arcs is 1, the token in place s1 enables transition t1,2.
Firing t1,2 brings the token to place s2 by reducing the number of tokens in s1 by 1 and
increasing it by 1 in s2. Case (b) is similar, except that 1 token is added to both places s2
and s3. One token from s1 becomes duplicated in places s2 and s3. Both tokens in s2 and s3
are independent, which semantically corresponds to forking a process.
In case (c), transition t1.2,3 is only enabled when both inbound places have at least one
token each. Following the normal transition rule, 1 token is removed from each inbound
place s1 and s2 and 1 token is added to s3. This means, two tokens from s2 and s3 join at
this transition. Two independently traveling tokens are synchronized.
The literature refers to case (d) as conflict or as “confusion” because both transitions t1,2
and t1,3 are enabled. Only one transition can fire since the one enabling token cannot be
reduced twice by two firing transitions. Classic Petri Nets define this case as non-
deterministic choice for selecting the firing transaction. One common approach to turn
this case into a deterministic choice is to label outbound arcs (such as with “success” or

Chapter 8: The Infrastructure Services Layer

167

“failure” in the figure) and determine the firing transition by computing a result against
which the labels are compared. This results into the known branching pattern.

Figure 39: Basic workflow patterns as Petri Nets.
Case (e) shows a convention which is often used in Petri Nets to abbreviate bidirectional
arcs. Both notations are semantically equivalent. Note that the bidirectional transition
actually represents two transitions.

8.1.4 Representing Desired and Observed State Models as PTN
Figure 40 shows a simple lifecycle model for class of servers as pair of PTN for desired
and observed states. A pair of tokens (md, mo) represents the managed element, which is
a particular server instance. Position of token md in a place in the desired state model
represents the desired status of the managed element. Position of token mo in a place in
the observed state model represents the observed status of the element in the managed
environment.

Figure 40: Simple lifecycle models for a server expressed as Petri Nets.
(The transitions in Figure 40 are not yet controlled.)
A token md in place sd1 in the desired state model (as shown in the figure) means that the
server is supposed to be up. The token in sd2 would mean that the server is desired to be
down. A token mo in place so1 in the observed state model indicates that the server is

so1
so2

so3
t1,2 t2,3

t3,2 t2,1
down

booting

up

down up

sd1 sd2 Desired
State
Model
(DSM)

t1,2

t2,1

Observed
State
Model
(OSM)

t1,2 – bootstrap
t2,3 – bootstrap
t3,2 – shutdown
t2,1 – shutdown

t1,2 – start
t2,1 – shutdown

correlated places

token:
md

token:

mo

so4
shutdown

ignited

finished

ignited

finished

server

server

(b) fork

(d) choice

(a) sequence

(c) join

(e) bidirectional arcs

[success]

[failure]

s1 s2

s2

s2

s2

s2

s2

s1

s3

s3

s1

s1 s1

s1

t2,1

t1,3

t1,2

t1,2

t1,2 t1,2.3

t1.2,3

t2,1

t1,2

s3

<==>

Chapter 8: The Infrastructure Services Layer

168

observed as down (as shown in the figure). A token in so2 would mean the server would
be in the process of booting. The token in so3 would mean that the server would be
observed as up, and the token in so4 would indicate the server is shutting down.
There are correlations between certain places in the desired and the observed state models
such as sd1 and so1 [down] and sd2 and so3 [up]. Those correlated places represent
alignment between desired and observed state when the two tokens (md, mo) reside in
those correlated places. Correlated places represent the same management status, either
as desired or observed. Correlated places are defined as one-to-one relationships between
pairs of places from the desired state model: SDS = { sdi }, i=1…n and from the observed
state model SOS = { soj }, j=1…m, j ≥ i.
A set of correlated places C is defined as set C = { (sdi , soj) } with∀ sdi ∈ SDS : sdi →
soj and soj ∈ SOS : sdj → soi . For each place in a desired state model, there must be a
correlated place in the observed state model. There may be more places in the observed
state model that represent intermediate stages of a managed element (such as booting).
The correlated places for the example in Figure 40 are: C = { (sd1 , so1), (sd2 , so3) }.
A managed element is aligned when its pair of tokens (md, mo) is residing in a pair of
correlated places. The subset of markings that represent alignment between desired and
observed states is MALIGN : md → sdi, mo →soj with (sdi, soj)∈C. Any other marking
represents non-alignment between desired and observed state for the managed element.

8.1.5 Petri Net Interpretation of the Controller Logic
In context of the Task Automation Controller, two main domains are modeled as PTN:
one is the model of Desired State (DS) and one is the model of Observed State (OS) for a
managed environment.
A place represents a desired or observed state in the managed environment. Examples of
such states are: [system is down], [server is down], [application is running], or
[maintenance is in progress]. States of a typical lifecycle diagrams correspond to places
in a PTN. (A notation is used in the following for describing [states] and <transitions>).
A transition represents a change between those states. When the prior state was [server is
down], and the subsequent state in the model is [server is up], then the transitions
between the two states is <boot>. Since booting of a server is a longer term operation, it
by itself can be modeled as a state: [server is booting]. It is good practice to model rather
“short” or “timeless” indications as transitions such as <ignite server boot>, followed by
the [server is booting] state (place), followed by a transition <bootstrap finished
successfully> before entering the [server is up] state.
Figure 41 shows the expansion of a regular PTN transition into a transition state s2, which
is a regular PTN place. The transition [s1=DOWN] → <t1,2=BOOT> → [s2=UP] expands to
[s1=DOWN] → <t1,2=IGNITE BOOT> → [s2=BOOTING] → <t2,3=BOOT FINISHED> → [s3=UP].
A token represents a managed element. The place in which a token resides defines the
(either desired or observed) status of the associated managed element. Since tokens can
carry own state, multiple managed entities (e.g. multiple servers) can be represented and
transition in the same PTN, each independent from the others. Each managed element is
represented by a pair of tokens, one representing its desired and one representing its
observed state in the two PTN models, respectively.

Chapter 8: The Infrastructure Services Layer

169

The equivalent of a token in the workflow language BPEL would be a BPEL message.
However, messages in workflow languages are meant to be received and processed
according to the workflow definition.

Figure 41: Expansion of a transition into a transition state.

8.1.6 Deriving Actions from Desired State Changes
A state of alignment can only change when either new desired state is defined or when a
change occurs in the managed environment that reflects back to a change in observed
state. Both changes lead to non-alignment since at least one token must transition from
the correlated pair of places to another place, and one place can only be in one correlation
according to the definition of C.
In case desired state is changed (intended change), the controller must determine a
sequence of actions that brings the managed environment into new alignment. In the
example, when desired state of a server is changed from [down] to [up], the boot process
must be ignited and completed before the observed state can indicate that the server is up.

Aligned state: c1=DOWN = (sd1, so1).
 1.) md → sd2 with t1,2 firing in DSM leading to:
 2.) mo → so2 with t1,2 firing in OSM (igniting the server
 boot and booting the server),
 3.) mo → so3 with t2,3 firing in OSM (server boot
 completed).
Aligned state: c2=UP = (sd2, so3).

Server shutdown follows the same pattern. It will later be shown how error conditions
can be taken into account and eventual corrective actions can be derived from error states.
Errors and failures are examples of unintended changes that may occur in the observed
state model.
All activity of the controller depends on firing transitions in DSM and/or OSM. In order
to control firing, DSM and OSM are extended by connector places and activity tokens.

8.1.6.1 Connector Places
Connector places supplement DSM and OSM to provide the interfaces with the
environment. Tokens can be generated or consumed in connector places as effects of
interactions with the environment. Those interactions occur with the managed
environment, with a user interacting through a console or with other controllers.
Connector places may be source connector places or terminal connector places. The
union of source and terminal connector places represents the interface of the PTN.
A source connector is a place that interacts with the environment and creates new activity
tokens as effect of this interaction. A source connector has only outbound arcs. A

s2=UP

t2,3
s2=BOOTING

s1=DOWN

t1,2

t1,2=BOOT

s3=UP s1=DOWN

Chapter 8: The Infrastructure Services Layer

170

terminal connector is a place that interacts with the environment when it receives an
activity token and initiates an action. Activity tokens may be consumed during this
interaction. Connector places may exist that are neither source nor terminal to represent
intermediate stages. Connector places supplement PTN for DSM and OSM allowing so-
called activity tokens to travel.

8.1.6.2 Activity Tokens
While tokens so far have been introduced to represent managed elements, activity tokens
represent actions or state changes associated with managed elements. Activity tokens are
the only cause of transitions for regular tokens in a DSM or OSM. Activity tokens are
used to initiate and control the transitions in DSM and OSM nets. Activity tokens are
associated with a specific managed element (and the representing token) to which the
interaction applies.
While regular tokens (representing managed elements) can only travel through regular
(non-connector) places, activity tokens may travel both under two special transition rules:

- Join transition (bonding): an activity token enables a join transition only for the
associated (managed element) token and bonds with it during the transition. It
remains bonded until it is detached from the regular token.

- Fork transition (detaching): if a bonded token arrives at a fork transition where
following places include both connector places and non-connector places, activity
tokens detach from carrying regular tokens and pass along the arc(s) to the
connector place(s), while the regular token passes along the other arc(s) to non-
connector places.

8.1.7 Deriving Actions from Desired State Changes
Figure 42 shows the desired state model from Figure 40 supplemented with connector
places sc[1,2,3,4] in a state before and after transition t1,2 has fired.
An activity token is shown in a source connector place sc1 before t1,2 has fired. This
activity token might have been created as effect of a user interaction to change the
desired state from [down] to [up]. The occurrence of the activity token in sc1 enables and
fires transition t1,2 (under the assumption that the activity is associated with the managed
element represented by the token in sd1).

Figure 42: Desired state model before and after firing transition t1,2.

(Non-connector places are shown with grey shading in the following figures. Connector
places are without shading.)

down up

sd1 sd2
t1,2

t2,1

sc2 sc1

sc3 sc4

down up

sd1 sd2
t1,2

t2,1

sc2sc1

sc3 sc4

 (before t1,2) (after t1,2) action: ignite

Chapter 8: The Infrastructure Services Layer

171

The join rule applies to transition t1,2 (multiple inbound arcs into t1,2), which means that
the activity token in sc1 bonds with the one in sd1. Transition t1,2 is also a fork transition
(multiple outbound arcs from t1,2 leading to connector and non-connector places) such
that the bonded tokens immediately separate. The activity token transitions into sc4 while
the token of the managed element transitions into sd2 (new desired state [up]).
The arrival of the activity token in terminal connector place sc4 can trigger an action in
the managed environment to ignite the boot process. Connector states sc2 and sc3 have the
reverse effect when desired state is changed from [up] to [down].
Source connector places in DSM such as sc1 and sc2 provide the control elements for
altering the desired state for a managed element. Terminal connector places in DSM such
as sc3 and sc4 represent actions that are initiated for a managed element when an activity
token arrives.

8.1.8 Reflecting Observed State Changes
Observed state changes as effect of reported changes from the managed environment.
The same concept of connector places and activity tokens is applied. Source connector
places are associated with sensors in the managed environment creating activity tokens
when change is observed for a managed element. Activity tokens bond with the tokens of
the managed elements for which changes were observed. Transitions of bonded tokens
then lead to changes in the observed state model.

Figure 43: Observed state model with connector places.
Figure 43 shows the observed state model from Figure 40 supplemented with connector
places for responding to changes in the managed environment. The token of a managed
element resides in place so1 ([down]). When the boot sequence is initiated (as effect of an
activity token arriving in place sc4 in Figure 42 and triggering ignition), this ignition can
be observed in the managed environment and reported as an activity token arriving in sc5,
which enables transition t1,2 and, during firing, bonds the activity token to token mo. The
bonded token then resides in place so2 ([booting]). When the boot sequence was
completed successfully, an activity token is reported to so6 enabling t2,3. Based on the
rules for bonded tokens, the token separates from the activity token during t2,3, bringing
the regular token to so3 ([up]) and the activity token to sc7 where it is consumed. Place
so3 is a place that is correlated with place sd2 in the desired state model. The state of the
managed element is now aligned with its desired state.
The nets for DSM and OSM are indirectly connected through connector places. When a
terminal connector place in the desired state model receives an activity token, an effect in
the managed environment is triggered, which is reported back as another activity token
arriving in a connector place in the observed state model. Occurrence of those activity

so1 so3
t1,2 t2,3

t3,2 t2,1 down booting up
token:
mo

shutdown

sc9 sc8

sc7

sc10

so2

so4

sc6
bootstrap

successful

sc5
ignition

observed

shutdown

successful
shutdown

ignited

Chapter 8: The Infrastructure Services Layer

172

tokens then can enable transitions in the observed state model. Figure 44 shows this
indirect linkage between DSM and OSM. A direct linkage between connector places in
DSM and OSM can also be established by connecting places through a direct transition.

Figure 44: Linkage between initiating change and observing it.

8.1.9 Deriving Actions from Observed State Changes
In addition to intended changes in the managed environment which are derived from
changes in the desired state model, error, failures and other conditions may occur in the
managed environment any time. When those are reported, they also lead to the creation of
activity tokens in connector places. The observed state model must take these conditions
into account and must be designed accordingly.
For instance, the boot process of a server may end with a failure or may not complete
within an expected time. An additional error place is introduced in the observed state
model (so5 in Figure 45) to reflect those conditions.
The actual status of the server is unknown at this point. As long as the desired state still
in [up], the observed state Petri Net may be designed in a way that it includes a sequence
of corrective actions by attempting to reboot the server by:

 1.) power cycle the server (bringing it into a defined state [down]) and
 2.) re-igniting the boot sequence.

Figure 45: Extended observed state model with error correction.

so1
t1,2

down
booting

Managed Environment

so2

sc5

down up

sd1 sd2
t1,2

sc4 action:
ignite

ignition:
observedDSM OSM

so1
so2

so3

t1,2 t2,3

t3,2 t2,1 down booting up
so4

shutdow

sc15 sc4

sc7

sc10

error
sc6

bootstrap

successful

boot error

observed

timeout

sc11
sc12

so5

sc9 sc8
shutdown

successful
shutdown

ignited

sc5
ignition

observed

power cycle

so6

power cycle

completed
action:
ignite

t2a,5

t2b,5

t5,6
t6,1

sc13
action:
power
cycle

sc14

retry?

Chapter 8: The Infrastructure Services Layer

173

Figure 45 shows the PTN which handles these cases. Two new places so5 [error] and so6
[power cycle] have been introduced as well as five new connector tokens sc11 [boot error
observed], sc12 [timeout], sc13 [retry], sc14 [initiate power cycle] and sc15 [power cycle
completed]. The figure shows the token in place so2 [booting], which has three possible
outcomes represented by three transitions t2,3, t2a,5 and t2b,5. They are enabled by activity
tokens arriving in sc6 [bootstrap successful], sc11 [boot error observed] or sc12 (timeout).
Place sc12 receives an activity token after t1,2 has fired starting the timer as side effect.
In case of error, the token in place so2 [booting] bonds with an activity token arriving
from connector places sc11 [boot error observed] or sc12 [timeout] and transitions to place
so5 [error]. An activity token in place sc13 indicates that the controller should retry the
boot cycle leading to the transitions to place so6 [power cycle]. At this transition, activity
tokens are separated and placed into sc13 (to maintain the retry marking) and sc14, which
is a terminal connector place that starts the power cycle. The end of the power cycle is
indicated by an activity token arriving in place sc15, which enables and fires transition t6,1.
This transition separates the activity token into sc4 which ignites the bootstrap (see Figure
42). The token now resides in the initial place so1 [down] and the process repeats.
Whether or not the retry cycle will be performed in case of error depends on the marking
of sc13. This marking can be made dependent on whether or not the desired state for the
server is still [up] or other conditions (not shown in the figure).

8.1.10 Controller Composition
Multiple controllers will interact in an automated IT management process chain, each
responsible for a specific task or managed domain. Coordination among controllers is
needed. Higher-ordered controllers mainly perform coordination tasks. They contain the
composition models that span across underlying controllers and constitute an automated
IT management process chain.
The self-similar structure of the Task Automation Controller allows the composition of
controllers as shown in Figure 46. Actions initiated by the upper controller are applied as
desired state changes to underlying controllers. And reversely, observed state in
underlying controllers constitutes the observed state of a higher-ordered controller. The
interaction points among controllers are:

• higher Actuator Connector to lower DSM,
• lower OSM to higher Observer Connector to higher OSM.

Figure 46: Composition of Task Automation Controllers

OSM DSM

OSM DSM DSM OSM

OC AC

OC AC OC AC

Chapter 8: The Infrastructure Services Layer

174

Source and terminal connector places are the “interfaces” at the model level. Connector
places are accessed through DSM or OSM Interfaces. Activity tokens arriving in terminal
connector places can cause inter-controller activity. Activity tokens arriving in source
connector tokens can then cause changes in PTN. Events can be issued to subscribers
when the OSM or the DSM changes, which also lead to the creation of activity tokens in
source connector places in PTN.
All those interactions are mediated through "get", “put”, "transfer", and "push/subscribe"
operations defined for web service management standards [Gra04b], [WS-MAN].

8.1.11 PTN Execution Engine
A PTN Execution Engine was implemented (in Java) that interprets DSM and OSM. It
forms the core part of the Task Automation Controller. PTN Schemata have been defined
for DSM and OSM models which allows to represent PTN models in XML. Places are
static XML fragments which can be addressed by xpath expressions. Tokens are
represented as dynamic XML fragments that are associated with one place at a time.
The engine operates on the XML (SAX) trees of the DSM and OSM PTN models and
interacts with the web service endpoint interfaces provided by the controller toolkit.
Operating directly on XML tree representations of models also ensures that model state
exposed through the DSM and OSM interfaces is always up to date. The engine is
triggered when a new activity token arrives through one of the controller interfaces. Only
arrival of activity tokens can alter model state.
Java class names are associated with terminal connector places, which are instantiated
when activity tokens arrive. Updates or events associated with DSM or OSM are directly
transformed into the creation of activity tokens in the addressed places along with the
invocation of the engine.
A toolkit [Gra06] was developed for implementing controllers based on web services
management standards. This toolkit was used for building the controllers for the database
use cases described later. Controller interfaces employ web service management
standards [Gra04b]. Web services management standards WSRF [WS-RF] and WSDM
[WS-DM] were initially employed using the open source WSRF implementation from
Globus GT4 [GT4] as basis for the toolkit supplemented with WSDM schema. The
controller toolkit has been refactored to support the more recent WS-Management [WS-
MAN] standard. All web services management standards provide similar operations to
access XML representations of models as well as event notifications.
Web services management standards achieve interoperability at the interface level. In
regard to models, they only require that models are or can be rendered in XML. They do
not impose a specific modeling framework. Interoperability at the model exchange level
requires additional agreement. In the current controller realization, models are defined as
XML schema and are proprietary. Compliance with the recently emerging modeling
framework Service Modeling Language (SML) [SML] is desirable and will be factored
into controller models as its common and core model definitions mature.

8.1.12 Controller Automation Use Cases
This section describes a controller-based automation scenario that was built as joint effort
between a team from HP and one from Oracle using the controller toolkit. The goal was

Chapter 8: The Infrastructure Services Layer

175

to demonstrate model-driven automation for selected task automation use cases. The
testbed consisted of HP blade servers (eight servers of type BL20p, dual Pentium III,
3.2GHz, 4GB), HP SAN disk array with two fiber channel switches, and a HP ProCurve
2848 LAN network.
The automation use cases demonstrated coordinated lifecycle and auto-correction
capabilities for error situations that would require human attention during operation in a
traditional system. The three automation use cases were:

1.) Automated provisioning and coordinated lifecycle control of an Oracle database
on blade servers.

2.) A storage auto-correction capability by automatically configuring and attaching
new disks from the SAN to servers when Oracle Enterprise Manager predicted
storage shortage due to growing table sizes in the database.

3.) Response-time auto-correction during operation by flexing additional blades into
the database pool when response times increased above a threshold due to load
increases.

All use cases required the direct interaction between the two management systems from
HP and Oracle. Neither system could achieve them alone. All interactions between
systems were normalized as model exchanges between controllers.
To actuate actual changes in the managed environment, two management systems were
employed: HP blade server automation software and Oracle Enterprise Manager. Both
systems had to cooperate in order to solve the automation use cases, which would have
required the point integration between the two systems in a traditional approach. Instead,
both systems were wrapped into controllers using the controller toolkit.
Three controllers were created with models:

• HP Blade Automation Controller,
• Oracle Enterprise Manager Controller, and an additional
• Coordinator Controller.

The first two controllers were implemented as wrappers around HP blade automation
infrastructure and Enterprise Manager from Oracle. The third controller was created for
coordinating the two other controllers. It coordinated activities and composed them into
one management service achieving all three use cases.
 The first use case allowed for basic provisioning of blade servers, disks and networks
using HP blade automation infrastructure. It deployed Oracle 10g on bare servers and
configured it for management through Oracle Enterprise Manager. Two template models
were available for instantiating the database representing three different configurations
(“sizes”) of the Oracle database deployment: small (one blade server), medium (two
servers) and large (4 servers). Templates were chosen from the coordinator controller
based on user input. This specification was based on the number of users, data set size
and the transaction rate supported by a configuration. After template selection, the
coordinator controller interacted with the underlying controllers to establish the needed
hardware infrastructure using the capabilities of HP’s blade server automation software
and, once this had been achieved, to initiate the configuration of Oracle.

Chapter 8: The Infrastructure Services Layer

176

The second use case employed Oracle Enterprise Manager’s ability to predict shortage of
storage in a growing database and triggering correction by notifying the HP Blade
Automation Controller to attach another disk from the SAN storage array. After
completion, the Oracle controller was initiated to reconfigure the database in order to
utilize the additional disk.
The third use case allowed to auto-correct server capacity when slowing database
response time was indicated by Oracle Enterprise Manager, triggering a server flex-up
operation to the HP Blade Automation Controller. After completion, database instances
configured into the database.
These use cases demonstrated automation scenarios achieving self-correcting behavior.
They also demonstrated how controllers can be used to wrap legacy management systems
into a controller framework, normalizing their interactions using common controller
interfaces and model exchange through interfaces. Use of PTN allowed describing and
executing the coordination needed between controllers providing an example for an
automated IT management process chain.

8.1.13 Related Approaches
While automation has made substantial progress on the business side of IT, such as in
business process automation [Sche04], automation in IT management has been lagging
behind. On the business side of IT, enterprise software such SAP is widely been used to
automate the processing and management of enterprise information. Tools such as ARIS
[IDS] are used to design automated business processes. In IT management, in contrast,
people still carry out management processes from higher-ordered planning stages to the
lowest levels of managing machines, networks and storage. Management tools are used
that support those tasks. Tools signal and report conditions to a human operator, who then
is in charge to interpret those signals and eventually respond by making a change in the
system, which is again mediated through a tool. The loop is not closed in IT
management; the operator’s attention is permanently required.
Workflow systems are predominantly used in IT task automation. In contrast to workflow
languages, which describe sequences of parallel or sequential actions, Petri Nets
primarily represent state. State changes occur in effect of transitions, which are also
described in a Petri Net. State in a workflow language is always external to the actual
workflow description. It typically occurs in form of a message that is processed along the
workflow statements (e.g. a purchase order, which is the message, traveling through a
purchase order workflow, which is a graph of actions).
Cfengine was developed at University College in Oslo [Burg93]. Its primary function is
to provide automated configuration and maintenance of computers, from a policy
specification. It emerged from the need to control the accumulation of complex shell
scripts used in the automation of key system maintenance. In a heterogeneous
environment, shell scripts are hard to maintain: shell commands have differing syntax
across different operating systems, and the locations and names of key files differ. The
non-uniformity of Unix was a major problem. Cfengine defined a new language which
unified the heterogeneity underneath. The aim was to absorb frequently used coding
paradigms into a declarative, domain-specific language that would offer self-

Chapter 8: The Infrastructure Services Layer

177

documenting configuration. Cfengine has an agent-based infrastructure through which
scripts can be distributed and executed on machines.
While Cfengine allows to abstract and to unify scripts used in system management, it
does not posses the capabilities of a controller. Cfengine needs to be activated by an
administrator in order to perform management tasks on remote systems.

8.1.14 Summary
The section presented a Task Automation Controller which adopts the concept of a
feedback system to automated IT management for operational tasks such as lifecycle
management. State of a managed environment is represented in terms of a pair of models
for desired and observed states and transitions between those states. A specialized form
of a Place-Transition-Net (PTN or Petri Net) is used to represent the static aspects (states)
as well as dynamic aspects (coordination) in one model. This overcomes the problems
that result from separating models from interpretation and execution logic that is often
found in model-based management approaches.
A PTN execution engine was built that directly executes PTN and forms the core of the
controller logic. This allows the controller logic to be “generic” and driven by
configurable PTN models as opposed to hard-coded and built into the controller. Web
services management standards are used to create uniform interfaces to controllers and
that allow the composition of controllers. It was shown how error correction can be
factored into PTN. It was also shown how coordination between controllers in an
automated IT management process chain can be achieved. Three automation tasks for
deploying the software configurations for a database system onto server resources have
been implemented using the controller.

8.2 The Deployment Manager
The Deployment Manager relies on an existing deployment infrastructure which is called
Radia [RAD]. Radia is a deployment system that originally has been developed by
Novadigm, Inc., which has been acquired by Hewlett-Packard in 2004.
The Deployment Manager also represents the approach of integrating an existing
management system into the architecture of the DCI-OS as a module, which is essential
since not all functionality can be developed from ground up for the DCI-OS.
Integration and integration capabilities for existing management systems are thus
essential for a DCI-OS. Two major aspects must be provided for integration into a DCI-
OS environment:

• A programmable interface through which the DCI-OS interacts with the system,
• An information representation and mapping bridging the gap between the

information models used in the DCI-OS and the information models used by the
management system.

• A standard's based middleware providing the instantaneous exchange of
information between the DCI-OS and connected management systems.

Chapter 8: The Infrastructure Services Layer

178

8.2.1 The Radia Deployment Manager as Integration Example
Like other management systems, Radia relies on an administrator role for configuring
resources and deploying configurations. An administrator (a person) sets certain policies
in the central Radia configuration server which are then "rolled out" to the connected sets
of resources automatically in a controllable batch modus.
Since Radia already provided deployment automation, the task here was to enable
programmability for the initial configuration setting on the central deployment server,
which before was only possible by an administrator. In order to achieve this task,
interfaces needed to be developed providing programmatic access to the central Radia
management server. A specific task was the transformation of the CIM-based models
driving the operations of the DCI-OS into the specific, proprietary format Radia used in
its internal information model.
Radia followed a declarative paradigm of constantly comparing Desired State (the state
defined for a resource on the central Radia management server) with Observed State (the
state constantly being reported from the associated resource) deriving actions from the
differences. This close proximity of the operational models simplified the integration of
the Radia Deployment Manager into the DCI-OS significantly.
The Radia Deployment Manager includes an abstracted, externally exposed set of desired
and observed state models upon which an interface is constructed based on web services
management standards providing operations on model states, which in turn drive changes
in the underlying resources utilizing Radia's capabilities. This approach did not require
changing Radia itself, which was a significant advantage.
Figure 47 shows the integration diagram of the Radia Deployment Manager into the DCI-
OS. The adapter shown in the upper left part of the diagram connects the Radia system
with the DCI-OS Infrastructure Services layer.
Input into the Radia Deployment Manager are settings for the Desired State model
maintained in the central Radia management server and changes to this model.
The lower part of the diagram shows the Radia system connected to machine resources
and maintaining certain software configurations on those machines as expressed in the
Desired States defined for those machine resources. A Radia agent exists on each system
requesting the information about what has been set as the Desired State of that system
and compares it to its current state. In case of difference, the agent per-forms actions to
transition this state toward the Desired State by installing, upgrading or removing
packages. Desired State definitions for classes of systems or users, which are
subsequently referred to as “Entitled Entities”, are defined in the model in the central
Radia Configuration Server, which is Radia's central configuration server. Radia uses
internally a model of an object-oriented database (OO-DB). The Radia administrator uses
a UI tool, the Radia System Explorer, to set Desired State definitions in RCS. For the
integration with a DCI-OS, a second channel was created through the Radia Adapter to
set the Desired State programmatically from outside Radia based on a model which has
been defined for Radia deployments.

Chapter 8: The Infrastructure Services Layer

179

Figure 47: Integration of the Radia Deployment Manager into the DCI-OS.

8.2.2 External Integration Model
The adapter for the Deployment Manager differentiates between its internal models,
which refer to the detailed information each system needs to maintain for its own
operation, and external or shared models, which contains only the information needed for
the external interaction with a system. Internal models are hidden by the deployment
adapter. External models are exposed and accessible through the interface with the DCI-
OS. Figure 48 shows the external model which has been defined for the Radia
Deployment Manager based on three abstractions: REEntity – the resource to which a
configuration can be applied; RServices – the configuration that can be applied; and
REntitlement – an association between REEntity and RService when a configuration
should be applied. The interactions with the DCI-OS are driven by performing operations
over this externally shared model.

RCS: Radia
Configuration
Server

machine

Radia
Agent

State

machine

Radia
Agent

State

machine

Radia
Agent

State

State in terms
of software
configurations
on machines

OO-DB

Stores the internal
Radia model about
“Desired States” for
Entitled Entities.

req

return:
[Desired State] [Desired State] [Desired State]

RadiaRadiaRadiaRadia
AdministratorAdministratorAdministratorAdministrator

UI
(Radia System

Explorer)

control
definitions

define “Desired State” (DS)
in Radia model in RCS

Radia Intra-
Adapter

Radia Agent
transitions SW
configuration
state locally
towards the
“Desired State”.

Shared Model
for Radia Adapter

WS-based
API

Shared Model
Repository (QM)

Managed systemsManaged systemsManaged systemsManaged systems::::

SW configuration tasks
Quartermaster tool chainQuartermaster tool chainQuartermaster tool chainQuartermaster tool chain

With the adapter, “Desired States” can be
“programmed” into Radia.

Administrator currently
defines “Desired States”
via Radia UI.

AdapterAdapterAdapterAdapter

RadiaRadiaRadiaRadia

Chapter 8: The Infrastructure Services Layer

180

Figure 48: Externally shared integration model for the Radia Deployment Manager.
The concepts occurring in the external model representation translate into the following
model concepts used by the Radia Deployment Manager internally:

- REEntity – Radia Entitled Entity (a system, a user, or groupings of those such as
departments, regions, etc.),

- REEntityDesc – Radia Entitled Entity Description based on REEntity meta-data,
- RService – Radia Service (a service instance that can be entitled to REEntities),
- RServiceDesc – Radia Service Description based on RService meta-data,
- REntitlement – an entitlement between entity and service,
- REntitlementDesc – the description of the entitlement association.

The model representation in the Information Model Layer of the DCI-OS are based on
CIM classes. CIM representations must be developed for the Radia Deployment Manager
for entity classes (RService, REntitledEntity) and association classes (REntitlement).
Classes are defined as .mof and incorporated into the CIM repository by creating class
instances. Instances of classes (such as for specific services, entitled entities, or
entitlement associations) can also be defined in CIM’s Management Object Format
(MOF) or can be incorporated from a CIM instance provider. During run-time, class and
instance information can be queried and manipulated via the API. Changes in the Shared
Model then drive change in the Radia infrastructure.
Figure 49 shows the CIM framework of the DCI-OS used to represent of the externally
shared model as used in the DCI-OS.

// constructor, destructor
REEntity CreateREEntity(
 REEntityDesc desc);
void Destroy();

// group operations
Add(REEntity e);
Remove(REEntity); // from this.group

// accessed as MUWS relationships
REEntity[] Members();
// entitled services of this entity
RService[] Services();

REEntity

// constructor, destructor
RService CreateRService(
 RServiceDesc desc);
void Destroy();

// group operations
Add(RService s);
Remove(RService s); // from this.group

// accessed as MUWS relationships
RService[] Members();
// assignees to this service
REEntity[] Assignees();

RService

// constructor, destructor
REntitlement CreateAssociation (
 REntitlementDesc service_entity);
// destructor dissolves entitlement
void Destroy();

// accessed as MUWS relationships
REEntity[] Entity();
RService[] Service();

REntitlement

*

*

*

*

Chapter 8: The Infrastructure Services Layer

181

Figure 49: CIM representation of the integration model as used in the DCI-OS.

8.2.3 Standard's-based Web-Services Middleware
A machine-accessible interface is needed for the Radia deployment adapter. In general, a
deployment adapter interface requires:

• an event mechanism allowing external entities to subscribe to events such as
model change events,

• support for interpretation of delivered information (type information, schemas,
semantic information), and

• control operations that can be invoked in order to trigger action in the underlying
system.

Web services management standards meet the requirements for deployment adapter and
should thus form the basis for deployment adapter interfaces.
A number of web services based management standards have been proposed over the
years, beginning with WBEM, an HTTP/XML-based model exchange protocol for CIM.
WBEM has been developed and standardized by the Distributed Management Task Force
(DMTF) [DMTF]. WBEM has significant weaknesses in terms of event capabilities,
which were overcome by middleware frameworks such as proposed by the Global Grid
Forum (GGF), later the Open Grid Forum (OGF) [OGF] as standards for Grids, standards
which now have been merged into OASIS [OASIS]. These standards were the Web-
Services Resource Framework (WS-RF) [WS-RF] and the Web-Services Distributed
Management (WS-DM) [WS-DM]. [Gra04b] shows the relevance of these middleware

Chapter 8: The Infrastructure Services Layer

182

standards for management system integration in the enterprise and data center contexts
since they allow standardized web-services-based integration of enterprise applications as
well as their associated management systems. Implementations of those standards exist in
form of the Globus Toolkit [GT4].
The OASIS Web Services Distributed Management (WSDM) [WS-DM] working group
continued with the MUWS (Management Using Web Services) standard [MU-WS] with
participation of HP that is based on the Web Service Resource Framework [WS-RF].
MUWS is the basis for the deployment adapter interface.
In the case of the Radia Deployment Manager, REEntities, RServices and REntitlements
are considered Web Services Resources at the web-service interface layer according to
the WS-RF specifications. Each has a Web Services Resources class associated and
exposes one Web Services Endpoint (WSE), which is an entity which is addressable in
the web services middleware through a URL. Access to different class instances is
differentiated by Reference Properties as defined in the WS-Addressing web services
standard.
Each instance and the class (accessing the endpoint without reference properties) can act
as factory for creating a new instance. To create the instance, a corresponding description
is passed (REEntityDesc, RServiceDesc or REntitle-mentDesc). The factory methods
return a WS-Adres sing endpoint reference that consists of the endpoint providing access
to the Web Service representing the class and reference properties to identify the instance.
The MUWS relationship mechanism is used to represent the linkages for the entitlement
association REntitlement between REEntity and RService. A REntitlement instance has a
relationship link to the respective REEntity and RService instances (type
‘urn:radia.hp.com/reentity/ rservice’). REntity and RService instances in turn have
relationships with respective REntitlement instances (types
‘urn:radia.hp.com/reentity/rentitlement’ and ‘urn:radia.hp.com/rservice/rentitlement’).
All these relation-ships are automatically established using the CreateAssociation
operation on a REntitlement instance. Relationships are also used to represent the
REEntity and RService group membership (types ‘urn:radia.hp.com/reentity/reentity’ and
‘urn:radia.hp.com/rservice/rservice’). The Add/Remove operations create or destroy a
relationship. Each of the three Web Service interfaces expose all WS-ResourceProperty
operations (which can be used to access the description and relationships) and WS-
Notification operations. A client can subscribe to notifications for Resource Property
changes. Since MUWS relationships are accessed as Resource Properties, the client can
receive notifications for relationship changes.
The Radia Deployment Manager exposes its operations through this web-services based
interface providing operations to set and reset states in the exposed Desired State Model.
Next, the Resource Acquisition Manager is discussed.

8.3 The Resource Acquisition Manager
The Resource Acquisition Manager forms another important part of the Infrastructure
Services Layer. Its task is to provide the access to the data center’s resources via
communicating with the DCI-OS Resource Management Layer, which is discussed in the
next chapter in more detail.

Chapter 8: The Infrastructure Services Layer

183

The Resource Acquisition Manager also follows a controller pattern where a certain level
of resource supply is constantly compared with the actual resource usage consumed by
the Infrastructure Service [Gra03a], [Gra04c]. Based on the comparison and depending
on resource types, resources can be acquired in addition to the current level from the
DCI-OS Resource Management Layer or released back. The organization of resources in
form of pools allows that resources can be acquired and released depending only on type
and capacity, but not depending on particular instances. For instance, when a server
resource is required, it means that any instance of a particular server type with a certain
capacity can be assigned. The assigned server resource is then provided with specific
configurations in the deployment step from the context of the Infrastructure Service into
which it was assigned. This principle of isolating resources from configurations enables
the management of resources as pools. It allows more flexibility at a cost of an additional
deployment step. However, this step is automated by the deployment managers and not
manual as it is the case in today’s practice.
The process of adjusting the amount or number of resources according to demand in an
Infrastructure Service instance is called flexing [Gra04d].
The following discussion shows flexing for the resource type of servers in context of a
horizontally scalable enterprise application. Server Flexing is to the process of adjusting
numbers of servers with instances of an application running on them depending on
current workload conditions. Adding servers with instances running on them expands the
capacity of the application for serving higher workload. Removing servers reduces
capacity for meeting lower demand. This principle applies to so-called horizontally
scalable applications. Horizontally-scalable applications are simultaneously operated on
a number of servers of same type. Examples are web servers, application servers or
clustered databases.
The control system of the Resource Acquisition Manager automatically performs the
control loop over the stages of monitoring, assessment, and corrective action following a
goal. A goal, for example, can be to keep the operational parameters of a controlled
system within defined ranges. Capacity of server groups is automatically adjusted during
operation by acquiring or releasing servers.
In this discussion, the control system of the Resource Acquisition Manager interacts with
the Resource Management Layer of the DCI-OS via a standard web services protocol
defined by the Open Grid Services Infrastructure (OGSI) middleware standard [OGSI]
leveraging OGSI’s built-in security and event models. More about web services-based
protocols used as communication middleware can be found in [Gra04b] and [Gra06].

8.3.1 Resource Group Flexing
We refer to servers as resources in this section. A server group consists of a number of
servers of same type, running the same version of the operating system and application,
both originating from the same disk image. Life-cycle scripts are executed when the
operating system is booting for the final configuration (see Figure 54). Each server uses
its own copy of a master image. The process of creating that copy is in the range of
minutes limiting the periodicity of the control loop to 10’s of minutes or hours, which is
adequate to accommodate longer-term daily, weekly or monthly patterns in commercial
workloads.

Chapter 8: The Infrastructure Services Layer

184

Reasons for flexing the server number up might be that application load is increasing and
servers are approaching saturation levels. Reasons for releasing servers from server
groups might be that servers are needed for other applications. Servers operated under a
pay-per-use regime provide incentives to farms and their owners to free resources when
they are not needed.
Server flexing can occur:

• Statically, by stopping the entire application environment, performing all
necessary reconfigurations for joining or releasing servers to or from a server
group, and restarting the application environment with the new configuration.
Static flexing is typically performed manually today.

• Dynamically, by joining in new servers into a server group of an operating farm
and gracefully releasing them from an operating farm. Dynamic flexing relies on
automatable reconfiguration capabilities supported by virtualized resource
environments.

8.3.2 Resource Flex Control Loop
In a server flex control loop, flex operations are initiated by a control system that
continuously oversees the conditions in the farm (based on load, use patterns, failure
conditions, etc.) and evaluates conditions in order to come to a conclusion to increase or
decrease the number of servers in a server group. Figure 50 shows a control loop for
server flexing. The control loop consists of three main stages monitoring, assessment, and
adjustment.
Monitoring. – Monitoring is typically based on elementary resource metrics such as
CPU utilization, process queue lengths, used network bandwidth, memory utilization and
swap rate. If application instrumentation is provided, application-level metrics can be
taken into account as well such as transaction rates, response times, numbers of
simultaneous sessions, etc.

Figure 50: Control loop for server resource flexing.
Assessment. – Given measurements as input, the conditions in a server group can be
assessed whether the system is considered operating within defined bounds or not.
Automating assessment can be simple such as observing thresholds or it can be complex.
Policy defines the behavior of the assessment system. Policy must be customizable.

Chapter 8: The Infrastructure Services Layer

185

Adjustment. – As a result of assessment, a decision about a corrective action is derived,
which leads to an adjustment in the system. Various means for adjustments exist for
horizontally-scalable applications:

1. The number of instances of an application can be increased or decreased.
2. On certain hardware, CPUs or CPU partitions can be added or removed for an

application in order to adjust processing capacity. Virtual machines allow
adjusting CPU shares between virtual machines.

3. The number of physical machines can be adjusted (constant in the first two cases).
Virtualized resource infrastructures have the capability to dynamically (during the
operation of an application) add or remove physical servers from an application
environment. It has the capability to configure servers into that environment, or release
and unconfigure them from the environment.
The outer-most control loop in Figure 50 encompasses the acquisition and release of
entire physical servers from the resource infrastructure.
The three dimensions of adjustments also reflect different levels of granularity in terms of
resources (CPU cycles, CPU partitions or CPUs, or entire servers) and time scales of
shorter-, mid-, or longer-term control loops, which may co-exist. When a finer-grained
loop has reached its limits, the control loop of the next level can expand its reach.

8.3.3 Adaptive Control System for Resource Group Flexing
The purpose of the adaptive control system for server group flexing is to provide
horizontally scalable applications the ability to acquire or release physical server
resources using the capabilities of the Utility Data Center to configure and unconfigure
servers from the virtualized resource environment of a farm.

8.3.3.1 Requirements for Flexible Resource Acquisition and Release
A number of requirements have been considered for the definition of the control system:

• Automation driven by policy. – The control system operates without involvement
of the operator after the operator has set the control policy.

• Application focus. – The control system, specifically the assessment and the
decision-making part, must be customizable for specific applications and
operating regimes defined for a data center.

• Open-standard’s-based interface and ability to integrate with application
management and control systems. – Applications are built more and more for
utility modes of operation. It means that they incorporate interfaces and
components for their management and control. Application vendors enrich their
applications with such management systems. One major requirement of the
adaptive control system here was being able to integrate with those application
management systems providing them the link, based on open standards, into the
resource infrastructure where they can acquire or release configured servers.

• “Plug-and-Play”. – Application integrators or data center operators must be able
to define control loops easily. A “pluggable” component design based on open
standards should form the foundation.

Chapter 8: The Infrastructure Services Layer

186

• Trust and Security. – Control functions in data centers are hard to automate not
only because of technical complexity. Automating tasks relies on trust which
operators must develop in order to delegate functions they perform manually
today to automated systems. Security breaches and malfunction are main concerns
that must be prevented by automated systems.

• Integration into higher-ordered control systems. – The control system discussed
here addresses the rather limited scope of flexing individual server groups for
horizontally-scalable applications. Higher-ordered control systems can expand the
scope to entire farms, farm groups, data centers, or even across data centers.
Those scenarios have been considered for the design, but are not discussed here.

8.3.3.2 Design Choices
The following design choices are guided by requirements:

• Split of the control loop into a fixed infrastructure part embedded in the resource
infrastructure providing server configuration, basic resource monitoring, and a
customizable Control Plug-in containing the assessment and adjustment functions.

• Defining an open-standard’s-based interface between the Control Plug-in and the
resource infrastructure.

• Selecting OGSI as interface and interconnect technology mainly because of
openness, web services standards, and built-in security and event models.

• Simple interaction patterns between the Control Plug-in and the underlying
resource infrastructure based on service invocations and events.

The following figure shows the split of the control loop into Control Plug-in and resource
infrastructure.

Figure 51: Component view of control loop.

Chapter 8: The Infrastructure Services Layer

187

The OGSI interface between Control Plug-in and resource infrastructure primarily has
two main functions:

• Request and delivery of basic resource monitoring data (such as provided by HP
OpenView [HPOV]) and delivery of state change events such as a change in the
number of servers currently participating in a server group.

• Request to scale a server group up or down to a desired target number of servers.
Control policy is defined by the operator or the application administrator, in the current
system in form of simple thresholds that are parameterizable for Control Plug-ins, which
are implemented as Java OGSI clients.

8.3.4 Resource Flex Control
Unassigned servers are maintained in infrastructure resource pool. When the Control
Plug-in initiates scaling a server group up or down, selected server resources transition
through the stages shown in Figure 52.

8.3.4.1 Flex up Cycle
A server (or a number of servers) matching the type of the server group is selected from
the resource pool and set into the join state. During that stage, the farm resource
environment is reconfigured to include the new server(s). This means that the VLAN is
reconfigured, virtual IP addresses are assigned to the server, DNS is reconfigured, and the
logical disks from the storage array with copies of the server group images are created
and mapped onto the joining servers. After that, the joining servers reboot and launch
applications from those disks. The join state is finished when new server(s) have booted
and applications are launched. Launching applications is initiated by start-up scripts
configured on images.

Figure 52: State diagram for server flex operations.

The following init state allows executing further life cycle operations on joined servers
(shown as ALCD – Application Life Cycle Daemon in the interaction diagram in Figure
54). This allows reconfiguration in the software environment, for instance, to start

Chapter 8: The Infrastructure Services Layer

188

directing workload to joined servers. At the end of the init state, the new servers are fully
operational as part of the server group.

8.3.4.2 Flex down Cycle
The flex down cycle is also initiated by the Control Plug-in by selecting a number of
servers to be released. In reverse order to flex-up, life cycle scripts on servers are
executed first during withdraw, unconfiguring applications of affected servers from their
environment. A load balancer may need to be reconfigured to not send further workload
to affected servers; active sessions have to be finished, etc. At the end of the withdraw
state, the local application instances are no longer part of the application and can finally
be terminated.
During the release state, the servers to be released are unconfigured from the farm’s
resource environment including the VLAN. Disks (logical volumes) are detached by
reprogramming the SAN and cleared. No state of application instances is kept for server
groups.
At the end of the release state, all state associated with affected servers has been removed
from the software and hardware environment including the servers themselves. Servers
now transition to the free state and return to the server pool for new assignment.

8.3.4.3 Resource Flex Protocol
The server flex protocol encompasses two parts. Monitoring and state change events must
be delivered to the Control Plug-in and eventually other subscribers. And flex
instructions (scale server group requests) must be delivered in opposite direction.
Event delivery. – Event delivery is based on OGSI events, which are based on changes in
Service Data Elements (SDE) [OGSI]. SDEs are maintained in Interface Instances. Two
SDEs have been defined.
SDE SN – the current number of servers (SN – Server Number) in a server group. This
SDE triggers events informing the associated Control Plug-in and other subscribers when
either the farm administrator has reconfigured the server group through a console, or the
server number has changed in effect of a previous flex operation. If the SN reported in
the SDE equals to the target SN previously issued as flex request, the Control Plug-in
concludes that the previous operation has succeeded. SN change events are trigged at
state changes init->operation and release->free.
SDE LL – represents the current Load Level (LL) in a server group. This is an aggregate
number taking various OpenView base measurements into account: CPU load, memory
usage, IO and SWAP activity. Aggregation is based on a model that for any server i in a
server group LLi = max(CPU, MEM, IO, SWAP), with each of the base measurements
normalized to a scale of 0-100. The LL of the server group then is LL= Σ LLi. This
simple model assumes that load between servers in the server group is evenly distributed.
The rate of LL SDE change events is controlled by OGSI’s event flow rate control
mechanism with min_interval=30sec and max_interval=300sec.
Based on SN and LL change events, which are also time stamped at the source, the
Control Plug-in can obtain a load and utilization profile over time and assess changes in
the server group that may lead to flex decisions. Policy parameters in the Control Plug-in
must be tuned to avoid thrashing effects.

Chapter 8: The Infrastructure Services Layer

189

Figure 53: Interaction diagrams for server flex operations.
Flex request. – Once the Control Plug-in has come to the conclusion to flex a server
group, it issues a scale server request and waits for its completion indicated by a SN
change event. Since execution of flex operations is in the range of 10+x minutes, flex
requests are asynchronous. The Control Plug-in can observe the time within which it
expects a flex operations to complete and take action when this time passes without
receiving a server number change event.
Flex requests are issued with the total target number of servers rather then incremental
changes in order to make flex requests idempotent. Failure or incompletion within the
expected time frame simply may cause the Control Plug-in to repeat the request leading
to the same result.
Figure 54 shows the effect of the server flex control system with the absolute server
group load level decreasing over time from about 300 to 0. Accordingly, the Control
Plug- in reduces the number of servers in the server group from 4 to 1, leading to the flat
server utilization curve shown in the diagram.

Chapter 8: The Infrastructure Services Layer

190

Figure 54: Effects of flexing on workload.

8.4 Summary
Role of the Infrastructure Services layer is to provide the execution environments for
Application Services. The Infrastructure Services Layer provides support systems which
allow acquiring and releasing resources from the data center-part of the DCI-OS as well
as deploying configurations onto those resources fitting the needs of the Infrastructure
Service. The tasks of this layer are performed by three main modules: the resource
Acquisition Manager – allowing the Infrastructure Service to request and release
resources of specified types and quantities; the Deployment Manager – allowing specific
configurations to be deployed onto freshly acquired resources; and the Task Automation
Controller – coordinating the various activities which have to occur when new resources
are provisioned as well as coordinating the overall lifecycle control tasks of the
Infrastructure Service (such as create, start, suspend, resume, stop, destroy).
The purpose of the Infrastructure Services layer is similar to the purpose of a run-time
system in operating systems. While an operating system run-time library also allows
acquiring and releasing resources from the underlying operating system, the task
spectrum in the Infrastructure Services layer is much broader. In an operating system,
resources considered are simple resources such as memory, processor shares or external
storage. For Infrastructure Services, resources encompass entire machines, storage
devices, and networks requiring additional application of service-specific configurations.
Unlike in an operating system where the run-time system is part of the same process it
controls, the modules of the Infrastructure Services layer execute on separate
management machines which are dedicated to the DCI-OS. Reason for this decision is to
avoid interference between resources (e.g. machines) where Application Services execute
and where management functions execute.

Three specific modules have been presented from the Infrastructure Services layer:

• the Task Automation Controller,
• the Deployment Manager, and
• the Resource Acquisition Manager.

Chapter 8: The Infrastructure Services Layer

191

The case of the Task Automation Controller has been discussed because it demonstrates a
principle of declarative control over coordination tasks, which has been found beneficial
over traditional workflow-based coordination implementation (e.g. with workflow or
business process execution engines or script executions). The declarative approach
follows the pattern of a Controller which allows setting a state a Desired State (the
declaration of what should be) as and the controller providing the logic how this state is
achieved and maintained internally hidden from the outside. Using the declarative
approach of a controller is one of the key insights of the development of the DCI-OS
The case of the Deployment Manager was presented to demonstrate the integration of an
existing management system into the architecture of a DCI-OS for a specific role and a
specific purpose. It cannot be assumed that all functionality a DCI-OS requires will be
redeveloped from ground up. Rather, a DCI-OS will act as an integration platform of the
various tools and systems which are in existence today bringing their capabilities together
for achieving deep, integrated automation capabilities which cannot be achieved by
individual management systems operated in isolation.
The Resource Acquisition Manager establishes the link to the data center resources
managed by the DCI-OS by communicating with the Resource Management Layer of the
DCI-OS. The Resource Acquisition Manager follows a controller pattern where a certain
level of resource supply is constantly compared with the resource usage consumed by the
Infrastructure Service. Based on the comparison and depending on resource types,
resources can be acquired in addition to the current level from the DCI-OS Resource
Management Layer or released back. In this chapter, the case of the Resource Acquisition
Manager was discussed by the example of dynamic supply of server resources into an
Infrastructure Service for a horizontally scalable enterprise application.
During the discussion of the three components of the Infrastructure Services Layer,
aspects of integration between a DCI-OS and existing management systems have been
discussed as well as the interface between the Infrastructure Services-related part of the
DCI-OS and the Data Center-related part, which both relate to questions around
management middleware connecting the various components within a DCI-OS as well as
connecting the DCI-OS with other, existing management systems that are used in a
particular data center environment.
Three main aspects are relevant:

• The existence or creation of a programmable interface through which the DCI-OS
interacts with the system,

• A shared information representation and mapping which needs to be developed
bridging the gap between the information models used in the DCI-OS and the
information models used by the management system.

• A standard's based middleware providing the instantaneous exchange of
information between the DCI-OS and connected management systems.

Both, using a declarative approach to control in the DCI-OS as well as providing the
ability to integrate existing management systems into the architecture and the system of a
DCI-OS have been key insights resulting from research and development of a DCI-OS.
Another innovation insight resulted from separating resource configurations from
resource instances. If resource instances are treated independently from configurations
needed by specific Infrastructure Services, resource can be managed in pools

Chapter 8: The Infrastructure Services Layer

192

interchangeably providing more flexibility. Flexibility comes at an additional cost of a
configuration step, which in the context of the DCI-OS is automated.

Chapter 9: The DCI-OS Layer

193

Chapter 9

 The DCI-OS Layer

The DCI-OS layer comprises the lower part in the architecture of a DCI-OS. It is closest
to the resources in a data center. Its components are shown in Figure 37.

Figure 55: The DCI-OS Layer.
The DCI-OS layer consists of four main sub-layers:

• The Information Model Layer with the Data Center Information Model (DCIM)
representing the information maintained in the DCI-OS about the data center in
which it exists and the Infrastructure Service Information Model (ISIM)
representing the information maintained about an Infrastructure Service that exists

Chapter 9: The DCI-OS Layer

194

in the data center. The Information Model Layer forms the key part of the DCI-
OS maintaining the information upon which the modules of the DCI-OS operate.

• The Resource Management Layer consists of sub layers of Resource Pool
Managers, Resource Pools and Resource Pool Drivers which manage the
resources of a data center organized as pools from which resources are allocated
and assigned to Infrastructure Services. Pools maintain not only current resource
inventory und use. Resource Pool Managers also maintain time profiles to manage
the information about past and future resource availability and use.

• Resource Pool Drivers produce the resources for pools, which can be whole or
shares of physical resources or can be generated resources, such as virtual
resources, which require explicit creation steps.

The Data Center Component Layer comprises the physical resources in a data center with
management interfaces accessed by Resource Pool Drivers.
This chapter will discuss the information models used in the DCI-OS in detail,
specifically in section 9.1 (Information Models in IT Management) – providing a general
overview of models used in IT management, section 9.2 (The Common Information
Model (CIM)) – providing the overview of the particular framework that was chosen for
the DCI-OS, and discuss The DCI-OS Information Model in section 9.3.
Building on the information of these models, a generic Resource Pool Manager is
presented in section 9.4 representing the sub-layers of Resource Pool Managers and
Resource Pools before section 9.5 concludes the chapter with a discussion of Resource
Pool Drivers.

9.1 Information Models in IT Management
The Information Model Layer represents the core part of the DCI-OS since it maintains
all persistent information the DCI-OS modules operate upon.
Information can be structured and represented in many different ways. One of the
problems in IT management has been that the information maintained in different IT
management systems is modeled and represented in very different ways, making
integration of management systems hard. One reason for this situation can be seen in
insufficient standardization of information models used in IT management. On the one
hand, may IT management systems use proprietary data models due to the lack of
standards or the lack of development tools implementing standards; on the other hand,
there are too many standards that have been proposed by a fragmented community of
standards bodies addressing parts of the management domain. Examples will be
discussed later. No comprehensive and commonly accepted standard has emerged
unifying various data representations and data models in IT management.
As Model is understood a set of structured information about elements and their
relationships in a management domain that are relevant for management purposes.
Representing a model refers to storing a model as a structured set of data in a computing
system using a syntactic framework (e.g. CIM) where it can be interpreted by algorithms
for management purposes. Interpreting a model means to reason upon the data set by
executing algorithms and deriving actions from its state which can actuate management
operations in the management domain.

Chapter 9: The DCI-OS Layer

195

Models are comprised of:
• Static aspects (elements; e.g. elements in data centers; inventories of hard- and

software, licenses, etc.),
• Dynamic aspects (changing properties of elements; e.g. properties of load and

utilization conditions, error conditions, etc.).
Model-based Management refers is an architectural pattern used in management systems
which separates an environment into two domains:

• the Managed Domain – the environment to be managed, and
• the Management Domain – the environment of the management.

The Management Domain maintains models about the static and dynamic aspects of the
Managed Domain and exercises control over the managed elements by altering control
state in models, which is then reflected back as control operations into the managed
domain.
Several problems are inherently hard for model-based approaches to IT management:

• How to obtain and create models (by design, by discovery)?
• How to represent models (which framework to chose)?
• How to keep models consistent with the reality they represent?
• How to deal with change?
• How to provide models that not only reflect the current state, but also capture

future evolution, anticipation and expectations of future trends, etc.?
Various management frameworks provide various answers to these questions. The
following section will discuss some of the information modeling aspects of IT
management frameworks.

9.1.1 Frameworks for Information Modeling in IT Management
For the DCI-OS, the use of standards for information models has had a high priority.
Standards have mainly emerged and established in particular corners of IT management,
such as standards used in network management, e.g. the Simple Network Management
Protocol (SNMP) [SNMP] with the Management Information Base (MIB) [MIB] from
the OSI/ISO Network management model, or the Common Management Information
Protocol (CMIP) [CMIP] which emerged from the ISO/OSI network management model.
Industry-specific are the models and protocols defined by the Storage Networking
Industry Association (SNIA) [SNIA] for the domain of storage.
Other modeling frameworks have been industry specific, such as TOM [TOM] and
eTOM [eTOM] which emerged in the Tele-Management Forum [TMF] and the Open
Services Architecture (OSA) [OSA] developed by The Parlay Group [Parlay], which
originated for the telecommunications industry.
TMF. The Tele-Management Forum introduced the Telecom Operations Map (TOM)
which focuses on the end-to-end automation of communications operations services
[TOM]. The core of TOM is a service framework that postulates a set of business
processes that are typically necessary for service providers to plan, deploy and operate
their services. These processes are organized using the layering concepts of the

Chapter 9: The DCI-OS Layer

196

Telecommunications Management Network (TMN) [Gal00] and detailed them to a finer
granularity. TOM offers concepts and addresses aspects of service management using the
abstractions of business processes. The eTOM (enhanced Telecom Operations Map)
[eTOM], published by the TMF, is a guidebook, the most widely used and accepted
standard for business processes in the telecommunications industry. The eTOM model
describes the full scope of business processes required by a service provider and defines
key elements and how they interact. eTOM has been adopted by ITU-T as a
recommendation and is published in the M.3050.x series.
eTOM is a common companion of ITIL [ITIL], an analogous standard or framework for
best practices in information technology.
Both of these frameworks are part of the larger context of Total Quality Management, in
which many industries have increasingly formalized their business processes and metrics
aiming for better quality, fewer defects, and greater efficiency.
TOM is a reference model for telecommunications networks. It does not define a data
model with data structures. The TOM reference model defines the description of core
systems and processes involved in the production operation of telecommunications
networks. eTOM is tailored as a comprehensive enterprise framework for service
providers within the telecommunications industry. eTOM describes all the enterprise
processes required by a service provider and analyzes them to different levels of detail
according to their significance and priority for the business. For such companies, it serves
as the blueprint for process direction and provides a neutral reference point for internal
process reengineering needs, partnerships, alliances, and general working agreements
with other providers. For suppliers, eTOM outlines potential boundaries of software
components to align with the customers' needs and highlights the required functions,
inputs, and outputs that must be supported by products.
The eTOM Business Process Framework (BPF) [BPF] encompasses the whole of a
telecommunication service provider’s enterprise environment. The Business Process
Framework starts at the enterprise level and defines business processes in a series of
refinements. The framework is defined generically such that it can span organization,
technology and services independently and supporting a global community. At the
conceptual level, eTOM covers three major process areas:

• Strategy, Infrastructure & Product covering planning and lifecycle management,
• Operations covering the core of operational management, and
• Enterprise Management covering corporate or business support management.

Parlay / OSA. The Parlay Group [Parlay] is an open, multi-vendor consortium formed to
develop open technology-independent application programming interfaces enabling
Internet and eBusiness services, independently of software vendors, Internet Service
Providers (ISVs), software developers, network device vendors, and application service
providers to develop applications and technology solutions that operate across multiple
networking platform environments.
The Parlay group was formed in 1998. The Parlay group was initiated by a group of
operators, IT vendors, network equipment providers, and application developers to
support and enable interoperable mobile applications. Parlay defined a number of API
specifications, which included limited data models for the information that needed to be

Chapter 9: The DCI-OS Layer

197

exchanged between mobile devices and service providers. These specifications are
standardized with participation of the Parlay Joint Working Group (JWG), which
includes the Third Generation Partnership Programs 1 and 2 (3GPP), and the European
Telecommunications Standards Institute (ETSI) Services Protocols and Advanced
Networks.
Parlay integrates telecom network capabilities with IT applications via secure, measured
and billable APIs helping developers avoid rewriting those modules and creating a
homogeneous, standardized environment for developing, delivering, measuring, and
billing mobile web services.
Web-Services based Management Frameworks. With the advent of web services
technologies in the Internet, their advantages in using unified protocols, data
representations and interface definitions supporting compatibility and interoperability
between applications were recognized for IT management as well. A number of web-
services-based standards emerged that were dedicated to enable and support compatibility
and interoperability between management applications.
Early representatives emerged as part of the Open Grid Services Infrastructure (OGSI)
[OGSI] initiative around 2002 recognizing the fact that open Grids required open
management capabilities as well as interoperability between various management
systems used in different Grid hosting sites. The web-service based standards originating
from this open Grid then merged into the Enterprise Grid Alliance (EGA) [EGA], which
was an attempt to evolve those management protocols for use in the enterprise.
After a number of iterations, the efforts finally merged into the Organization for the
Advancement of Structured Information Standards (OASIS) standardization body
[OASIS] which defined the Web Services Distributed Management (WSDM) [WS-DM]
as framework for IT management tasks.
A comprehensive discussion of this topic can be found in “Web Services in the
Enterprise – Concepts, Standards and Management” [Gra04b].

9.1.2 Behavioral Information Models
While in many cases, information models focus on information about entities and their
relationships, behavioral models are an approach to also capture also activity.
Three main categories of behavioral models exist:

• Process models,
• Policy models, and
• Declarative Models.

Process models describe control flows in terms of action flows using the known
constructs of sequential and parallel flows, alternatives, cycles and exceptions. A number
of process modeling frameworks exists such as the Business Process Execution Language
(BPEL) [Ley01], which is also used in data center automation. An overview of processes,
process description languages and process management can be found in [Wes07].
Policy models do not describe control flows. Policy models describe conditions and, in
case the condition occurs, actions to be taken. Policy-based frameworks have become
popular in IT management based on early work in the Event-Condition-Action paradigm
[Slo93].

Chapter 9: The DCI-OS Layer

198

In a policy framework, a policy rule aggregates a set of policy conditions and an ordered
set of policy actions. The semantics of a policy rule are such that if the set of conditions
evaluates to true, the set of actions is executed.
Policy conditions and actions have two principal components: operands and operators.
Operands can be constants or variables. Operators can express both relationships (greater
than, member of a set, etc.) and assignments. Together, operators and operands can
express a variety of conditions and actions, such as: “IF Bob is an Engineer AND If the
source IP address is in the Marketing Subnet THEN Set Joe's IP address to 192.0.2.100
AND Limit the bandwidth to 10 Mb”.
This represents the classic view to policy in IT management. A number of languages
have been defined around this concept. A prominent example is Ponder [Slo01].
Other policy-based frameworks include Policy-Based Network Management (PBNM)
[Stra03], Policy-based Admission Control [RFC2753] or IETF's Policy Framework
[Hal04]. IETF's Policy Framework working group tried to define a framework within
which a wide range of policies can be described and modeled, mainly motivated by a
need to represent, manage, share, and reuse policies and policy information in a vendor-
independent, interoperable, and scalable manner. The working group has been
discontinued in 2004.
IETF RFC 3060 [RFC3060] combines an object-oriented core information model with a
representation for policy information. It was jointly developed in the IETF Policy
Framework working group and the policy working group in the Common Information
Model activity in the Distributed Management Task Force.
The data model defines two hierarchies of object classes:

• structural classes representing policy information and control of policies, and
• association classes that indicate how instances of the structural classes are related

to each other.
Association classes can be attributed with policy statements which can be interpreted by a
policy engine. The information model can be translated to various concrete
implementations, for example, to a directory that uses LDAP as its access protocol.
The policy classes and associations defined in this model are sufficiently generic. Their
initial application has been to represent policies related to Quality of Service (QoS) and
security standards in the Internet (IPSec) expressed as security policies.
In context of IT management, expression of policy can be classified by their purpose.
This classification is useful in querying or grouping policy rules. It indicates whether the
policy is used to motivate when or how an action occurs, or to characterize services.
IETF Policy includes following classification of policies:

• Motivational Policies are targeted at whether or how a policy's goal is
accomplished. Configuration and Usage Policies are specific kinds of
Motivational Policies. An example is the scheduling of file backup based on disk
write activity from 8am to 3pm.

• Configuration Policies define the default setup of a managed entity (for example,
a network service). An example of a configuration policy is a set of configuration
parameters for an email forwarding service.

Chapter 9: The DCI-OS Layer

199

• Installation Policies define what can and cannot be installed in a system or
component, as well as the configuration of the mechanisms that perform the
install. Installation policies typically represent specific administrative permissions
and can also represent dependencies between different components (e.g., to
complete the installation of component A, components B and C are required.

• Error and Event Policies. For example, if a device fails between 8am and 9pm,
call the system administrator, otherwise call the Help Desk.

• Usage Policies control the selection and configuration of entities based on
specific usage data. Configuration Policies can be modified or simply re-applied
by Usage Policies. Examples of Usage Policies include upgrading network
forwarding services after a user is verified to be a member of a certain service
group.

• Security Policies deal with authentication and permitting or denying access to
resources. They include selecting and applying authentication mechanisms and
allow accounting and auditing of resources.

• Service Policies characterize network and other services. For example, all wide-
area backbone interfaces should use a specific type of queuing. Service policies
describe services available in the network. Usage policies describe the particular
binding of a client of the network to services available in the network.

The following diagram provides an overview of the five central classes comprising the
Policy Core Information Model in RFC 3060 [RFC3060], their associations to each other,
and their associations to other classes.

Figure 56: Model of Core Policy IETF Policy [RFC3060].
Figure 56 shows classes related to IETF Policy. The arrows represent the associations:

(a) PolicyGroupInPolicyGroup,
(b) PolicyGroupInSystem,
(c) PolicyRule-InSystem,
(d) PolicyRepositoryInPolicyRepository,
(e) PolicyRuleInPolicyGroup,

Chapter 9: The DCI-OS Layer

200

(f) PolicyConditionInPolicyRepository,
(g) PolicyActionInPolicyRepository,
(h) Policy-ConditionInPolicyRule,
(i) PolicyRuleValidityPeriod, and
(j) PolicyActionInPolicyRule.

RFC 3703 [RPC3703] defines a mapping of the Policy Core Information Model to a form
that can be implemented in a directory that uses Lightweight Directory Access Protocol
(LDAP) [LDAP] as its access protocol. This model defines two hierarchies of object
classes: structural classes representing information for representing and controlling policy
data as specified in RFC 3060, and relationship classes that indicate how instances of the
structural classes are related to each other. Classes are also added to the LDAP schema to
improve the performance of a client's interactions with an LDAP server when the client is
retrieving large amounts of policy-related information.
Declarative models go one step further than policy-based models. They allow the
expression of a desired state based on which a controller system determines action
sequences leading to a balance with information representing the observed state.
The model developed for the Task Automation Controller presented in section 8.1 is
based on declarations of Desired State Model and deriving actions from differences to an
associated Observed State Model also fall into this category of policy models.
It is the most advanced approach to a fully automated IT management system which
operates based on the pattern of a controller.

9.1.3 Unified Information Model and Information Providers and
Consumers

As different management frameworks use different information models, the question
emerges how these different information models can be unified, e.g. when management
systems must be integrated. There are two fundamental approaches:

• Point-to-point integrations, which require n*(n-1)/2 point integrations between n
systems or modules, or

• Choosing one information model as a unifying base reducing integrations between
n systems to n.

We choose the latter approach for the DCI-OS, and we choose a particular standard as
framework for the DCI-OS because of its generality, long-standing history and, most
importantly, widespread adoption among IT management vendors: the Common
Information Model (CIM) [CIM] which has been standardized by the Distributed
Management Task Force (DMTF) [DMTF].
All information referred to in the DCI-OS is folded into a CIM representation. System
participating in a DCI-OS, e.g. a monitoring system, must render their data into a CIM
representation. In many cases, this means to build information wrappers in order to turn
any data source or sink into a CIM information provider.
Central part of the DCI-OS Information Model Layer is the CIM repository into which a
number of modules provide information, and from which modules of the DCI-OS also
consume information. Any module of the DCI-OS, which includes external management

Chapter 9: The DCI-OS Layer

201

systems, acts as a CIM provider to the CIM repository. Section 8.2 has demonstrated this
principle for the integration of the (existing, proprietary) Radia system into the DCI-OS
as the Deployment Manager.
Models or modeled information can be supplied by modules as information providers,
which is typically the case for dynamic information such as states and conditions or
discovered information such as inventories. Models or modeled information can also be
provided manually by people, which is mainly the case for structural model definitions
(model schemata) or modeled information about past or future states, such as future
designs of a Resource Topology for an Infrastructure Service. Tools can assist people
create these models.
In order to structure the large area of information that is relevant in IT management, a
sole syntactic modeling framework is not sufficient. What is also needed is a
methodology which allows representing and structuring the various information types in
a clear manner. CIM refers to the object-oriented methodology for its definitions.
The Common Information Model provides such a methodology for system-related
information entities (called Managed Element) using an object-oriented methodology.
The methodology used in CIM allows that functional, organizational and life cycle
aspects to be considered are addressed by:

• Generic and abstract service definition: The model gives an abstract definition of
a service and thus provides a common understanding for describing services
dependencies for a particular scenario or environment.

• Integration of organizational aspects: The modeling approach defines a service as
the association between organizations that provide and use services. It allows to
model scenarios such as supply chain and provider hierarchies.

• Separation of service definition and service implementation: The separation of the
abstract service description from the corresponding service implementation
enables providers to implement services according to their local environment
without imposing changes on client services (service virtualization).

• Management as an integral part of the service: the model considers the
management of services as an integral part of the service itself.

Over the years, a substantial hierarchy of entity classes has been developed for CIM (with
currently over 3,500 entity classes for the same number of component types that are
managed by IT systems). The object-oriented hierarchy allows structuring the various
entity types at different levels of abstraction.
Models are bound to a domain. In case of CIM, this domain reflects the technical aspects
of a managed environment. The top-level concept is a Managed Element. Organizational
aspects, such as people in responsible roles, are not directly addressed in CIM’s core
model since they are not managed elements. Furthermore, complex information
dependencies may span beyond the technical aspects, e.g. information about people in
responsible roles for certain management systems, organizations who are in charge of
handling incidents, etc. Information can become complex very quickly crossing multiple
organizational, administrative and jurisdictional boundaries leading to inter- and intra-
organizational dependencies.

Chapter 9: The DCI-OS Layer

202

Since the top layer of the DCI-OS is a Planning and Design Layer, which includes people,
organizations, plans and designs, CIM had to be extended by a number of concepts which
is discussed in section 9.3 (The DCI-OS Information Model) in more detail.

9.2 The Common Information Model (CIM)
The Distributed Management Task Force (DMTF) defines and develops the Common
Information Model (CIM) as an ongoing activity. CIM introduces a management
information model that allows integrating the information models of existing
management architectures making them act as information providers. CIM’s purpose is to
act as a unifying information base that allows exchanging management information
between arbitrary management systems.
The Common Information Model has established an information model that spans across
domains, including compute servers, storage and networks providing CIM a unique
advantage over other frameworks that are domain specific. CIM provides consistent
definitions and structures for data. The language that CIM uses for external
representation is the Managed Object Format (MOF). CIM is independent of specific
implementations and is not tied to any particular database or information repository.
The DMTF Common Information Model (CIM) is an approach to the management of
systems and networks that applies the basic structuring and conceptualization techniques
of the object-oriented paradigm. The approach uses a uniform modeling formalism that—
together with the basic repertoire of object-oriented constructs and supports the
cooperative development of an object-oriented schema across multiple organizations.
The management schema of CIM is divided into three conceptual layers:

• Core model – an information model that captures notions that are applicable to all
areas of management.

• Common model – an information model that captures notions that are common to
particular management areas, but independent of a particular technology or
implementation. The common areas are systems, applications, databases,
networks and devices. The information model is specific enough to provide a
basis for the development of management applications. This model provides a set
of base classes for extension into the area of technology-specific schemas. The
Core and Common models together are expressed as the CIM schema.

• Extension schemas – represent technology-specific extensions of the Common
model. These schemas are specific to environments, such as operating systems
(for example, UNIX or Microsoft Windows).

The Core Model gives a formal definition of a service and allows hierarchical and
modular composition of services consisting of other services. However, the focus in CIM
is on rather technical details of components than of service composition and does not
include a notion of domains, such as customer and provider.
The Common Model is a conceptual model for describing a business computing and
networking environments with all the managed entities, their states, operations,
composition, configuration, and relationships. Model contents are not bound to a
particular problem domain or implementation, but address end-to-end management from
clients, to servers, and over the network.

Chapter 9: The DCI-OS Layer

203

The Extension Schemas allow to extend the Common Model in case information is
needed which cannot be represented in the Core or Common Models.
CIM reflects the principles of FCAPS management (fault, configuration, accounting,
performance and security management) and supports the abstraction and decomposition
of services and functionality. The information model defines and organizes common and
consistent semantics for managed entities.
The organization of CIM is based on an object-oriented paradigm promoting the use of
inheritance, relationships, abstraction, and encapsulation to improve the quality and
consistency of management data. Object-orientation in CIM is applied in the following
dimensions:

• Abstraction and classification. To reduce the complexity, high level and
fundamental concepts (the objects of the management domain) are defined. These
objects are grouped into types of management data (classes) by identifying their
common characteristics and capabilities (properties), relationships (associations)
and behavior (methods).

• Object inheritance. Additional detail can be provided by sub-classing. A subclass
inherits all the information (properties, methods and associations) defined for its
super class. Subclasses are created to classify the levels of detail and complexity
at the right level in the model.

• Dependencies, component and connection associations. Being able to express
relationships between objects is an extremely powerful concept. Before CIM,
management standards captured relationships in form of multi-dimensional arrays
or cross-referenced data tables. Relationships and associations are now directly
modeled. In addition, the way that these relationships are named and defined,
gives an indication about the semantics of object associations. Further semantics
and information can be provided in properties.

9.2.1 CIM Core and Common Model
The core model comprises of a basic set of classes, properties and methods that provide
the basis for modeling of all managed systems. The Core and common models follows
the CIM Meta-Model. The Core and Common Models are together referred to as CIM
Schema. The CIM Common Models capture information related to particular areas of
management like systems, applications, networks, devices etc.
The core model lays down a basic classification of elements and associations. The
managed element class which is an abstract class forms the base of the hierarchy. The
Managed Element class is sub-classed into Managed System Element, Product related,
Setting and Configuration related performance and statistical data related classes.
Managed system elements are sub-classed further into Logical and Physical Elements.
The common models capture the information that is related to a management area but is
technology and platform independent.
The CIM Schema [CIMv2.7] defines the schemata for the Common Model based on the
following sub-classification of the central concept of Managed Element:

1. Applications: Deals with the structure of an application, life cycle and the
transition between states in the life cycle of an application.

Chapter 9: The DCI-OS Layer

204

2. Database: This schema describes the database system that describes the
application software, the logical entity of the database and the database service.

3. Devices: The CIM Device Common Model describes a range of hardware, their
configuration information and their data. It covers concepts like sensors, fans and
batteries to storage volumes.

4. Events: The CIM Event Common Model covers the aspects of publications,
subscriptions and notifications.

5. Interop: The CIM InterOp Model describes the various Web Based Enterprise
Management (WBEM) components, namely the CIM Client, CIM Server, CIM
Object Manager, Provider. Please see more details in the next subsection.

6. Metrics: The CIM Metric Common Model tries to generalize the concept of
transactions through the UnitOfWork concept.

7. Network: The CIM Network Model describes the network systems, network
services, logical interconnections and accesses, network protocols (OSPF, BGP),
networking technologies (VLAN, Switching/Bridging), Quality of Service
(meters, markers, queues) and other related definitions.

8. Physical: The CIM physical Common Models describes the modeling details of
Physical elements (elements that occupy space and follow laws of physics).
CIM_Racks, and CIM_Chassis are defined for example as physical elements.

9. Policy: Policies are frequently describes as rules that change the behavior of a
system. The Policy Model has been developed jointly by IETF and DMTF. It
expresses policies as condition action pairs. The <condition> term is a Boolean
expression used to specify the rule selection criteria. When for a resource the
<condition> term evaluates to true the <action> term is invoked.

10. Support: The CIM Support model deals with standardized way to represent and
communicate information, the process of obtaining information, publishing and
interpreting support information.

11. Systems: CIM System Common Model defines computer system related
abstractions. These systems are aggregation entities and are not modeled as
collections. They also deal with concepts like systems, files, operating systems,
processes, jobs, etc.

12. User: The CIM User Common Models deal with the general contact information
related to users, organizations, etc. and the clients of the services as “Users” and
the security authentication and authorization related information.

9.2.2 CIM Meta-Model
The CIM Schema describes the core and common models. CIM is an object oriented
model and has capabilities to represent types, and instances alike. CIM defines the notion
of Classes and sub-Classes. Classes are types while subclasses are subtypes. Instances are
instantiation of the Classes and subclasses and represent things. Properties are attributes
and Relationship is pairs of attributes.
The elements of the model are Schemas, Classes, Properties and Methods. The Unified
Modeling Language (UML) [Boo98] is used to define the structure of the meta-schema.

Chapter 9: The DCI-OS Layer

205

The model also supports Indications and Associations as types of Classes and References
as types of Properties.

• A Schema is a group of classes with a single owner. Schemas are used for
administration and class naming. Class names must be unique within their schema.

• A Class is a collection of instances that support the same type: that is, the same
properties and methods.

• Classes can be arranged in a generalization hierarchy that represents subtype
relationships between Classes. The generalization hierarchy is a rooted, directed
graph and does not support multiple inheritance.

• Classes can have Methods, which represent the behavior relevant for that Class. A
Class may participate in Associations by being the target of one of the References
owned by the Association. Classes also have instances (not shown in the figure).

• A Property is a value used to characterize instances of a Class. A Property can be
thought of as a pair of Get and Set functions that, when applied to an object,
return state and set state, respectively.

• A Method is a declaration of a signature (that is, the method name, return type and
parameters), and, in the case of a concrete Class, may imply an implementation.

• A Trigger is a recognition of a state change (such as create, delete, update, or
access) of a Class instance, and update or access of a Property.

• An Indication is an object created as a result of a Trigger. Because Indications are
subtypes of Class, they can have Properties and Methods, and be arranged in a
type hierarchy.

Figure 57: UML diagram of the CIM Meta-model.

• An Association is a class that contains two or more References. It represents a
relationship between two or more objects. Because of the way Associations are

Chapter 9: The DCI-OS Layer

206

defined, it is possible to establish a relationship between Classes without affecting
any of the related Classes. That is, addition of an Association does not affect the
interface of the related Classes. Associations have no other significance. Only
Associations can have References. An Association cannot be a subclass of a non-
association Class. Any subclass of an Association is an Association.

• References define the role each object plays in an Association. The Reference
represents the role name of a Class in the context of an Association. Associations
support the provision of multiple relationship instances for a given object. For
example, a system can be related to many system components.

• Properties and Methods have reflexive associations that represent Property and
Method overriding. A Method can override an inherited Method, which implies
that any access to the inherited Method will result in the invocation of the
implementation of the overriding Method. A similar interpretation implies the
overriding of Properties.

• Qualifiers are used to characterize Named Elements (for example, there are
Qualifiers that define the characteristics of a Property or the key of a Class).
Qualifiers provide a mechanism that makes the meta-schema extensible in a
limited and controlled fashion. It is possible to add new types of Qualifiers by the
introduction of a new Qualifier name, thereby providing new types of meta-data
to processes that manage and manipulate classes, properties and other elements of
the meta-model. See below for details on the qualifiers provided.

A CIM Class is a blueprint that describes the properties and methods of a particular type
of an object. Classes have properties and methods. A Class Name is unique in a particular
schema. Properties are unique within a class. A property has a name, a data type, a value
and an optional default value. The data types that CIM supports are uint8, sint8, uint16,
sint16, uint32, sint32, uint64, sint64, string, boolean, real32, real64, datetime, ref
(reference to a class name), char16.
Methods are unique within a class and represent operations that can be invoked. Return
type of methods conform to data types supported by CIM. A method signature involves
name of the method, return type, optional input parameters, and optional output
parameters. Return types must not be arrays.
Qualifiers are used to describe additional information about classes, associations,
properties, methods, indications, properties or references. Qualifiers have name, type,
flavor, scope, and optional default value.
An Association has references to two or more classes. Associations represent
relationships between two or more classes. It is treated as a separate object with
references attached to it.
An Indication signifies occurrence of an actual event. They may have properties and
methods and be hierarchically arranged. The indications are either life cycle indications
or process indications. The life cycle indications signify creation, deletion or
modification of a class or a creation, deletion, modification, method invocation, and read
access of an instance. The process indications are other notifications that are not related
to life cycle. A CIM Specification is described in the Managed Object Format (MOF).

Chapter 9: The DCI-OS Layer

207

9.2.3 Managed Object Format (MOF)
The management information is described in a language based on Interface Definition
Language called the Managed Object Format (MOF). This document uses the term MOF
specification to refer to a collection of management information described in a manner
conformant to the MOF syntax. Elements of MOF syntax are introduced on a case-by-
case basis with examples.
The MOF syntax is a way to describe object definitions in textual form. It establishes the
syntax for writing definitions. The main components of a MOF specification are textual
descriptions of classes, associations, properties, references, methods and instance
declarations and their associated qualifiers. Comments are permitted.
In addition to serving the need for specifying the managed objects, a MOF specification
can be processed using a compiler. To assist the process of compilation, a MOF
specification consists of a series of compiler directives.

Figure 58: Example of a MOF description in the Common Information Model.

//===/
// A class example: ManagedElement
//===/
[Abstract, Version ("2.7.0"), Description (
 "ManagedElement is an abstract class that provides a common "
 "superclass (or top of the inheritance tree) for the "
 "non-association classes in the CIM Schema.")]
class CIM_ManagedElement {
 [MaxLen (64), Description (
 "The Caption property is a short textual description (one-"
 "line string) of the object.")]
 string Caption;
 [Description (
 "The Description property provides a textual description of "
 "the object.")]
 string Description;
 [Description (
 " A user-friendly name for the object. This property allows "
 "each instance to define a user-friendly name IN ADDITION TO its "
 "key properties/identity data, and description information. \n"
 " Note that ManagedSystemElement's Name property is also defined "
 "as a user-friendly name. But, it is often subclassed to be a "
 "Key. It is not reasonable that the same property can convey "
 "both identity and a user friendly name, without inconsistencies. "
 "Where Name exists and is not a Key (such as for instances of "
 "LogicalDevice), the same information MAY be present in both "
 "the Name and ElementName properties.")]
 string ElementName;
};

Chapter 9: The DCI-OS Layer

208

9.3 The DCI-OS Information Model
This chapter introduces the core information model for the DCI-OS. It is based on the
models described by the author in the Conceptual Architecture, which forms the basis for
the DCI-OS Information Model [Gra03b].
Concepts establish the terms (the vocabulary), abstractions and principles for the DCI-OS
Information Model. Concepts reflect the basic abstractions upon which the DCI-OS
modules operate. Eight such basic abstractions are defined in this chapter. They are
referred to as first-class entities.
The set of eight first-class entities is meant to be complete. All information needed to be
maintained by a data center operating system can be classified into these base
abstractions. All functions performed by such an operating system can be mapped into
operations about instances of first-class entities. First-class entities are orthogonal.
First-class entities also provide the basis for the models used by the DCI-OS. They define
the complete set of abstraction upon which the DCI-OS modules perform their operations.
Some of the first-class entities are well known from other modeling environments such as
CIM. Examples are resources, relationships, policy and activities. Others are actors and
roles in which actors operate in the system. Two concepts have been introduced
providing structural means. These are contexts and views. Those concepts are not
typically defined in modeling environments. In the Information Model, they are first-
class entities with explicit representation in the system.
The following sections define the set of first-class entities as well as their relationships to
each other.

9.3.1 First-Class Entities
A system of first-class entities defines a canonical set of entity types that are relevant for
a purpose and thus need to be represented in a system for reasoning about them.
Canonical refers to a minimal and complete set of types that are semantically orthogonal.
Entity – An entity is a thing or a concept that is relevant for the operation of a system
and thus needs representation inside the system.
An entity representation is the implementation of the entity information inside the DCI-
OS system in a chosen data representation model. An entity type describes a category of
entities of the same kind.
Figure 59 shows eight concepts as first-class entities and sub-classes of class entity.

Figure 59: First-class entities of the DCI-OS Information Model.

Chapter 9: The DCI-OS Layer

209

Entity Type Purpose

Actor subject in the DCI-OS initiating or performing activity, including
(human) individuals, systems or components.

Role defines the purpose of an actor in a system which determines the views
that actor has on other entities.

Activity flow of operations or actions associated with a task that is initiated by
one actor in one role.

Resource object in the DCI-OS: resource atom or constructed resource.

Relationship semantic association between entities.

Context structural element that defines a scope within which semantically related
entities exist, have meaning and interact to accomplish a purpose.

View appearance of entities to roles in terms of properties and operations.

Policy externally imposed strict or desirable control over behavior of actors or
activities when operating upon entities.

Table 9: First-class entities as conceptual basis of the DCI-OS Information Model.

Table 9 summarizes the first-class entities and categorizes them with their relationships to
associated entities in the managed and/or management environment.
Entities provide the basic building blocks for structuring the information about things and
concepts needed for the operation of a DCI-OS system. Reasoning upon entities controls
the behavior of the DCI-OS with all internal and external interactions.

9.3.2 Relationships Between First-Class Entities
Figure 59 showed the set of first-class entities as subclasses of entity. Other relationships
among first-class entities are shown in the following figures.
In Figure 60, the first-class entities of the DCI-OS Information Model are shown. The
DCI-OS is represented as an actor with which other actors interact such as by requesting
resources.
Actors are subjects in a DCI-OS that initiate or perform activity such as requesting a
resource or maintaining a resource inventory. Actors initiate activities in roles. An actor
may have multiple roles or may change roles for different activities. One activity is
initiated with one role. Human individuals, processes, components, entire systems are
included in the notion of an actor. An allocation system or an assignment system may act
as actors in the DCI-OS. Resources can be active initiating and performing operations
upon themselves. Examples of such operations are requesting more resources or releasing
resources.
Roles define the purpose of an actor in a system which determines the views (properties
and operations) that actor has on other entities. Roles are defined by contexts in which

Chapter 9: The DCI-OS Layer

210

actors act within or interact with the DCI-OS. Roles define the views actors and activities
have on other entities in the system. Examples of roles are requestors, providers or
operators of resources in a DCI-OS.

Figure 60: Top-level relationships among first-class entities.

Activities encompass the flows of operations or actions associated with tasks that are
initiated by actors in the DCI-OS. Workflows, processes or events are examples of
activities.
Resources are the main objects in a DCI-OS that are provided, controlled and used by
actors for performing computational services. Resources can a priori exist in resource
pools as resource atoms, or resource can be constructed creating new resources with
higher abstractions. Resource construction may define new contexts within which new
resources appear that can be provided, controlled and used by actors.
Relationships define semantic associations between internal or external entities in the
DCI-OS. Relationships are managed by the DCI-OS, primarily relationships between
actors and resources (such as resource allocation and resource assignment relationships)
and between resources (resource constructions as resources that are composed of other
resources). The entire operation of a DCI-OS can be seen as the creation, transitioning
and dissolving of entities and managing relationships among them.
Contexts, as structural elements defining scopes for semantically related entities, are
used to organize all information maintained in the DCI-OS about entities. The DCI-OS
manages context entities and entities within contexts. Contexts characterize the domains
within which entities exist and have meaning. Scoping may also define visibility bounds
of entities. Resource contexts define the relationships among resources for resource
construction. Contexts may also define policy applying to entities in those contexts. An
example of a context is a resource request context, which contains all information

Chapter 9: The DCI-OS Layer

211

associated with one resource request from one requestor. Another example is a resource
context containing all information associated with one (eventually constructed) resource.
Actors create, transition and dissolve contexts in the DCI-OS.

Figure 61: Refinement of relationships among first-class entities.

Views define the appearance of associated entities to roles by exposing certain properties
and operations to those roles in which actors and activities interact with entities.
Policy defines strict or desirable control over behavior of actors and activities when
performing operations upon entities. Policy is associated with entities to which it applies.
Actors and activities inside the DCI-OS obey policy.
Computations upon entity representations drive the operation of a DCI-OS. New entity
representations are created, for instance, when new resources are created or new users are
registered. Resource allocations and assignments are represented as relationships between
requestor and resource entities inside the DCI-OS. Complex transactions may occur when
new resources are constructed or when resources are assigned to requestors.
Entity representations are created within contexts by instantiation from entity types.
Entity types have themselves representation as entities in the system.
The entirety of entity representations summarizes all information the DCI-OS maintains
about all entities that are associated with its operation. The DCI-OS maintains
consistency of information stored in entity representations.
The following sections provide detailed definitions of first-class entities. Definitions are
provided first for entities as things or concepts and second for corresponding entity
representations as the information maintained inside the DCI-OS about entities.

Chapter 9: The DCI-OS Layer

212

9.3.3 Entity Type: Actor
Actor – An actor is an acting subject that initiates or performs activity in the system.
Human individuals as well as machine-based actors such as systems, components or
processes are included in the notion of an actor. Actors are associated with roles defined
by the context within which they operate. Actors may have different roles performing
different activities in the system in different contexts.
Actor Entity – An actor entity contains the information that is represented about an actor
in the system.
Actors initiate and perform activity in the system. Different kinds of actors may perform
different kinds of activities.

Examples of Actors Examples of Activity
Human operator Manage resource pool.
Application process Request resources.
Resource request
workflow

Route resource request through the DCI-OS.

Resource allocation
system

Perform resource allocation algorithm, allocate resources to
requestor.

DCI-OS itself Allocate, assign, and manage resources.
Event detector Send notification to management system.
Management system Collect monitoring data.

Table 10: Examples of actors and related activities.

9.3.4 Entity Type: Role
Role – A role defines the purpose of an actor in a system. A role determines the views an
actor (and initiated activity) has on other entities it is interacting with. Views depending
on roles define a set of operations and properties of an entity that is exposed to an actor
and its activities. Roles depend on the context within which interaction occurs.
Role Entity – A role entity contains the information that is represented about a role in the
system.
In many systems roles are not distinguished from actors (“users”). In Unix, for instance,
permissions depend on the user identification. It is not supported that a user under the
same user identity can act as regular user or system administrator. In order to perform the
role of an administrator, the user identification must be changed.
In a DCI-OS, actors are detached from roles. Actors thus can use the same identification,
yet act in different roles when permissions allow. Each actor must have at least one role
associated within which activity is performed. Actors may change roles (when
permissions allow).
Actors may initiate multiple activities in the system in different roles such as an operator
(actor) managing a resource pool (operator role) and at the same time allocating resources
(in requestor role) for deploying and operating a management system.
Roles determine the views under which entities appear to actors. Examples of roles are:
operator role, resource provider role, or resource requestor role.

Chapter 9: The DCI-OS Layer

213

9.3.5 Entity Type: Activity
Activity – Activity is a flow of related operations or actions to accomplish a task that is
initiated by one actor in one role. Actors may also perform activity. Activity causes state
transitions in the system. Activity may be passed between actors.
Activity Entity – An activity entity is the representation of an activity in the system. An
activity entity contains information such as identification of the activity, the actor who
initiated and who is performing activity, the program that defines the sequence of
operations performed by an activity, and the current status of an activity.
Not all activities in the system are represented as activity entities.
Examples of activities are workflows, processes, events, notification chains, in general all
sequences of operations that serve the purpose of accomplishing a task.

Figure 62: Relationships between actor, activity, and role.

The role defines the view and thus the required privileges under which entities appear.
Multiple actors may act in same roles, and one actor can take multiple roles
simultaneously or subsequently initiating different activities. One activity is initiated in
one role. Contexts define roles. Activity is associated with the role within which it is
performed. Actors performing activity may change over time.
Roles are associated with actors either implicitly by acting within a certain context that
implicitly selects the role for actors in that context, or a role can be selected explicitly by
an actor (when permission policy allows). An example for the first case is a user
requesting resources from the DCI-OS. Requesting resources implicitly implies a
requestor role.

9.3.6 Entity Type: Relationship
Relationship – A relationship defines a semantic association between entities. The DCI-
OS manages creation, transitioning and dissolving of relationships.
Relationship Entity – A relationship entity contains the representation of a semantic
association between entities in the system in form of structured sets (pairs, tuples, ordered
lists, etc.) of references to entities between associations exist.
Not all relationships are explicitly represented as relationship entities.

Chapter 9: The DCI-OS Layer

214

The entire operation of a DCI-OS is based on creation, transitioning state and dissolving
of entities and creating, transitioning and dissolving relationships among entities.
Transitions among entities may be complex requiring transactional semantics.
Relationships can be established between any entity, including relationships.
Relationships primarily exist between actors and roles, actors and resources, and among
resources establishing constructed resources.

Figure 63: Relationship entity.

For example, resource allocation is defined as the process of establishing allocation
relationships between a set of resources and a resource request issued by an actor.
Resource construction is the process of establishing relationships among resources. A
resource topology is another example of explicit relationships established among
resources representing resource wiring and connection information.
A relationship entity exists as an explicit, identifiable, namable entity representation
within a context. Relationship entities can be explored from outside. Not all relationships
are represented as explicit entities in the system. Some relationships may be implicit.

9.3.7 Entity Type: Context
Context – As context is understood a structural element that defines a scope within
which semantically related entities exist.
Context Entity – A context entity provides the container where semantically related
entities or references to entities are maintained in the system.
All first-class entities are contained in context entities including recursively sub-contexts.
Contexts may also contain references to entities that exist in other context entities. One
entity can only exist in one context at a time, but may be referenced multiple times from
one or multiple contexts.

Figure 64: Context entity containing other entities or entity references.

Chapter 9: The DCI-OS Layer

215

Examples of context entities are:
- resource request context entity – contains a set of requested resources along with

time lines and other descriptions for the request; later it also contains the resource
entities that have been allocated and assigned to the request that are passed back
to the requestor for access.

- resource pool context entity – contains resource atoms and resource constructions
of one particular resource pool.

- allocation context entity – contains allocation relationship entities between
resource requests (context entities) and resource entities.

- assignment context entity – contains assignment relationship entities between
resource requests (context entities) and resource entities.

The resource pool context entity primarily contains resource entities maintained in a
particular resource pool (atoms or constructions). The purpose of the resource pool
context entity is to group and scope these entities to the resource pool and distinguish
them from other resource pools. Further entities such as actors and roles (requestors,
operators) can be added to the resource pool context.
Entities can be referred to from multiple contexts, and thus become semantically part of
other contexts, but they can only exist as entity in one context.
Contexts can be established dynamically. An example is a resource request that is
represented as a resource request context entity that initially contains resource
descriptions (as form of resource entities) and later references to allocated and assigned
resources that exist or are established in resource pool contexts. Requestors are informed
about assigned resources be returning their resource request context entity which, at that
stage, contains references to the assigned resources. The requestor then uses these
references to access resources.
Resource request context entities are the primary entities used for the interaction between
requesting actors and the DCI-OS.
Entities may transition from one context entity to another. Following operations exist for
entities maintained in contexts:

- creating entities within contexts,
- joining or leaving contexts and transfers between contexts,
- establishing references to entities in contexts,
- establishing view and relationship entities to associated entities.

9.3.8 Entity Type: View
View – A view defines the appearance of associated entities to roles by exposing certain
(new, changed) properties and operations to roles in which actors and activities interact
with associated entities. A view only establishes a new appearance of associated entities,
not duplicates of states.
View Entity – A view entity establishes a new set of transformed properties and
interfaces upon associated entities. A view entity contains a set of transformation
functions and relationships to the associated entities in the system.

Chapter 9: The DCI-OS Layer

216

Views are useful to distinguish and control operations actors are allowed to perform with
entities depending on their roles. For example, an operator role would view a resource
entity differently than a requestor role.
Hiding properties or operations through views is another useful example of
transformations (subset) in view entities. Not only smaller, also extended properties or
interfaces can be derived from associated entities as result of transformations.

Figure 65: Views as transformations of entity properties and interfaces.

View entities contain transformation functions that are based on original properties and
interfaces of one or more associated entities. Views expose new properties and interfaces
by applying transformation functions defined by a view entity.
In contrast to resource construction where aggregation or transformation processes
established new resource entities, views only establish new appearances in terms of
transformed properties and interfaces of existing entities.
Views do not maintain state of associated entities. Accessing state of associated entities
has to be performed though view entities where transformation functions then access state
in associated entities.

9.3.9 Entity Type: Policy
Policy – As policy is understood the entirety of strict (enforced) constraints or desirable
directives that control the behavior of a target entity towards achieving a goal. Target
entities are the entities to which policy applies. Policy is imposed on a target entity either
externally (provided from outside) or internally (configured or built-in). Policy includes
how decisions are made in or about target entities and the actions following from
decisions. Policy thus controls the behavior of an actor or an activity operating upon a
target entity. Behavior is controlled within a space of choices that is exposed to policy
control.
Policy Entity – A policy entity contains the representation of policy in some form in the
system such as in form of interpretable specifications of policy or constraint languages,
instruction statements, sets of rules, or sets of control variables. Policy representation is
interpreted and obeyed by actors and activities operating upon a target entity.

Chapter 9: The DCI-OS Layer

217

Policy entities are associated with either target entities (for internal policy) or with
external entities carrying policy information to be applied when interaction with a target
entity occurs.
Examples of internal policy are allocation and assignment policy that applies in a
resource pool. An example of external policy is a preference expressed in resource
request for prioritized treatment. The internal policy of a DCI-OS decides whether to
honor or disregard such external policies.
Policies are represented as policy entities and are attached to the entities for which they
apply.

Figure 66: Policy entity with policy representation.
Properties of policy include:

- Policy controls behavior of a target entity in form of strict (enforced) constraints
or desirable directives. Policy controls the behavior of a target entity within a
space of choices that is exposed to policy control in a target entity.

- Policy is directed towards achieving a goal that has been defined for a target
entity and formulated in form of a policy specification.

- Policy can be imposed internally to a target entity in form policy entities
associated with the target entity. Examples are built-in policies or policies that
have been pre-configured for a target entity.

- Policy can be imposed externally to a target entity when interacting with outside
entities providing policy information for interactions with target entities.

- Behavior of target entities is controlled by deriving decisions from policy
representations contained in policy entities and the actions following from
decisions.

- Policy specifications are interpreted and obeyed by activities when performing
operations upon target entities.

- Policy is represented in some form in policy entities and associated with either
target entities as internal policy or with external entities and applied when
interactions occur with a target entity.

Chapter 9: The DCI-OS Layer

218

- Examples of policy representations include:
- statements of policy or constraint languages,
- statements of code and flow descriptions,
- sets of rules (such as condition-action pairs),
- sets of control variables defined for a decision space.

Policy representation may be translated from one representation into another.

9.3.10 Entity Type: Resource
Resources are the objects in the DCI-OS. Resource entity representations maintain
construction relationships with other resource entities and maintain a reference to the
associated resource(s) that exist(s) in the resource pool. Associations are provided in
form of relationship entities contained in resource entities. Resource atoms are resource
entities that are associated with resources that a priori exist in a resource pool and have
not been subject to construction by the DCI-OS.
Resource – A resource provides a computational service in terms of processing, storage,
or communication that is needed by another computation. Resources are the objects in the
DCI-OS that are provided, constructed, controlled and used by actors. Resources can be
classified into atomic resources and constructed resources. Resource assignment
relationships and resource construction relationships are primary relationships managed
by a DCI-OS.
Resource Pool – A resource pool is a bounded domain where a set of resources is located
that is managed by a DCI-OS. The DCI-OS provides an interface through which
requestors can explore, request and use resources from the pool. Multiple resource pools
can form a federation managed by the DCI-OS providing unified views and ways to
access resources from different pools.
Resource Entity – A resource entity is the representation of a resource in the system. A
resource entity provides interfaces for controlling and maintaining status data of an
associated resource. A resource entity internally maintains construction relationships and
references to associated resources.

Figure 67: Resource entity and associated resource in a resource pool.

The following table summarizes the classification of resources that has been chosen for a
DCI-OS. It contains a brief characterization and examples of resources of each category.
More detailed discussion of terms and definitions follows after.
The major distinction shown in Table 3 appears between resources that a priori exist in a
resource pool and resources that are results of constructions upon other resources.

Chapter 9: The DCI-OS Layer

219

Resource Category Characterization / Examples

Resource Atom Resources that a priori exist in a resource pool, not result of
construction: physical disk, device, machine, network.

Resource
Construction

Process of creating new resources from either a priori existing
or from prior constructed resources, two categories: resource
aggregation and resource composition or transformation.

• Resource
 Aggregation:

new resource as result of a whole-part relationship with parts
are visible and referred to by requestors.

- Resource
Collection

group entity for resources:
- cluster of machines.

- Resource
Container

container entity that contains resources:
- e.g., a UDC farm [UDC].

• Resource
 Composition or
 Transformation:

new resource as result of transformation process with
requestors referring to the result, not parts.

- Virtual
Resource

functionally fully compatible resource:
- virtual machine, server partition, virtual network,
- virtual disk.

- Service
Resource

resource with new capabilities and properties = service:
- file service (file server), database service, web services.

Table 11: Resource classification in resource atoms and resource constructions.

9.3.11 Complex Resource Constructions
Resources are the primary concern of a DCI-OS for management. Due to the diversity of
resources found in a data center, a rich information model for resources had to be
developed for the DCI-OS in order to cope with a very diverse set of resources.
As mentioned earlier, existing management systems in data centers have the restriction to
only be capable of dealing with physical resources as they exist in data centers. These
systems cannot, for instance, deal with virtual resources as they have become available
recently. The rich information model provides comprehensive expressiveness for
complex resource compositions using abstractions of resource atoms and resource
constructions, aggregation, composition and transformation.
Resource constructions are classified into resource aggregation and resource composition.
Resource aggregation falls into resource collections and resource containers. Resource
composition is differentiated into virtual resources and service resources. Since both
categories are established as result of transformation processes, the term resource
transformation is also used for resource composition.

Chapter 9: The DCI-OS Layer

220

The classification of resources, atomic resources and constructed resources as well as the
different categories of resource constructions is summarized in Table 11 and discussed in
more detail in the following sections. Resource construction may occur recursively
referring to prior constructed resources of any of the categories.

9.3.11.1 Resource Atom
Resource Atom – A resource atom is a resource entity that represents a resource which a
priori exists in a resource pool and has not been subject to prior resource construction by
the DCI-OS. Resource atoms are the smallest units DCI-OS is aware of. Resource atoms
are not further resolvable by the DCI-OS and can only be treated as a whole.
Examples of resource atoms are physical disks, devices, machines, installed networks, etc.

9.3.11.2 Resource Construction
Constructed Resource – A constructed resource is the result of resource construction,
the process of aggregating or composing new resources from other resources.
Constructed resources are new resource entities with own identity and own representation
in the DCI-OS. Constructed resources are classified into resource aggregations and
resource compositions (transformations).
Examples of constructed resources are UDC farms, server partitions, clusters, virtual
disks, virtual storage volumes, etc.
Resource Construction – Resource construction is the process of creating new, higher
forms of resources as result of operation of the DCI-OS by aggregating or composing
new resources from more elementary ones, which may either be atomic or prior
(recursively) constructed resources.
Constructed resources form new identities, new “whole things” as referred to in UML
with new identities and identifiers. Constructed resources are first-class entities with new
properties and capabilities and their own representation in the DCI-OS. Constructed
resources can establish new contexts within which contained resources exist.

Figure 68: Classification of complex resource constructions.
UML modeling distinguishes between aggregation and composition. Aggregation in
UML is a special form of association that specifies a whole-part relationship (or

Chapter 9: The DCI-OS Layer

221

is_part_of relationship) between the aggregate (the whole) and the parts. Parts of an
aggregation can still be visible from outside. When the aggregate is being dissolved, parts
may not be affected. And vice versa, when parts are removed from an aggregation, the
aggregation continues to exist. Empty aggregations with no parts may exist.
Composition in UML is a stronger form of aggregation with strong ownership and
coincident lifetime of the parts and the whole; parts with non-fixed multiplicity may be
created after the composite itself, but once created, they life and die with it; such parts
can also be explicitly removed before the death of the composite. Parts exclusively
belong to only one composition. They are often created and exist only within the context
of the composition. Parts are not visible to the outside, only the composition as a whole.
When the composition is dissolved, it all its parts are dissolved as well. When parts are
dissolved, it has impact on the existence of the composition. Parts cannot exist
independently of the composition.
The variety of resource constructions can also be classified in resource aggregations and
resource compositions with adopting the terms from UML and slightly modifying them
for the purpose of resource construction.

9.3.11.3 Resource Aggregation
Resource Aggregation – Resource aggregation is a resource construction where a
whole-part relationship between a set of atomic or prior constructed resources and a new
aggregating resource is established. Resource aggregation allows organizing resources as
identifiable groups. Contained resources are visible to the outside and can be accessed as
they exist from outside. The resource group can exist independently of the (eventually
empty) set of contained resources, and resources can exist independently of the group.
Resource aggregation falls in two categories, resource collections and resource containers.
Resource Collection – A resource collection is an entity that represents a group of
resources and can be identified as a whole. Resources may belong to multiple collections.
Dissolving a collection does not cause dissolving contained resources. Both, resources as
well as collections exist as resource entities and exist independently of one another. To
the outside, individual resources are primary objects for actors, not collection entities.
An example of a resource collection is a cluster of machines. The cluster exists as
resource entity with identity and properties, and each of the machines belonging to the
cluster exist as independent resource entity with own identity and properties. Requestors
primarily refer to individual machine resource entities, not to the cluster entity which
represents the grouping of machines. The purpose of maintaining grouping entities is to
provide structural support for management and attaching policy, for instance.
Resource Container – A resource container is an entity that contains a set of resources
that is identified as a whole. Resources cannot belong to multiple containers. Dissolving a
container does not cause dissolving resources. Both, resources as well as containers exist
as resource entities and exist independently of one another. To the outside, the container
entity is typically exposed and primarily referred to, not the contained resources.
An example of a resource container is a UDC farm, which is handed over to a requestor
as a whole (as a separate, identifiable resource entity farm). Although inner resources are
accessible in a farm individually, the primary entity that is referred to is the farm.

Chapter 9: The DCI-OS Layer

222

9.3.11.4 Resource Composition (Resource Transformation)
Like in operating systems, resources can be transformed from lower into higher resources
performing higher functions, having new behavior and new properties. Those resources
are established as result of transformation processes performed by a control system. The
transformation process uses underlying resources in order to establish a new resource.
Unlike resource collections or containers, only the result, the new transformed resource is
exposed to a using entity hiding the underlying resources used for the transformation
process. Transformed resources depend on the transformation process, its execution and
on the underlying resources without which they cannot exist. Due to this analogy with
composition, resource transformations have been classified as resource compositions.
Any kind of a result of a transformation process using resources internally can be
classified as resource transformation or resource composition. This includes
transformations performed by application processes opening the path for incorporating
“software resources” or services into the presented model. Services considered as
resources such as file services or data services, or application services used by other
applications, fall in the category of resource compositions or resource transformations.
Providing services is result of a transformation process controlled by application
programs and executed by processes.
Resource Composition (Resource Transformation) – Resource composition is a
resource construction that is established as result of transformation processes using
underlying atomic or prior constructed resources. The transformation process creates a
new resource with new identity and new properties and capabilities. Since composed
resources depend on the transformation process, its execution and the resources needed
for it, they cannot exist independently of inner resources. Inner resources used for the
transformation process are not exposed outside.
Two kinds of resource compositions exist: virtual resources and service resources.
Virtual Resource – A virtual resource is result of a resource transformation process
establishing a new, functionally compatible resource to an underlying resource (usually
excluding time behavior). Transformation creating a virtual resource involves an
indirection providing the control point for the transformation process.
Examples of virtual resources are virtual machines, server partitions, virtual networks,
virtual disks, etc. Virtualization transformations are not necessarily performed by, but are
under the control of the DCI-OS.
Virtual resources are typically used for resource multiplication or resource partitioning.
Virtual resources are also used to impose protection boundaries when resources are
shared among requestors providing containment, isolation and protection of resource
shares and creating an environment of exclusive use by requestors.
Service Resource – A service resource is result of a resource transformation process and
provides a new resource (or service) with a new function, new behavior and properties.
Software services are subsumed under service resources.
Examples of service resources are file services (file servers), database services, etc. Any
kind of web services can be seen as a service resource in this classification.
After the discussion of the DCI-OS Information Model, the sub-layer of Resource Pool
Managers is discussed in the next section.

Chapter 9: The DCI-OS Layer

223

9.4 The DCI-OS Resource Management Layer
The DCI-OS Resource Management Layer provides the central resource management
capabilities of a DCI-OS for the resources in a data center.
It consists of three major parts of the Resource Pool Managers, the Resource Pools and
the Resource Pool Drivers. Resource management is organized around a concept of
Resource Pool, which contain resource instances of a particular type each. Resource
instances are allocated and assigned to Infrastructure Services as needed. Resource Pool
Managers maintain not only current resource inventory, but maintain profiles of resource
capacity and resource demand over time enabling them to also manage the information
about future resource availability and use, which was one of the key requirements for the
architecture of the DCI-OS and represents a new key capability.
A second major innovation is the development of a complex Resource Request Format
based on which resource sets can be requested, allocated and assigned. This Resource
Request Format also expands the capabilities of current resource management systems
which only can deal with individual requests for resources of one type, but not complex
sets of resources, some of which eventually as result of resource constructions.
As consequence of these innovations, a separation was introduced between resource
allocation and assignment, which is explained in more detail in section 9.4.3. While
resource allocation is “anonymous”, which means that a certain resource capacity is
granted to a requestor, resource assignment refers to specific resource instances which are
assigned by the Resource Pool Manager to fulfill an allocation. This principle of late
binding helps keeping resource requests isolated form fluctuating resource inventory in a
data center, which is particularly important for managing future resource requests. Late
binding between resource allocations and assigning resource instances when resources
are needed is the third major innovation of the DCI-OS Resource Management Layer and
realized in Resource Pool Managers.
Resource Pool Drivers produce the resources for pools, which can be whole or shares of
physical resources or generated resources, such as virtual resources, which require
explicit creation steps.

9.4.1 Resource Pool Manager
The Resource Pool Manager has two major system components:

• Allocation System – decides about (accepts or rejects) requests for resources
from requestors and, if accepted, allocates requested resources (quantities or
instances depending on the detail of requested resource specifications)
accommodating the requested demand for resources. The allocation system
memorizes resource allocations. Changes in resource capacity, availability or
policy may cause changes in existing resource allocations.

• Assignment System – assigns resource instances to (unbound) resource requests.
When a requestor has fully specified the details of specific resource instances as
part of the request, assignment takes place immediately after the resource request
has been received. When the requestor has specified only kinds and quantities of
resources, not specific instances, the assignment system can optimize resource
assignment for binding resource instances to requests at a late point in time. The

Chapter 9: The DCI-OS Layer

224

allocation system will reserve respective capacity such that assignment can be
done as late as at the time when the resource request has become due.

Run-time deployment and operations control system for assigned resources will be
performed by the Deployment Manager which was presented in section 8.2. The
Deployment Manager will physically access resources in order to create the desired
configurations. Part of the resource-specific configuration is based on requestor’s
information. At the end of resource deployment, resources are fully configured and ready
for use for the requestor. The deployment system will hand resources over to the
requestor as final step.
After resources have been handed over to the requestor, the requestor has control over
resources for use. The operations control system observes usage of resources used by
requestors ensuring that use complies with commitments made by the requestor, and
otherwise take corrective action, a principle called policing.
Figure 69 shows the main components of Resource Pool Manager. The requestor (an
instance of an Infrastructure Service) submits resource requests. All resources requested
in one context are contained in a request context. A request context exists as long as state
about requested resource is maintained in the Resource Pool Manager. Resource requests
are maintained as request contexts in the request inventory in the Resource Pool Manager.
The allocation system is the first system processing a resource request. The allocation
system internally maintains an allocation inventory of allocatable resource specifications.
From those specifications, capacity can be allocated for resource allocations
accommodating demands from accepted resource requests.

Figure 69: Architecture of the Resource Pool Manager.

The assignment system internally is structured similarly as the allocation system with the
difference that specifications maintained in the assignment inventory do not refer to
anonymous kinds of resources and available capacities of those resources, but to specific
resource instances, which are currently present in the Resource Pool Manager. The

Chapter 9: The DCI-OS Layer

225

assignment system then also maintains an assignment calendar of those resource
instances.
The operations control system is also the contact point for requestors and applications
asking for further resources or releasing unneeded resources. The operations control
system may also adjust resources transparently for certain applications according to
observed use and workload patterns, a principle called flexing.

9.4.2 Resource Request Workflow
The Resource Request Workflow spans across the Resource Pool Managers in the DCI-
OS Layer with responsibilities of allocating resource capacity and assigning resource
instances and the Infrastructure Services Layer with the requesting Infrastructure Service,
where the deployment and control tasks occur as described in chapter 8.

Figure 70: Resource Request Workflow.

Chapter 9: The DCI-OS Layer

226

The Resource Pool Manager passes each resource request through several stages:
1. Allocation – Allocation matches resource demands described as part of requested

resource specifications in resource requests with (estimates of) resource capacity
described as part of allocatable resource specifications in the allocation inventory.
Successful allocation implies a reduction in the available resource capacity for the
time intervals for which resource capacity has been allocated.

initiation: on arrival of a resource request received from a requestor;

input: request context containing a set of requested resource specifications;

result: case accept: resource capacity has been allocated to each requested
resource specification according to requested quantities in requested time
intervals; the allocation system memorizes allocations in form of allocation
entries in the allocation calendar;
case reject: no state has changed in the allocation system; the requestor is
notified about the rejection of the resource request.

2. Assignment – Individual resource instances from an underlying resource pool are
selected and bound to accommodate allocated resource capacity. Assignments
specified by the requestor are immediately made. Assignments for anonymous
resources capacity allocated for a request is assigned shortly before due time.
Resources have become due when the earliest time of intended use has been
reached. Assigned resources are marked in the assignment calendar and cannot be
assigned to other requests for the period of assignment. Resource sharing can be
achieved by either configuring multiple entries in the assignment calendar for one
resource or can be arranged by requestors outside the assignment system.

initiation: either on arrival of a resource request when requestor requests specific resource
instances, or automatically initiated by the allocation system shortly before
resource become due for use;

input: request context containing a set of requested resource specifications (the
assignment system decides which instances from the resource pool are
assigned to accommodate requested quantity), requested resource
specifications provided by the requestor may refer to particular resource
instances (then the assignment system only determines the availability of
resources for requested times);

result: case success: resources have been assigned and are bound to requested
resource specifications in resources requests; the assignment system
memorizes assignments in the assignment calendar;
case failure: no state has changed in the assignment system; the requestor is
notified about the rejection of the assignment request.

3. Deployment – Deployment performs request-specific resource configuration and
resource construction when resources do not exist. Deployment accesses physical
resources. Request-specific resource initialization and configuration is performed
based on the information provided in the resource request. Launching a virtual
machine is an example of constructing a resource during deployment.

Chapter 9: The DCI-OS Layer

227

initiation: shortly before due time; (“shortly” mainly refers to the time needed to complete
deployment and activation of resources);

input: request context containing a set of assigned resource specifications;

result: case success: all resources of the resource request are configured and
initialized as specified, constructable resources have been constructed, all
specified resources are ready to be used by requestor;
case failure (at least one resource could not be deployed successfully): no
state has changed in the deployment system; other deployments associated
with the request are rolled back, and the request is rejected with a resource
deployment failure.

4. Activation – Activation is the state in which a set of deployed resources of a
resource request (as an entirety) is handed over to the requestor for use.
Activation is performed by the deployment system finalizing resource deployment.
Activation implies notifying the requestor about an access path to resources and
switching control to the requestor.

initiation: immediately before due time;

input: request context with accompanying resources deployed in the resource pool;

result: case success: the requestor is notified with and informed about the access
path to resources, the requestor can immediately begin using resources;
case failure: no state has changed in the deployment system; the request is
rejected with a resource activation failure.

5. Use – The requestor uses resources under own control. Inside the Resource Pool
Manager, used resources (and associated resource requests with specifications)
have moved to the operations control system supervising the use of resources.
The operations control system has authority to preempt resource use, for example
when committed time has expired or when “more” resources then announced are
used. The requestor may explicitly, or the operations control system may
implicitly, suspend resource use making them temporarily available to other
purposes. During suspension, requestors’ states will be preserved allowing later to
resume using the same resource or a resource of the same kind. Requestors should
not notice when use has been resumed on other resource instances (unless
explicitly excluded by the requestor).
The requesting entity may request modifications of own resource contexts any
time (including run-time) in order to change time of use, quantities or kinds of
resources associated with one of its existing request contexts.

initiation: at due time;

input: request context with accompanying activated resources in the resource pool;

result: use: the requestor uses resources under own control, the operations control
system supervises resource use;
release: the requestor releases resources permanently (no state is kept);
suspend: the requestor or the operations control system temporarily suspend

Chapter 9: The DCI-OS Layer

228

resources use; the operations control system preserves state of the resource
such that the requestor can resume resource use later;
resume: state has been restored on the resource (same or same kind) such that
the requestor can continue using the resource.

6. Release – A requestor returns resources permanently. No state is preserved for
released resources. Releasing individual resources does not terminate use of other
resources. Releasing a resource means that requestors return control over
resources back to the operations control system, which will clean the resource
from requestor’s states and return it to the resource pool. The assignment system
is notified about released resources such that those resources can be reassigned.

initiation: Initiated during use by requestor (e.g. by invoking a resource_release() function in
the operations control system); or initiated by the operations control system;

input: request context with set of resources marked to be released;

result: The requestor can no longer use or access released resources; the operations
control system cleans resources from requestor’s states and returns them to the
resource pool; the assignment system is notified and will reassign them.

7. Suspend – Requestors temporarily give used resources back to the operations
control system (for instance to reduce charges in pay-per-use regimes). The
requestor’s state is preserved for suspended resources and later restored when the
same resource or a resource of the same kind is resumed.
In order to enforce policing, or to accommodate sudden unforeseeable resource
demands of higher-prioritized requestors, the operations control system may
preempts resources from requestors exercising its control over resources.
Requestors and their applications may or may not be aware of suspended
resources. Applications may slow down or pause when resources are preempted
by the operations control system.
The assignment system must be notified about suspended resources. The
assignment system could have been a source to initiate preemption in the
operations control systems for accommodating sudden resource demands. The
assignment system will also decide about further use of suspended resources.
Suspending resources is a mechanism to accommodate unforeseeable resource
demands reducing the capacity that has to be provisioned for this purpose
otherwise increasing average utilization. Suspension practically can only be
achieved in virtualized resource environments.

initiation: during operation by the requestor or the operations control system (preempting
resources);

input: request context with accompanying currently used resources;

result: Requestor’s state on suspended resources is preserved, but resources are
unavailable for requestors; affected applications may slow down or pause for
the time of suspension;
The assignment system is notified about suspended resources and also
decides about further use of resources.

Chapter 9: The DCI-OS Layer

229

Figure 71: Refined Use-state of the resource request workflow.

8. Resume – Requestors may initiate resuming resources by interacting with the
operations control system for resources requestors have explicitly suspended;
since requestors may not be aware or preempted resources, the operations control
system must initiate resuming resources to requestor contexts.

The same instance(s) or instance(s) of the same kind are resumed with reinstantiated states into
a requestor’s resource context. The assignment system chooses resources to be resumed. The
deployment system reinstantiates states on resources and activates resources.

Suspended resources can also be released discarding preserved states.

at the end of the suspension period by requestor for explicitly suspended resources, or
by the operations control system for preempted resources;

request context with new assignments for suspended resources and associated
states to be reinstantiated on resources;

Requestor continues using resumed resources with the same state as at the time
when resources had been suspended.

9.4.3 Resource Allocation
The purpose of resource allocation is to commit resources to requestors based on
descriptions requestors issue to an allocation system. The allocation system determines
whether a resource request is accepted or rejected. Negotiations about requested and
committed resources may be performed. Negotiations may involve other requestors,
brokers, or other resource allocation systems. When accepted, requested resources are
reserved from the allocation inventory for the time periods requested. The allocation
inventory maintains information about resources and their available capacities over time.
The inventory maintainer role (a person or an automated control system) configures and
adjusts resources and capacities that are made available for allocation.

Chapter 9: The DCI-OS Layer

230

Resource Allocation is the process of committing resource capacity to requests for
resources. Committing resources implies setting resource quantities aside from a resource
inventory for requested times by reducing available capacity by requested and allocated
resource quantities. Committed allocations are memorized in the allocation system as
relationships between allocated resources and resource requests, and implicitly their
requestors.
An implementation of an allocation system based on the principles presented here is
described in [Kön04].

9.4.3.1 Resource Allocation Information Model
The information model describes the major elements of information that are needed
inside and outside the allocation system in order to allow it to function.
Following elements have been identified for the resource allocation information model:

• Allocation Inventory – maintained inside the allocation system by the inventory
maintainer role. It contains information about allocatable resource types with their
capacity profiles; it also provides the major information base for exposing
specifications of allocatable resources to be used by requestors in form of
allocatable resource specifications.

• Allocatable Resource – resource that can be requested for allocation including
ground resources and views or constructions established upon ground resources.
Specifications of allocatable resources (types, prototypes, templates) are
published to requestors and used by them for constructing resource requests.

• Allocatable Resource Specification – An allocatable resource specification is the
information about an allocatable resource published to a requestor role. Various
forms may exist such as fully specified type, partially specified prototype or
template. Specifications may include type, instance and quantitative information
as well as policy. Requestors use allocatable resource specifications for
constructing resource requests.

• Resource Request – issued by requestors containing information about resources,
quantities and the times for which they are requested.

• Request Inventory – maintained inside the resource allocation system containing
accepted request contexts that currently have state associated in the allocation
system.

• Allocation Calendar – maintained inside the resource allocation system
containing the information about committed resource allocations.

• Resource Allocation – maintained in the allocation calendar containing
information about one resource allocation as an association between a resource
request and a set of resources committed to that request.

A Ground Resource is a resource that can directly be requested from subsequent
assignment and deployment systems. Thus capacity can be provisioned for ground
resources in the allocation inventory in form of a capacity profile.
Ground resources are not necessarily equivalent to resource atoms depending on the
capabilities of subsequent resource assignment and deployment systems. Resource
assignment or deployment systems may already expose constructed resources (non-

Chapter 9: The DCI-OS Layer

231

atoms) that are seen as assignable and deployable, atomic resources relatively from the
allocation system’s perspective. Those resources are considered ground resources, versus
resource atoms. A resource atom is a resource entity that a priori exists in a resource pool.
In addition to ground resources, the inventory maintainer role may configure the
allocation system to expose higher views or constructions upon ground resources that are
more convenient or more appropriate for requestors to use. Establishing and exposing
non-ground resources implies that the inventory maintainer role provides all relationships
in respective view or construction entities that allow resolving requested resources into
ground resources before allocation, a process called resource grounding. Views or
constructions do not have capacity associated. When requested, they are translated into
corresponding capacities of associated ground resources.
Resource Grounding is the process of translating views or constructions established
upon ground resource specifications, which are published and used by requestors, into
corresponding ground resources when requested before allocations are made.
A resource allocation represents the relationships between quantities of resource types
that are requested by Infrastructure Services and that are committed from Resource Pools.
A view is translated into a corresponding quantity of associated ground resources.
An example of a resource view established upon a ground resource is shown in Table 12.
Assoc. ground resource (cpu=”Pentium 4”, speed=”2300GHz”, ram=”2GB”,

disk=”120GB”)
Resource view I (architecture=”IA32”)
Resource view II (system=”XP”)

Table 12: Example of two resource views on the same ground resource.

Instead of exposing only the ground resources shown in Table 2, resource view I provides
a view of an allocatable system as IA32 architecture without further refining the type of
CPU, clock speed, memory size or other parameters. The view entity maintains a
reference to the underlying ground resource type that is followed during resource
grounding when resources of view I are requested for allocation.
Resource view II exposes the capability that each of the ground resources can also be
configured for running the XP operating system. Requestors may request XP systems.
Views allow publishing and requesting resources in more abstract terms making them
more independent from changes and undesired detail in underlying resources.

Assoc. ground resource (cpu=”Pentium 4”, speed=”2300”, ram=”2048”,

disk=”120”)
Resource construction I (architecture=”three-tier”, app_server=”BEA”)
Resource construction II (architecture=”web server farm”, server=”apache”,

os=”linux”)

Table 13: Two resource constructions on the same set of ground resources.

In the example in Table 13, two simple constructions upon ground resources are
established. Requesting one quantity of a “three-tier” “BEA” architecture may internally
be associated with requesting 4 machines of shown ground resource types for running the

Chapter 9: The DCI-OS Layer

232

web server, 2 machines for the application server, and one machine for a database. One
quantity of the resource construction would translate into 7 quantities of ground resources
in this example.
From the perspective of the allocation system, only the 7 quantities of ground resources
are associated with the resource request. All further information about specific machine
configurations is not considered during allocation and passed on to subsequent
assignment and deployment systems as part of the resource request context.

9.4.3.2 Complex Request Format for Resource Topology
A Resource Request is the information submitted by a requestor role to an allocation
system about a set of resources that are requested within one context. Resource Requests
contain requested resource specifications refining published specification of allocatable
resources associated with demand profiles.
A resource request contains all resources (and further information) that are jointly
requested within one context. The representation of a resource request thus appears in
form of a context entity, called resource request context.
A Resource Request Context represents the context within which a set of resources is
requested containing requested resource specifications along with other information such
as about the requestor.
A resource request context persists in the system as long as information about a resource
request needs to be maintained (over assignment, deployment, operation and eventually
longer for archiving purposes).
As a resource request context travels along its workflow through the Resource Pool
Manager, various subsystems will refine contained resource specifications towards finally
providing requested resources to the requestor at requested times.
A resource request contains the following information:

• Information about the requestor (identification, authentication information,
address, etc.).

• Indication whether the request is an initial (or anchor) request describing an
absolute amount of resources requested over time, or whether a request refers to a
previous request and describes relative amounts of resources to be added or
removed from the referred request.

• Specification of requested resources:
- reference to resource types, instances, templates exposed as allocatable

resources by a Resource Pool Manager,
- quantities of those resource types, instances, or resource templates with the

time-lines over which resources are requested (when, duration), called
demand profiles,

- requestor’s constraints associated with requested resources (requestor-specific
resource configuration can be provided here).

• General requestor policy information associated with the request and to be obeyed
by the Resource Pool Manager.

Chapter 9: The DCI-OS Layer

233

• Structural information how requested resources are connected in form of topology
information upon requested resource specifications.

The structural break down of a resource request can be derived from its basic information.
Three major components exist in the Complex Request Format for Resource Topology:

• requestor information,
• set of requested resource specifications (RRS) as quadruples of:

RRS = { (resource type/instance/template,
demand profile,
anchor_ref,
constraints) },

with:
- resource type, instance or template are referred to in the requested resource

specification (e.g. reference to a CIM resource type); resource types, instances
or templates are requestable when they are exposed by a Resource Pool
Manager as allocatable resource specifications (see Allocation Document),

- the demand profile defines demanded resource quantity over time,
- reference information can point to an associated resource in an anchor request

for incremental flexing (to add/remove quantity to an existing profile in the
anchor request),

- constraints may apply to a resource specification, or to individual parts of
profiles.

• A requestor can provide policy information that applies to the request in general.

Figure 72: Resource request for a Resource Topology with external dependencies.

Figure 72 shows the structural view to a resource request with its external dependencies.
Resource requests are contexts. A requestor role (user or system) refers to allocatable
resource specifications exposed by a Resource Pool Manager in order to create a resource
request. Every allocatable resource can in principle be requested by including a reference

Chapter 9: The DCI-OS Layer

234

to it in the request and associating a demand profile specifying what quantity of the
resource is demanded over time.
Constraints may be specified for a requested resource specification or, at a finer grade,
for periods (intervals) in a profile. Each requested resource specification can refer to a
resource specification of a referred anchor request for incremental flexing by changing
the demand profile in the anchor request.

9.4.3.3 Resource Type, -Instance and -Template
Resource types, instances or templates are referred to by requested resource
specifications in combination with demand profiles indicating the quantity requested over
time. A Resource Pool Manager only understands resource types, instances or templates
which are known to the Resource Pool Manager and exposed to requestors by its
allocation inventory.
A Resource Pool Manager can expose three kinds of resources as allocatable resources:

• fully specified resource type specifications (e.g. CIM type for machines of type
lpr2000),

• fully specified instance specifications (e.g. individual machine l024.hp.hp.com),
or

• fully or non-fully specified template specifications of resource types or instances,
which are to be refined by a requestor when submitted.

As allocatable resources are understood resources that can be requested (referred to in
resource requests). Virtual resources or other resources that do not a priori exist, but can
be instantiated or constructed when requested or will be available when requested in
future, can be configured as allocatable resources in the Resource Pool Manager’s
allocation inventory.
Resource types can be as simple as shown (such as machine of type lpr2000). Resource
types may also define complex constructions such as n-tier resource architectures.
When simply quantities of resource types are requested, only a reference to the resource
type definition will be included in the resource request specification. The Resource Pool
Manager will allocate resource capacity to the request and assign resource instances at
due time in order to fulfill the request.
When a requestor seeks specific resource instances, instance information must be
configured as allocatable. Also in this case, only a reference to the allocatable resource
instance information will be included in the resource request specification.
In both cases, requestors do not require changing allocatable resource types or instance
information. They are referred to as they are in resource request specifications.
In order to allow requestors to customize (extend, refine, alter, construct) resources from
existing allocatable resource specifications (types or instances), these basic resource
specifications can be used to extend, refine, alter or construct new resource specifications,
which can then be included in a resource request.
Allocatable resource specifications may contain constraints defining which extensions,
refinements, alterations, or constructions are allowed and accepted by the Resource Pool
Manager when constructed and requested by a requestor. The requestor must obey those
constraints for building valid requests.

Chapter 9: The DCI-OS Layer

235

Often used constructions (such as n-tier architectures where typical web applications can
be deployed) can be provided as templates for constructed, allocatable resources and used
by a requestor.

9.4.3.4 Resource Profile
A resource profile defines a quantity of a resource over time. Resource profiles are
applied in two forms in the Resource Pool Manager:

• Resource Capacity Profile – specifying an available resource quantity in the
allocation inventory.

• Resource Demand Profile – specifying a requested or demanded quantity of a
resource in a resource request, and

Both kinds of profiles employ the same model, operations and data structure. They differ
in interpretation in different contexts. For this reason, discussion is generalized to a
notion of a profile, which is used as demand profile in the context of resource requests.
The model of a resource profile provides the foundation for expressing demand or
capacity as functions of quantity over time. Profiles are fundamental parts of allocatable
resource specifications in resource requests. Main goal of the resource profile model was
to accommodate a variety of requirements occurring in various use cases of formulating
resource requests.
Since resource profiles describe quantity over time, the two axes (time and quantity) are
discussed and formalized separately.
As requirements regarding expressiveness for the time axis have been considered:

- periodic reoccurrences (to describe recurring quantity patterns),
- independence of absolute time allowing to use demand profiles of applications at

different times,
- means to describe simple profiles in simple terms (e.g. only quantity expressed,

no time profile specified – “5 machines” (implicitly means: now and for infinite
time)),

- superposition of periodic reoccurrences (nesting periods),
- notion for infinity (“forever”),
- notion for a final termination.

As requirements regarding expressiveness for the quantity axis have been considered:
- absolute numbers (e.g. demand 10 machines, 5TB storage, 1.5GB/s bandwidth),
- range flexing (e.g. demand 5-10 machines, 3-6TB storage),
- statistical distribution of (demanded or available) quantity (e.g. it has been

observed that an application demands 5 machines with 70% probability and 8
machines with 30% probability).

These requirements translate into the design of a resource profile that is subsequently
described.

Chapter 9: The DCI-OS Layer

236

9.4.3.5 Specifying Time in Profiles
Profiles define quantity (demanded quantity in resource requests, or available quantity in
resource allocation inventories) over time. Time and the specification of time (points,
durations) are thus fundamental for profiles.
Absolute time. Various standards exist for expressing absolute time (points). One
common standard is ISO 8601:
 Complete date plus hours, minutes and seconds:
 YYYY-MM-DDThh:mm:ssTZD (eg 2003-07-16T19:20:30+01:00)
UTC (Coordinated Universal Time) addresses time zones by adding a time zone offsets
to GMT.

2003-11-05T08:15:30-05:00 corresponds to November 5, 2003, 8:15:30 am, US
Eastern Standard Time (-05:00 time offset to GMT).

Relative time. Relative time (duration) has recently been addressed by XML Schema.
XML Schema adopts ISO 8601 for its time specification and extends it for relative time
durations (http://www.w3.org/TR/xmlschema-2/#durations):
“The lexical representation for duration is the [ISO 8601] extended format PnYn
MnDTnH nMnS, where nY represents the number of years, nM the number of months,
nD the number of days, 'T' is the date/time separator, nH the number of hours, nM the
number of minutes and nS the number of seconds. The number of seconds can include
decimal digits to arbitrary precision.” The leading P indicates a period (as duration).
For example, to indicate a duration of 1 year, 2 months, 3 days, 10 hours, and 30 minutes,
one would write: P1Y2M3DT10H30M. One could also indicate a duration of minus 120
days as: -P120D.
Combining times. Besides specifying points and durations of time, a profile requires
defining various sequences of intervals, recurrence, repetition, etc.
Unix cron specifications show one way of combining various intervals and points in time
for defining when cron jobs are to occur (following text is taken from
http://www.gnu.org/software/gcron/specification.html).
The basic file format consists of lines with 6 fields separated by any number of
whitespace characters (excluding newlines). The first five fields describe the times in
which each job is to be executed.

1. Minute [0,59]
2. Hour [0,23]
3. Day of the month [1,31]
4. Month of the Year [1,12 | see below]
5. Day of the week [0,7 (where 0 and 7 are Sunday) | see below]

The fourth field, Month of the Year, may also be three letter abbreviations of the months.
The abbreviations must only be the first three letters of the month. The fifth field, Day of
the Week, also can be three letter abbreviations. The abbreviations may only be the first
three letters of the days of the week.

Chapter 9: The DCI-OS Layer

237

The sixth field is the command that is too be executed should cron determine a match
with the 5 previous fields. The sixth field is no longer space delimited so that no special
consideration need be taken by the user to pass arguments to the command successfully.
Each of the first five fields may be an asterisk (denoted a match for all possible values),
an element, or a list of elements delimited by commas. An element may be a single
number, a range of numbers, or a ranger of numbers followed by a '/' and a step value. A
range of numbers is denoted by a number followed by a hyphen followed be another
number and are inclusive values. Step values tell cron to skip certain numbers in the
range given. A step value may also be applied to an asterisk, in which case an asterisk is
treated as a range value encompassing the full range of values allowed in that field.
Examples are:

- 1,3-6,10 – matches the values 1,3,4,5,6,10,
- 1-20/4 – matches the values 1,5,9,13,17,
- 2-10/2,5 – matches 2,4,5,6,8,10.

Similar expressiveness of times, intervals and periods is needed for resource profiles. The
following section introduces a powerful model for time that is used in resource profiles.
The main capabilities that go beyond what can be specified with cron or Outlook are:

- periodic reoccurrences of arbitrary complex series of intervals,
- shiftable interval series allowing to reuse profile (of applications) later when

application run later again,
- recursive nesting of interval series,
- half-open intervals (one side of an interval is unspecified, allowing to deal with

infinity or unspecified times),
- potential to include events to start or end half-open intervals.

9.4.3.6 Time Model for the Resource Profile
Figure 73 illustrates the time model for a resource profile.

Figure 73: Time model for the resource profile.

Chapter 9: The DCI-OS Layer

238

Following rules apply to the time axis for specifying time in profiles:
- the time axis of a profile consists of an ordered set of interval definitions Ti

(i=1,2,…, n),
- intervals Ti are ordered by start time, intervals with same start times are not

allowed,
- each Ti has a quantity Qi associated (various means exist to specify Q,
- t0 defines an absolute point in time where the first interval of a profile starts,
- it is recommended to specify all further points ti relative to t0 (allows to time-shift

the profile),
- an interval Ti is defined as time between ti-1 and ti: Ti = [ti-1, ti], (i=1,2,…, n),
- half-open intervals omit either ti-1 or ti: Ti = [ti-1, _] (only start point defined), Ti =

[_,ti] (only end point defined),
- the unspecified boundary of a half-open interval (_) is implicitly defined by the

closing boundary of the closest neighbor interval, if no neighbor exists, infinity is
assumed,

- overlapping intervals can be specified, their interpretation is subject to policy,
- each Ti can contain a sub-specification of a series of sub-intervals (defined in a

nested, self-similar profile structure),
- the enclosing Ti can specify that the inner interval series is recurring n times or

until Ti ends,
- each inner Ti,j can have further inner interval series allowing arbitrary deep

nesting (or superposition) of discrete, periodic interval sequences,
- a strict order is defined over Ti = [ti-1, ti] and all inner Ti,j = [ti-1,j-1, ti,j], (i=1,2,…, n,

j=1,2,…, m).
Instead of recursively describing sub-intervals, periodicity can also be expressed as
mathematical function. This specialization is not further discussed since it does not
fundamentally change the model. It can be introduced when reason occurs.
Another generalization from time-bound intervals is defining interval boundaries by
general events. Events can end half-open intervals, for instance. Expiration of a time can
be seen as a form of an event triggering the end of an interval. Other events can also end
intervals. Since events are typically not be foreseeable, event-based interval termination
will make it difficult to plan and schedule resource use and has for this reason been
excluded.

9.4.3.7 Specifying Resource Quantity for the Resource Profile
“Quantity” (Q) of a resource can be described in various ways. In order to incorporate
statistical demands, quantity can be modeled as a Probability Mass Function (PMF). Each
interval Ti can be assigned a separate function Qi which may be a simple constant, a
range or a PMF (see Table 14).

Chapter 9: The DCI-OS Layer

239

Four variations are considered for expressing resource quantity assigned to intervals Ti:
Quantity Specification Example

Constant value: n. 5 machines.

Range flexing: [n,m] initially k, n≤k≤m. 5 – 10 machines, initially 8.

Discrete statistical distribution of n
resources as tuples: [n,p(n)], n=0,1,2…N,
Σp(n)=1.

1 machine requested with probability 0.3,
2 machines with probability 0.6,
3 machines with probability 0.1.

Statistical distribution as probability
function.

Gaussian normal distribution with
expectancy and standard deviation of a
demand.

Table 14: Quantity model for the resource profile.

9.4.3.8 Resource Capacity Profile
Resource Capacity is the current or anticipated quantitative availability of a resource
(type or instance). Capacity may be expressed in metrics of continuous ranges or numbers
of instances.
Examples of capacity expressed in terms of numbers of instances are: 100 machines of
type A or 20 devices of type B. Examples of capacity expressed in terms if continuous
ranges are: 1GB/s bandwidth or 10 TB storage.
Capacity Profile – Capacity profile of a ground resource is a function of anticipated
capacity of a resource over time.
Only ground resources have capacity provisioned. Capacity of a resource is a function
over time about which quantity of a resource type is available (or is expected to be
available) over a time period. Capacity profile is provided by the inventory maintainer
role.

Figure 74: Capacity profiles of ground resources.

Figure 74 shows three capacity profiles for ground resource types A, B and C. Resource
types A and B are provisioned with varying capacity over time. Resource type C is
provisioned with constant capacity that is only available between t1 and t2.

Chapter 9: The DCI-OS Layer

240

9.4.3.9 Resource Demand Profile
Resource requests are constructed by requestor roles based on allocatable resource
specifications. Resource requests are submitted to the allocation system.
Resource Demand is the current or anticipated quantitative use of a resource. Demand
may be expressed in metrics of continuous ranges or numbers of instances.
Examples of demand expressed in terms of numbers of instances are: 87 machines of type
A or 12 devices of type B. Examples of demand expressed in terms if continuous ranges
are: 0.86 GB/s bandwidth or 8.4 TB storage.
Demand Profile of a requested resource is a function of anticipated demand of a resource
over time. The Demand Profile is provided by the requestor role. Besides other
information, the main information in the resource request context is the set of requested
resource specifications referring to published specifications of allocatable resources.
Requestors may refine those specifications or construct requested resources from
allocatable resource specifications.
Requested Resource – is the result of the instantiation and binding process of a requested
resource specification to an either existing or constructed resource in the Resource Pool
Manager. A requested resource finally is handed over to the requestor for use at the
requested time.
A requestor’s goal is obtaining access to requested resources. Requestors express their
needs for requested resources in form of requested resource specifications that are
submitted to the allocation system as part of resource requests.
Requested Resource Specification – is derived from an allocatable resource specification
associated with a requestor’s demand profile for a resource.

Figure 75: Resource demand profiles.
Figure 75 shows requested resource specifications of three resources with three resource
demand profiles representing the combined demand for a Resource Topology.

9.4.3.10 Request Inventory
All requests received from requestors are maintained in the request inventory in the
Resource Pool Manager, initially in the request inventory of the allocation system.
Multiple request inventories may be maintained in the Resource Pool Manager. At one
time, one resource request can only reside in one request inventory, but may be referred
to multiple times. This constraint ensures consistency of resource request contexts.
The Request Inventory contains all resource request contexts that currently have state
associated in the Resource Pool Manager.

Chapter 9: The DCI-OS Layer

241

When multiple request inventories are maintained in the Resource Pool Manager, a
resource request context may transition through these inventories, for example, reflecting
the resource request workflow through allocation, assignment, deployment, operation
(and eventually archiving).

9.4.3.11 Allocation Calendar and Resource Allocation
The Allocation Calendar contains the information about all committed resource
allocations. The allocation calendar is the main data structure in the allocation system.
A Resource Allocation is the association between a resource request and a quantity of
ground resources committed to that request according to the demand profile. Allocated
resources reduce available resource capacity.
Within the allocation calendar, two major data structures are maintained: the allocation
schedule for each ground resource that correlates the capacity profile of the ground
resource with existing allocations, and the resource allocation entry which represents one
continuous fraction from a demand profile of a resource request.
A Resource Allocation Schedule is a data structure inside the allocation calendar that
correlates the capacity profile with current allocations for each ground resource.
A Resource Allocation Entry is a data structure inside a resource allocation schedule that
represents one continuous interval of resource quantity from the demand profile of a
requested resource.

Figure 76: Data structures of the allocation calendar.
Figure 76 shows that for each allocatable ground resource, the allocation calendar
maintains an allocation schedule based on the capacity profile of that allocatable ground
resource. Each committed allocation causes a number of allocation entries in that
schedule representing the demand profile of the requested resource.
The following figure shows the associations between allocatable resources maintained in
the allocation inventory, the allocation calendar with allocation schedules for each

Chapter 9: The DCI-OS Layer

242

allocatable resource, and resource requests maintained in the request inventory with
requested resources and associated demand profiles
Figure 77 shows the relationships between the capacity profile for a ground resource
(bottom), a demand profile for a requested resource (top), and the resulting allocation as
entries in the allocation schedule of the ground resource (middle).

Figure 77: Relationships between capacity and demand profiles.

9.4.3.12 Resource Request Workflow
The internal flow of a resource request is shown in Figure 78. It is assumed that multiple
of such flows are performed simultaneously in the allocation system.
As the first stage, resource grounding translates requested resource specifications in
ground resource specifications by associating requested views or constructions with
ground resources and translating requested quantities.
The validity of resource specifications is verified next. Validity refers to whether all
requested resource specifications correspond to allocatable resource specifications. When
requested resource specifications such as resource types are not found in the allocation
inventory, the request is rejected.

Chapter 9: The DCI-OS Layer

243

The admission control stage verifies whether resource requests in general are accepted or
not, or whether quota apply to requestors. Admission control explores requested demand
profiles and validates them with quota.
During the detailed request validation, requested quantities from demand profiles are
verified against available resource capacity in the allocation schedule of the associated
resource. If the sufficient capacity is available, the requested quantity is allocated in the
allocation schedule.

Figure 78: Flow of resource request through the allocation system.

A two-phase commit protocol is used to (first-phase) allocate all resources as requested
when sufficient available capacity is found in the allocation schedules. At the end of
iterating through all demands in demand profiles of all requested resources, all resources
that had been allocated during the iteration are in first-phase allocation state. If the
allocation request as a whole can be granted by the allocation system, allocations are
made final (second-phase commit), and the allocation request is returned with success.
Assuming an all-or-nothing policy, the allocation request fails when at least one part of a
requested resource specification could not be honored (properties or demanded
quantities). In this case, all prior first-phase allocations are released, and the request
returns as failed.
Since instance-related information can be published as part of allocatable resource
specifications, requestors may request specific instances. When instances are requested,

Chapter 9: The DCI-OS Layer

244

respective quantities are marked as allocated in the allocation schedule of the resource. In
order to succeed, the assignment system must be contacted whether requested
assignments can be made or not. If assignments cannot be made, the request fails. If
assignments can be made, the assignment system marks resources as (first-phase)
assigned to the request. When the request as a whole succeeds, all of its (first-phase)
assignments are committed and finalized. When the request as a whole fails, all of its
(first-phase) assignments are released.

Figure 79: Detailed flow of resource request validation step from Figure 77.
After requestor validation where identity and authenticity of a requestor is determined,
resource request validation verifies whether the request can be allocated or not. During
resource request validation, interactions with an assignment system may be necessary
when instances are requested rather than anonymous quantities of resources.
Figure 79 refines the resource validation stage. The flow in Figure 79 describes the
iteration for each requested resource specification contained in a resource request.

Chapter 9: The DCI-OS Layer

245

9.4.4 Resource Assignment
Resource allocation deals with “abstract” resources in a sense that only quantities and
types of resources are considered as information.
Resource Assignment considers specific instances which need to be chosen from
resource pools and made available fulfilling a Resource Allocation.
Once resource requests near their commission time, individual instances are selected
from resource pools based on some criteria. Eventually those resources need to be created,
if they are of a complex (constructed) type.
Resource assignment hence is a section problem of resources from pools. Availability of
sufficient quantities of resources at the time of assignment has been ensured by the
preceding allocation discussion, which was introduced in section 9.4.3.

9.4.4.1 Resource Scheduling in the Data Center
Since resource assignment here is seen as a selection problem of resource instances from
resource pools, it can be compared with Scheduling as a known principle from operating
systems. Scheduling refers to data center resources such as server resources, network
connections and storage. While scheduling in operating systems has been fully automated,
it is mainly a manual task in data centers today. People decide about assignments of
resources to applications. There is one domain, where automated schedulers are used in a
data center context, which are machine schedulers for server clusters used in cluster or
high performance computing. Schedulers are also a main component of the Grid
management infrastructure [Fost98], [Fost03]. A number of Schedulers exist for Grids,
such as the open source Portable Batch System (PBS) [PBS], or the Maui Scheduler
[Maui], or Condor [Cond96]. Commercial Grid schedulers are Platform’s Load Sharing
Facility (LSF) [LSF] or Sun’s Grid Engine [N1].
These schedulers can only manage current resource inventories in data centers. Another
limitation of Grid schedulers is that those only manage one resource type: servers of
some homogeneous type (same processor architecture, same operating system, etc.).
Some Grid schedulers take other resources into account such as network bandwidth, but
not the entirety and variety of resources needed for enterprise applications.

9.4.4.2 Resource Assignment Optimization for the Data Center
The resource assignment problem (as a selection problem) was explored in research as an
optimization problem to identify, for example, resource sets to be assigned to the same
Infrastructure Service that were logically “close”. There is an observation that resource
sets which are used together show workload and use patterns that are similar to the
phenomenon of Working Sets [Den68] and Locality observed and explored in operating
systems.
The approach to working sets and locality in operating systems had to be adopted to the
data center environment where, for instance, locality of resources used together in a
context typically translates into minimizing network distance in some measure such as
numbers of switch- and routing points through which traffic has to flow when crossing
from one resource to another, e.g., when a server generates IO traffic to a disk which is
connected through a SAN switch residing in an external disk array. In this case, the disk

Chapter 9: The DCI-OS Layer

246

resources should be assigned for that server from a disk array which is closest to the
server.
Manual or simple heuristic approaches to resource assignment work when all resources
are equivalent (e.g., servers in a cluster), or when the resource pool is small. With
complex topologies, it is possible to create bottlenecks in the shared resource sets
resulting in failure to meet application requirements even when sufficient capacity is
available in the data center. The assignment system automates selection of the servers
within the data center fabric for deployment of the application.

Figure 80: Resource assignment process using an optimizer.
Figure 80 shows one process using a CPLEX solver that was explored to avoid
bottlenecks in the connection fabrics and enforcing closeness of resources which are
assigned together. The solver requires two models as input: a resource model and an
application model. The resource model describes the fabric topology and the required
resource capacities. The application model defines the application topology and its
resource requirements. The infrastructure monitor tracks the resource inventory,
including the connection topology and available capacity. The monitor maintains an up-
to-date model of the current state of the environment using information from the resource
inventory and monitoring tools.
In this case, the constraints and the objective function required by the solver are
dynamically generated from modeled information using the modeling language GAMS,
and fed into the CPLEX solver. The latter checks the feasibility of the problem, and finds
the optimal solution among all feasible solutions. The detailed models required by the
assignment solver are described in [Zhu03].
Substantial work has been conducted as part of the research program and demonstrated in
publications by other researchers than the author such that this work is referred here, but
not described in detail. The reader is referred to publications such as Optimal Resource
Assignment in Internet Data Centers [Zhu01], Resource Assignment for Large Scale
Computing Utilities [Zhu03], Policy-based Resource Assignment in Utility Computing
Environments [San04], Extension of the Resource Assignment Problem: Assigning
Multiple Application Components to a Single Server in a Generalized LAN Tree
Topology [Zhu04] and RAMP-A Solver for Automated Resource Assignment in
Computing Utilities [San05].

Chapter 9: The DCI-OS Layer

247

9.5 The Data Center Component Layer
Data center components comprise the physical environment in a Data Center which is
under the control of the DCI-OS. For purposes of management, components expose
interfaces, in form of user interfaces (consoles) or programmable interfaces allowing
configuration and control via a network.
The DCI-OS Resource Pool Drivers represent software modules in the DCI-OS
environment (executing on dedicated management machines), which interact with
associated components in the managed environment via programmable APIs over a
management network for applying configurations as well as issuing control instructions.
In reverse direction, the managed component reports back monitoring data and events
indicating state changes in the component.
From the DCI-OS perspective, the Data Center Component Layer represents the devices
by their management interface endpoints to which component drivers connect.
Over the years, a number of standards have been proposed and developed for unifying
former proprietary interfaces for management. Those need to be taken into account in the
DCI-OS Data Center Component Layer.

9.5.1 Management and Discovery of Data Center Components
A number of standards have emerged over the years for unifying protocols and data
models for managing and discovering managed components.

9.5.1.1 Management of Data Center Components
Management generally refers to the ability to configure and control managed components
and receive monitoring data and notifications about state changes instantaneously.
The Simple Network Management Protocol (SNMP) [SNMP] is a UDP-based network
protocol. It is widely used in network management systems to monitor devices for
conditions. SNMP is a component of the Internet Protocol Suite as defined by the Internet
Engineering Task Force (IETF). It consists of a set of standards for network management,
including an application layer protocol, a database schema, and a set of data objects
The Structure of Management Information (SMI) was defined in RFC1155, and the data
structure of SMI which called Management information base (MIB) was defined in
RFC1156. And IETF defined the SNMP version one in RFC 1157; it has already been the
standard of TCP/IP network management in practice.

Figure 81: Interaction between management system and managed component.

Management
System

Managed
Component

get(obj-id)

response(obj-val)

set(obj-id, val)

notify(obj-data)

Chapter 9: The DCI-OS Layer

248

Figure 81 shows the two basic interaction patterns used in SNMP between the
management system and a managed component. The management system can request
information from the managed component by issuing a get-request specifying an object in
the managed component and the managed component responds with the value of that
object.
Control functionality over the managed component is unified into an abstraction of
managed objects, a data structure which carry state reflecting the actual state of the
component with regard to a certain aspect modeled by the managed objects. Control is
exercised by setting the state of the object value.
Furthermore, a managed component can issue a notification (called trap in SNMP, also
called event in other frameworks) informing the management system about a sudden
change in object state. The management system must be prepared at any time to receive
and process incoming traps from managed components.
This data-oriented approach allowed a simple interface with only three basic interactions
(get, set, notify) as an alternative for “rich” interfaces exposing each capability by a
separate method. The clear advantage of a simplified interface significantly helped
standardization efforts. The complexity management interfaces suffered implementing
rich interfaces, however, was not resolved but rather moved into the data/object structures
referred to by the get, set and notify operations.
Addressing the complexity in the data/object structures hence became the focus for
standardization efforts for interfaces of managed components.
Initially, the Management Information Base (MIB) was defined in RFC1156 in 1990.
Objects were arranged hierarchically such that they could be identified by a path through
the object tree. Since storage was limited in managed components, bits were used to
encode object values. The Abstract Syntax Notation One (ASN.1) [ASN1] was
introduced to provide a syntactical framework to describe data structures for representing,
encoding, transmitting, and decoding object data. ASN.1 is a joint ISO/IEC and ITU-T
standard, originally defined in 1984 as part of CCITT X.409:1984. ASN.1 moved to its
own standard, X.208, in 1988. The substantially revised 1995 version is covered by the
X.680 series. The latest available version is dated 2002.
Later, as more storage became available on managed components, richer descriptions
could be used to represent objects and object states. Today, XML-based representations
are used by the WBEM [WBEM] standard for management as well as by Web Services-
based Management Standards such as WS-Management [WS-MAN].
The Common Management Information Protocol (CMIP) [CMIP] is a protocol for
network management. It provides an implementation for the services defined by Common
Management Information Service (CMIS). CMIS is part of the Open Systems
Interconnection (OSI) body of network standards, allowing interaction between
management systems and managed components. CMIS/CMIP emerged from the ISO/OSI
network management model and is defined by the ITU-T X.700 series of
recommendations.
CMIS defines following basic management operations on managed components:

• M-CREATE - Create an instance of a managed object,
• M-DELETE - Delete an instance of a managed object,

Chapter 9: The DCI-OS Layer

249

• M-GET - Request managed object attributes (for one object or a set of objects),
• M-CANCEL-GET - Cancel an outstanding GET request,
• M-SET - Set managed object attributes,
• M-ACTION - Request an action to be performed on a managed object and
• M-EVENT-REPORT - Send events occurring on managed objects.

9.5.1.2 Discovery of Data Center Components
Discovery is the process of detecting and locating the presence of data center components
and making them known to the management system.
One assumption of the standards and protocols discussed in section 9.5.1.1 is that the
management system knows about the managed components and knows their addresses on
the management network through which they can be reached. It has always been a
problem to keep the inventory database used by the management system in a state that is
consistent with the reality in the managed environment where inventory constantly
changes due to scheduled replacements, new acquisitions of components or removal of
defective components.
The Service Location Protocol (SLP) is a service discovery protocol that allows finding
and locating computers and other devices a local area network environment without prior
configuration. SLP has been designed to scale from small, unmanaged networks to large
enterprise networks. It has been defined in RFC 2608 [RFC2608].
Discovery usually utilizes a multicast or broadcast issued to the LAN environment
expecting that components which are currently available on the network respond with
their location and other information.

9.5.1.3 Domain-specific Standards
Other standardization efforts comprised domain-specific such as the models and
protocols defined by the Storage Networking Industry Association (SNIA) [SNIA] for the
domain of storage.

9.5.2 WBEM and Web Services-based Management Protocols
Web-Based Enterprise Management (WBEM) [WBEM] is an initiative coupling CIM
and Internet standard protocols and encodings (such as XML and HTTP) with the
Common Information Model (CIM) [CIM]. The WBEM architecture includes the notion
of a CIM server and various providers of management data, such as instrumentations.
The CIM server acts as an information broker between the providers of instrumentation
data and management clients and applications. This approach shields providers from
management clients and applications.
WBEM consists of a set of management and Internet standard technologies standardized
by the Distributed Management Task Force (DMTF) [DMTF] with the goal to unify the
management of enterprise computing environments. WBEM provides the ability for the
industry to deliver a well-integrated set of standard-based management tools leveraging
the emerging Web technologies. The DMTF has developed a core set of standards that
make up WBEM, which includes a data model, the Common Information Model (CIM)

Chapter 9: The DCI-OS Layer

250

standard; an encoding specification, xmlCIM Encoding Specification; and a transport
mechanism, CIM Operations over HTTP.
In contrast to SNMP, managed objects do not only exist in managed components, they
also exist in the CIMOM through which control is exercised by altering their states. State
changes to managed objects in the CIMOM which have associations with managed
components are reflected to those components via the WBEM protocols. In reverse
direction, managed components can act as providers delivering data to managed objects
in the CIMOM. Figure 82 illustrates two approaches of SNMP with CIM/WBEM-based
management.

Figure 82: Comparison between SNMP and CIM/WBEM-based management.

Figure 83 shows a management environment built based on CIM data models and
WBEM protocols with the information repository, the CIM Object Manager (CIMOM),
in the center. Operators can interact with the CIMOM via consoles for inspection and
manipulation. External programs can be connected to the CIMOM as well using the
WBEM protocol. The WBEM Server acts as the application container serving the web
services interactions.

Figure 83: Management environment based on CIM and WBEM.

Chapter 9: The DCI-OS Layer

251

CIM uses HTTP/XML-based web services interactions with external systems. A number
of protocols have been defined such as xmlCIM [xmlCIM], WSDM and WS-
Management [WS-MAN]:

• xmlCIM is a standard way to represent CIM data using a Document Type
Definition (DTD) to map CIM objects into XML elements [xmlCIM].

• Web Services Distributed Management (WSDM) [WS-DM] is a web service
standard for managing and monitoring the status of other services using web
services protocols which have been defined by OASIS [OASIS] in two
specifications:
o Management Using Web Services (MUWS) — WSDM MUWS defines how to

represent and access the manageability interfaces of resources as Web services.
It defines a basic set of manageability capabilities, such as resource identity,
metrics, configuration, and relationships, which can be composed to express the
capability of the management instrumentation. WSDM MUWS also provides a
standard management event format to improve interoperability and correlation.

o Management Of Web Services (MOWS) — WSDM MOWS defines how to
manage Web services as resources and how to describe and access that
manageability using MUWS. MOWS provides mechanisms and methodologies
which enable manageable Web services applications to interoperate across
enterprise and organizational boundaries.

• WS-Management (WS-Man) is another, related standard defining a SOAP-based
protocol for the management of servers, devices, applications and more. WS-
Management is developed by DMTF [DMTF]. The specification is based on open
standards for Web Services and defined in [WS-MAN].

WBEM is comprised of the CIM model that we described in the previous section, the
xmlCIM encoding of CIM elements in XML, and CIM over HTTP specification that
enables interoperation across CIM systems.
Since WBEM defines the XML rendering of the CIM data structures and all of the above
protocols are capable of transporting XML, WBEM does not depend on a specific
transport protocol as long as it implements a number of web services methods that have
been defined for WBEM and include operation types for data, metadata, queries and
methods. The list of WBEM operations is shown in Table 15.

GetClass,
EnumerateClasses,
EnumerateClassNames,
GetInstance,
EnumerateInstanceNames,
GetProperty,
SetProperty,
CreateInstance,

ModifyInstance,
DeletInstance,
CreateClass,
ModifyClass,
DeleteClass,
Associators,
AssoicatorNames,

References,
ReferenceNames,
ExecQuery,
GetQualifier,
SetQualifier,
DeleteQualifier,
EnumerateQualifiers.

Table 15: Basic WBEM operations.

Chapter 9: The DCI-OS Layer

252

DMTF has developed a core set of standards that comprise WBEM adding an encoding
specification (the xmlCIM Encoding Specification) and a transport mechanism (CIM
Operations over HTTP) to the Common Information Model. The xmlCIM Encoding
Specification defines XML elements (described in a Document Type Definition, DTD or
XML Schema) representing CIM classes and instances. The CIM Operations over HTTP
Specification defines how the CIM classes and instances are created, deleted, enumerated,
modified and queried. Also, the specification defines a notification and alerting
mechanism for CIM events.
The following section introduces the implementation framework which had been chosen
for actual realizations.

9.5.3 OGSI-based Implementation
The Open Grid Services Infrastructure (OGSI) [OGSI] was published by the Global Grid
Forum (GGF) [GGF] as a proposed recommendation in June 2003. It was intended to
provide an infrastructure layer for the Open Grid Services Architecture (OGSA) [OGSA].
OGSI today is obsolete. It was however used for a number of realizations for interacting
with Data Center Components using the Globus Toolkit [GT4] middleware
implementation which supported the Web Services Distributed Management (WSDM)
[WS-DM] standard.
The OGSI-based implementation of web services-based management middleware is
discussed by the realization of a Resource Flex Controller as part of the Resource
Acquisition Manager presented in chapter 8.
This controller had the task to dynamically adjust server resources based on monitored
load conditions. The process of adjusting the amount of resources according to demand is
called flexing. The controller was implemented as a Management Web Service as part of
the Management Using Web Services (MUWS) concept of WSDM. The controller
interacted with so-called Control Plug-ins which acted as web-services counter parts in
the managed environment observing actual load conditions on server resources.
The detailed description of this realization has been published in [Gra04d].

9.5.3.1 Component Design
The split of the control loop into a part that contains assessment and adjustment (Control
Plug-in) and the resource infrastructure delivering monitoring events and providing the
capability to actuate server group adjustments leads to the following design of
components that are implemented as OGSI services:

• Control Plug-in – implements assessment and making adjustment decisions,
contains control policy, and is customizable by application administrators or data
center operators.

• Interface Instances – counterpart for one Control Plug-in in the resource
infrastructure. It provides port types for actuating flex decisions and delivery of
monitoring and state change events.

• Interface Factory – provides a port type for creating Interface Instances. A
Control Plug-in initially contacts the Interface Factory in order to create an
Interface Instance, which it then uses for all subsequent interactions.

Chapter 9: The DCI-OS Layer

253

Figure 84: OGSI component design and basic control flow.
Figure 84 shows the OGSI components that are used to implement the control system.
The figure shows a farm with three server groups (tiers) of web servers, application
servers, and a clustered database in the upper part. Each server group has a Control Plug-
in associated that is connected via OGSI to its Interface Instance counterpart in the
resource infrastructure.
One Control Plug-in is connected to at most one Interface Instance. An Interface Instance
receives flex operations from its associated Control Plug-in and translates and delegates
them into corresponding operations in the resource infrastructure, and finally into the
infrastructure controller software for actuation. Monitoring and state change events are
delivered in the reverse direction from an Interface Instance to its associated Control
Plug-in.
OGSI’s event and life cycle mechanisms are used for OGSI components. Each has a
number of port types:
Control Plug-in:

• Event Delivery Port – primary port for event delivery from the associated
Interface Instance or other event sources such as application-level instrumentation.

• Flex Control Port – allows a higher-ordered control system to connect to and
instruct a Control Plug-in.

• Life Cycle Port – for managing the life cycle of the control loop (start, stop,
suspend, resume, etc.) and the Control Plug-in.

Interface Instance:
• Flex Control Port – primary port for receiving server flex operations from the

associated Control Plug-in.

DCI-OS Resource Management Layer

Chapter 9: The DCI-OS Layer

254

• Life Cycle Port – port for life cycle operations on Interface Instances.
• Event Distribution Port – port where Control Plug-ins can subscribe for

monitoring and state change events.
Interface Factory:

• Factory Port – initial contact point for a Control Plug-in that allows the creation of
one Interface Instance after its authenticity and authorization has been validated.

9.5.3.2 Crossing Protection Domains
Since the infrastructure controller software is performing critical resource management
functions in the Utility Data Center, it is located in a protected domain that cannot be
reached from applications outside.
Since Control Plug-ins are located outside the infrastructure controller software in order
to meet the customization and integration requirements, the interaction between Control
Plug-ins and Interface Instances must cross the protection domain boundary in a secure
way (in analogy to system calls in operating systems).
OGSI offers a built-in security model that is used for securely crossing protection
domains between the Control Plug-in residing outside and the Interface Instance residing
inside the protected infrastructure controller software domain.
OGSI Security is applied at two stages:

1 Control Plug-ins are authenticated. A Control Plug-in’s certificate is validated
by the Interface Factory at initial contact. Only Control Plug-ins with registered
certificates can create Interface Instances and are able to subsequently interact
with the infrastructure controller software.

2 Establishing an encrypted communication channel between the Control Plug-in
and the Interface Instance ensuring for both sides that the exchanged
information is authentic and unaltered.

For the DCI-OS, the use of standards for information models and protocols has had a
high priority. As particular standards had been investigated the widely established
Common Information Model (CIM) as general Information Model of the DCI-OS and
more recent web services-based protocols for management such as Web Services
Distributed Management (WSDM) with an implementation using the Open Grid Services
Infrastructure (OGSI) and the Globus Toolkit [GT4].

9.6 Summary
This chapter presented the DCI-OS layer, and with it, the actual “core” of the Data Center
Infrastructure Operating System. The DCI-OS Layer is responsible to organize the
resources found in a data center as pools from which quantities expressed as time profiles
can be allocated to Infrastructure Services instances. Shortly before allocations become
due, actual resource instances are assigned to allocations and provided to the requesting
Infrastructure Service.
In order to provide this functionality, new abstractions had to be developed for the
information model the DCI-OS operates upon. These extensions primarily relate to a
substantially extended view of the abstraction of a Resource, one of the core concepts in
the information model. This new abstraction included concepts of physical resources (the

Chapter 9: The DCI-OS Layer

255

devices as they exist in a data center), the concept of resource atoms (as smallest
dividable resource units which can be created or obtained) and the principle of Resource
Construction as fundamental concept. Traditional resource management systems struggle
with the concept of a resource construction by only considering physical resources. The
concept of a Resource Construction not only provides the means to express relationships
between physical and virtual resources, which are omnipresent in today’s data centers, it
also allows expression and handling of complex resource compositions such as stacked
resources including software resources comprised of machines, operating system and
application software and considering it as one constructed resource.
Another important concept was the introduction of a concept of views on resources and
Ground Resources. Ground resources were defined as resources for which pools (of
resource atoms or resource construction) existed in the DCI-OS, but which could be
exposed to requesting Infrastructure Services by different properties. For example, an
Intel-based machine could be exposed as a capability to Infrastructure Services and could
be grounded into a physical machine, a partition on a machine or a virtual machine, if no
further properties would restrict these groundings. This allowed separating descriptions
of requested resources from available resources which are changing with changing
inventories. It also allowed flexibility for the DCI-OS in allowing different ways to
construct resources, which is an essential property for the data center operator to utilize
infrastructure efficiently.
Another major concept of the information model of the DCI-OS is the concept or a
Resource Topology, which allowed to not only describe resource demands as resource
sets, but in their full context of how resources relate to one another in the context of an
Infrastructure Service, including connection and configuration properties required on
resources when they were obtained from the DCI-OS. This information allowed the
automation of finalizing deployment tasks on resources making them ready to run the
applications in the Infrastructure Service. In today’s practice, data center resources must
be manually configured based on informal knowledge of domain experts in order to make
them ready to run the target applications. Since configuration information is not formally
represented in a model, deployment automation is hard to achieve. The concept of a
Resource Topology provides this capability and hence enables this automation, which
was a fundamental goal of the DCI-OS.
The ability to not only deal with current inventory in a data center, but also future
(planned) inventory enables the DCI-OS to manage resource allocations as commitments
of demanded resource capacity to Infrastructure Services. The process of resource
allocation in data centers today is a human process and can be taken over by the DCI-OS.
The concept of grounding and resource views can help to isolate demands from changes
in the data center inventory.
The chapter presented the case for representing the core information in a commonly used
and standardized framework (section 9.1) with the Common Information Model (CIM) as
the chosen framework for the DCI-OS (section 9.2). Extensions for were presented for
CIM reflecting the extended capabilities the DCI-OS needed (in section 9.3 – The DCI-
OS Information Model).
Section 9.4 – The DCI-OS Resource Management Layer then presented the concepts of
resource pool management with the extended capabilities of resource constructions,

Chapter 9: The DCI-OS Layer

256

resource topology allocation, resource grounding and resource demand and capacity
profiles maintained by resource pool managers. Resource assignment was presented as a
scheduling and optimizing task for which a substantial amount of research had been
conducted and published.
Section 9.5 presented The Data Center Component Layer with resource pool drivers
controlling the associated data center components (servers, storage, networking
devices…). This layer corresponds to the layer of device drivers in an operating system
with the difference that the control interfaces and protocols connecting the components
with the control software executing on dedicated management machines relate to remote
network protocols, for which a number of standards have been established by the industry
over time with web services-based management middleware being the most recent one. A
number of these technologies are discussed in this section.
The tasks of the DCI-OS have focused around resource management, which are an
essential task in data center management, but are not the only category oft tasks.
Following a traditional task categorization in IT Management in tasks related to Fault,
Capacity, Availability, Performance and Security (FCAPS) management, mainly
questions of Capacity, Availability and Performance have been addressed in the DCI-OS.
Fault and Security Management and others have not been addressed and are left to future
extensions of the concept of a Data Center Infrastructure Operating System.

Chapter 10: Summary and Conclusions

257

Chapter 10

 Summary and Conclusions

The continued reliance on human labor for performing most management tasks, including
lower-ordered routine tasks of IT infrastructure management, cannot meet the challenges
data centers face today. Automation is a key approach for addressing the challenges of
increasing scales of data centers, achieving higher agility of IT services to better support
the business, and to reduce the overall operational cost of data center management.
Automation of data center management is difficult and faces substantial obstacles. The
data center automation market today remains fragmented focusing on specialized point
solutions and technologies. No technical system has been demonstrated to date that
transparently and automatically can manage the IT infrastructure of a data center.
This thesis focused on data center IT infrastructure management, which is the lowest IT
infrastructure layer in a data center. Research conducted by the author at HP Labs from
2003 to 2008 exposed a number of deep technical problems, which have been addressed
by research over the years. One of the insights was that many problems in data center
automation are interrelated. Solving them in isolation does not produce the new quality of
systems that is needed to manage data center infrastructures comprehensively.
Considering this insight and combining it with an earlier background the author had in
operating systems [Gra97] led to the idea of developing a systematic approach to data
center infrastructure automation by adopting concepts from operating systems and
combining them with concepts from IT management. The consolidated result is the
Architecture for the Automated Management of Data Center IT Infrastructure.
The disciplines of IT management and operating systems have largely been considered
independently in the past. Combining both – while recognizing the differences – created
new insights and provided the framework for defining the architecture of the DCI-OS, the
Data Center Infrastructure Operating System. New insights and abstractions could be
obtained from a new perspective that can help construct new automated data center
management systems addressing some of the fundamental technical problems. This
section summarizes these insights and the solutions that were discussed in this thesis.
First, this section revisits the questions that were asked in the introduction in Chapter 1:

1. What are the fundamental problems of data center IT infrastructure automation?
2. Can a comprehensive set of requirements be formulated for the automated

management of data center IT infrastructure?

Chapter 10: Summary and Conclusions

258

3. How can data center infrastructure automation systematically be achieved?
4. Which abstractions need to be developed upon which the architecture for the

automated management of data center IT infrastructure can be built?
5. Which concepts and techniques from operating systems can be adopted for data

center IT infrastructure automation?
6. Which concepts from IT management must be accommodated, which are not

present in operating systems?
7. Which new abstractions and concepts must be developed that can neither be

derived from operating systems nor from IT management?
8. How can the information model for these abstractions be defined?

Question 1 asked for fundamental problems of data center infrastructure automation. The
discussion in this thesis has exposed a number of reasons:
• Management is fragmented, technically (with a diversity of specialized management

systems) as well as organizationally (with the diversity of specialized groups of
people performing management tasks). Most management systems assist people in
specific tasks, but do not perform management tasks autonomously.

• Management fragmentation leads to information fragmentation across systems and
people leading to information duplication, redundancy and inconsistency. It is
unfeasible to build automation (algorithms, policies, decisions) based on inconsistent
information.

• Information fragmentation and the lack of common abstractions are also the cause of
lacking integration of the various management systems that coexist in a data center.

• Substantial information is carried by people outside of management systems. Planned,
designed or expected states are often not represented in information models in
management systems. The lack of this information prevents systems from automating
processes towards achieving those states such as for resource allocation, deployment
or operational management.

• Relying on discovery as primary source of management information is insufficient
since it only captures physical components that currently exist in the data center and
only their current state.

• Technologies are being introduced in data centers today that have no appropriate
expression in information models in management systems, such as:
- the recognition of constructed resources beyond physical components, including

their construction and mapping relationships;
- the decoupling of applications and data from physical components;
- the shared use of resources;
- the dynamic provisioning of resources based on actual demand;
- the recognition and representation of interconnected lifecycles of services,

software, data, systems and components in data centers.
• The lack of appropriate abstractions leads to a lack of concepts upon which a

comprehensive automation architecture can be defined.

Chapter 10: Summary and Conclusions

259

The combination of these problems has prevented the integration of management systems
and the emergence of comprehensive automation systems in data centers to this date
although attempts have been made. The attempt of an early data center automation
solution called the HP Utility Data Center (UDC) was analyzed in section 4.1. UDC’s
failure in fact initiated the deeper-reaching research in HP Labs this thesis is based on.
The analysis of UDC’s shortcomings led to the detailed requirement specification in
Chapter 4 answering question 2, which had asked for a set of comprehensive
requirements for an automated data center IT infrastructure management system.
Question 3 asked how a systematic approach to data center infrastructure automation can
be achieved. A first and fundamental observation was that the problems of data center
automation are interconnected. For example, because people manage IT through direct
manual intervention in the managed environment, the information models in management
systems become inconsistent and continuously need to be rediscovered for update. The
principle of discovering changes made in the managed environment after the fact is
fundamentally flawed. It leads to continuous windows of inconsistency between the state
of managed elements and their representations in the management information model.
This inherent inconsistency in turn poses a significant obstacle to automation that is
relying on consistent information. The conclusion from these interdependencies is that
they must be solved in combination breaking the dependencies. A solution to the specific
problem of inconsistent management information models has been developed with the IT
management automation controller that was presented in section 8.1 and that is
summarized in section 10.3.
Solving problems in combination means that they must be addressed systematically. The
architecture of the DCI-OS that was presented in Chapter 5 summarizes the functional,
structural and organizational aspects of a comprehensive approach to data center IT
infrastructure automation. It also represents the answer to the hypothesis of this thesis,
which has been to demonstrate the systematic development of the architecture for the
automated IT infrastructure management in a data center that is rooted in concepts of
operating systems and IT management.
Question 4 asked for a set of abstractions that needed to be developed upon which the
architecture of a DCI-OS can be built. The following sections 10.1 (concepts from
operating systems), 10.2 (concepts from IT management) and 10.3 (new concepts)
summarize these abstractions that were presented in this thesis and their adaptation for
the DCI-OS.

10.1 Summarizing Concepts Adopted From Operating Systems
Question 5 asked which concepts and techniques from operating systems can be adopted
for data center IT infrastructure automation.
Figure 1 in Chapter 2 presented a categorization of operating system concepts. The
following summary highlights some of these concepts that have been adopted for the
architecture of the DCI-OS.
Layers. The concept of layers is fundamental in operating systems. Layers introduce
structure, scope and containment. The concept of layers allows separating concerns. It
allows the encapsulation of domains in which abstractions (elements with certain
qualities) exist. A layer of one degree builds upon a layer of a lower degree. Abstractions

Chapter 10: Summary and Conclusions

260

that exist in one layer are created by the underlying layer. The architecture of the DCI-OS
employs three main layers to separate three main domains. Layer 1 is the planning and
design layer, layer 2 is the infrastructure services layer, and layer 3 is the DCI-OS layer
with various sub-layers for the information model, resource management, resource pools,
resource pool drivers, and for data center components.
The concept of a Hardware Abstraction Layer (HAL) was adopted from operating
systems as the interface layer between the layer of resource pools and the physical device
driver layer introducing normalized, standard web-services-based interfaces, protocols
and data model representations. These layers exist on the data center side of the DCI-OS
architecture (the data center-related part in Figure 7). Two layers were introduced for the
run-time system and for dynamic resource acquisition, deployment and task automation
on the application side (the infrastructure services-related part).
Resources. Another key abstraction adopted from operating systems is that of a resource.
The architecture of a DCI-OS employs the concept of a resource as the unified
abstraction of an entity providing computational services that are needed and used by
other computational services of the same or of a higher degree. The general resource
abstraction unifies the three dimensions of computation, storage and communication,
which are still managed independently in data centers today.
Defining resources relatively (one needed by another) allows to establish (and later to
represent in information models and to construct and manage in actual systems) complex
resource construction and mapping relationships among resources. Although the concept
of viewing resources relatively to one another is present in operating systems (e.g. the file
system abstraction mapped onto a set of block storage resources), it was broadened for
the DCI-OS to not only reflect mapping relationships of resources from one degree into a
lower degree, but also to capture relationships among resources of the same degree
introducing a new construct called a Resource Topology. A resource topology defines the
set of resources that is needed for an entire application execution environment comprised
of server, storage, and network resources. A resource topology represents not only the
resource set. It also includes the relationships among the resources and the configuration
information for constructing each resource and the linkages between them for supporting
the desired application execution environment. Capturing this detailed information later
enables the automation of configuration and deployment processes that are constructing
the resources as they are needed for the application execution environment.
Application is a concept in operating systems representing application code, data and
processes that are needed for performing useful computations. The concept of an
application was adopted for the DCI-OS in form of a set of application services executing
in the application execution environment that is produced and managed by the DCI-OS.
Application execution environment is a concept in operating systems representing the
layer in which all resources exist in the form as they are needed by the applications.
Resources are created and supplied by the underlying operating system. This concept was
adopted in the architecture of the DCI-OS in form of the application services execution
environment that is comprised of infrastructure services provided by the resources that
are defined by a resource topology. The application execution environment is the
essential abstraction created by the DCI-OS allowing application services to execute.

Chapter 10: Summary and Conclusions

261

Run-time control is a component of the operating system that resides inside the
application environment allowing it to interact with the operating system. This concept
was adopted in form of the run-time driver layer in the architecture through which
resources can be acquired and released as well as lifecycle operations can be issued on
explicit request.
Resource pools describe the abstraction of a container in which an operating system
maintains unassigned resources of the same type as fully constructed and ready to use
entities. Resource pools serve as buffers to quickly supply resources when they are
needed. They also allow reusing resources when they are returned without destructing
them. Resource pools provide reservoirs from which unused resources can be quickly
acquired and released. Pool-oriented management of ready-to-use resources has recently
become an accepted practice in data center resource management.
Resource sharing and dynamic resource management had been early concepts in
operating systems which just recently have been introduced in data centers for the same
reason: to increase resource utilization and to make more economic use of resources in
data centers. Concepts of sharing and dynamic resource provisioning have been
incorporated into the architecture of the DCI-OS as core properties that are supported by
managing dynamic construction and mapping relationships. It includes mechanisms for
automated scheduling and decision making using closed loop controllers (see the
adaptive flex controllers in section 6.5).
Scheduling is a concept from operating systems that is related to resource sharing and
dynamic provisioning. Scheduling describes the process of defining an order (a schedule)
of assigning a set of resource requests onto a set of available resources. One form of
scheduling is pre-establishing the allocation plan as a planning task. Another form is
making scheduling decisions dynamically during operation involving automated decision
making. The decision-making as part of dynamic scheduling includes policy for guiding
automated decisions. The execution part assumes a mechanism for performing mapping
operations of requested resources on a shared resource set. This capability is supported by
the DCI-OS by managing dynamic resource constructions and mapping relationships.
In data centers, scheduling traditionally has been a planning activity performed by people
determining static resource allocations for applications. With the introduction of dynamic
resource provisioning techniques, scheduling extends from a planning task performed by
people to a continuous run-time activity requiring automation for monitoring, decision-
making and resource adjustment processes. Controller concepts have been successfully
demonstrated as automation patterns for that [Zhu08], [Gma10].
While scheduling in operating systems is a multiplexing technique of current resource
demand onto currently available resource inventory, scheduling in a data center must take
the overall lifecycles of services, applications and resources into account. For this reason,
the concept of scheduling had to be significantly broadened into separate phases of
resource allocation (in terms of generally required resource capacity) and resource
assignment (the selection of specific resource instances providing that capacity at a
specific time). Choices needed to be evaluated for selecting and constructing the
resources for assignment. During run-time, resources could be flexed dynamically
depending on actual demand.

Chapter 10: Summary and Conclusions

262

Process management in operating systems is often referred to as the multiplexing
technique of concurrently executing a number of application processes on fewer
processors. But operating systems also execute management processes such as creating
new process instances and loading applications into processes. These management
control processes have been adopted in a generalized form of lifecycle processes for
operational management tasks in the DCI-OS. Examples are the automated resource
request workflows in section 9.4.2, the automated deployment workflows in section 8.2
or the processes performed by the resource flex controller in section 8.3.
Isolation and protection refer to concepts in operating systems to avoid interferences of
applications among each other when executing in a shared environment. These concepts
were factored into the DCI-OS by including the appropriate configurations in resource
topologies for servers, networks and storage implementing the desired isolation policies.

10.2 Summarizing Concepts Adopted From IT Management
Question 6 has asked for concepts from IT management that need to be accommodated
by a DCI-OS, which are not present in operating systems.
Figure 2 in Chapter 3 presented a categorization of IT management concepts partitioning
the environment into a managed and a management environment. The concept of a
managed and a management environment were adopted by partitioning the layers of the
DCI-OS architecture into managed and management sections.
IT Service is a central concept in IT Service Management [itSMF]. An IT service
represents an abstraction of the user’s perspective of a set of functions IT delivers. It is a
central concept in ITIL [ITIL]. Since the DCI-OS focuses on data center IT infrastructure,
the concept of an IT services has been adapted to infrastructure services that are forming
the overall execution environment for application services. It is a central abstraction of
the infrastructure services layer in the DCI-OS architecture.
Lifecycle describes an abstraction covering the various stages and transitions each
managed and management element passes through. Capturing pre-existence lifecycle
stages is essential for representing future states, plans and designs. The concept of
lifecycle was adopted by expanding the technical architecture of a DCI-OS with a distinct
planning and design layer and by including workflows for resource lifecycles in the DCI-
OS for allocation, assignment, deployment and the operation for infrastructure services.
Management information model describes a concept in IT management in which all
information that is relevant for IT management is represented in a unified form and in a
state that is consistent with the reality of the managed environment. The information
model for IT management defines the core data structure upon which systems and
algorithms operate, make decisions and perform automated processes. It is consequently
a core part of the DCI-OS architecture and is represented as a distinct information model
layer. The DCI-OS information model layer is separated into a data center-related part,
covering the information about the data center, and into an infrastructure service-related
part, covering the information related to the application services environment. Separating
the information model into these two parts is a significant extension over existing
management information models that do not make this distinction. The separation was
introduced to decouple the development of application services and their supporting
resource topologies independently from specific data center conditions (inventory,

Chapter 10: Summary and Conclusions

263

availability, specific data center constraints) supporting reuse and transferability of
application services and resource topology designs from one data center into another.
The problem of lacking uniformity in management information models was addressed by
choosing the Common Information Model (CIM) [CIM] as representation framework for
the DCI-OS information model. CIM is an established information model standard
defined by the DMTF [DMTF]. Extensions were introduced to the CIM core models in
order to represent the set of abstractions needed for the DCI-OS. A number of new first-
class entities were introduced to represent actors, roles, activities, relationships, contexts,
views, policies and resources (see section 9.3, The DCI-OS Information Model). Those
concepts were needed to not only represent the elements of the managed environment,
but also the context in which automated management tasks occur. Capturing contextual
information beyond managed elements in management information models is another
extension introduced in the information model of the DCI-OS.
Further data model representations have been developed for the new DCI-OS abstractions,
which are summarized in section 10.3, such as for resource topologies, resource
constructions, complex resource request and allocation formats, resource capacity and
demand profiles, desired states and observed states.
Management integration is the concept (and practice) to enable management systems to
not only coexist in a data center, but also to work together for assuming more complex
management tasks. Management integration requires integration of information models.
CIM was chosen for the DCI-OS as normative information representation. CIM's
provider concept allows encapsulating proprietary managed and management systems
and normalizing their external interactions using the CIM data representation. The
provider concept consequently was adopted by the DCI-OS as a general pattern for
integrating proprietary management capabilities. Sections 8.2 demonstrated the
integration of a HP proprietary deployment system into the DCI-OS context [Gra05a].
Unified management protocols are a related topic to management integration aiming at
standardizing and unifying the interactions with proprietary managed or management
components. As part of that research, a number of web services-based management
standards and middleware platforms were investigated such as OGSI, WSRF and WSDM.
[Gra06] discusses requirements for management middleware. [Gra06a] describes a
middleware platform for delivering IT management services that was developed during
that time. In particular, WBEM and OGSI-protocols were used for implementing the IT
Management Automation Controller [Gra04c,d,e] (presented in section 8.1) and for the
Flex Automation Controller (presented in section 8.3). The work on web-services
management standards for the integration of management systems has been summarized
in a book: “Web Services in the Enterprise: Concepts, Standards and Management” that
was co-written by the author and published by Springer in 2004 [Gra04b].
Model-driven management. The problem of maintaining consistency between the states
in the managed environment and their representations in the information model in the
management environment was addressed in a new way. Typically, changes are made in
the managed environment first, which are then periodically rediscovered updating the
management information model afterwards. This principle is also referred to as model-
based management. It has been built into most IT management systems today. The
fundamental problem with model-based management is its inherent inconsistency with

Chapter 10: Summary and Conclusions

264

the reality of the managed environment that is caused by allowing changes to be made in
the managed environment without updating the model.
Reversing that order is key to addressing the inconsistency problem. It means that
intended changes need to be made in the information model first, e.g. by setting the flag
through a console indicating the bootstrap of a server, for example. This change in the
information model is then programmatically actuated in the managed environment by
sending the corresponding signal to the server. This principle is referred to as model-
driven management. It was adopted for the DCI-OS as a fundamental principle. [Gra05b]
demonstrated how model-driven management can be integrated into a conventional
software configuration system from HP. Discovery is still needed in order to report when
the intended state change has actually occurred in the managed environment and to detect
problems or error. A major innovation developed by the author was the extension of
model-driven management into a closed-loop, discrete state controller pattern for IT
management automation in section 8.1. It combines the control flow of model-driven
change actuation with the discovery control flow that is detecting when changes have
been actuated or abnormal conditions have been observed.
Best-practices from frameworks such as ITIL were adopted for the architecture of the
DCI-OS where those practices could be cast into technical realizations or implemented as
integrated tool chains. It mainly occurred in the planning and design layer (Chapter 7).
This layer provides tools for capacity planning (Section 7.2), inventory management (as
part of the DCI-OS information model), application and infrastructure sizing (such as for
the performance engineering process presented in section 7.3) and change management as
part of deployment automation (section 8.2).

10.3 Summarizing New Concepts and Significant Extensions
Question 7 has asked for new abstractions and concepts which had to be developed for
the architecture of the DCI-OS which could neither be derived from operating systems
nor from IT management. Most of the concepts discussed in the following were
developed by the author and first documented in an early architectural description
[Gra03b] that represented a comprehensive design of a data center automation system.
The concepts evolved over time and were refined later over the course of research.
Infrastructure Service is an adaptation of the concept of an IT service. An infrastructure
service provides a fully operational execution environment for an application service. It
comprises a set of configured and operational computing, networking and storage
components that are required by infrastructure services as a whole for executing
application services. An infrastructure service is the unit of allocation, assignment,
deployment and operation in the DCI-OS. It also is the unit of isolation and protection.
Resource Topology describes the design model of an infrastructure service. A resource
topology defines the entire environment of resources including their configurations which,
as a whole, comprises the resources for an infrastructure service. A resource topology
specifies the types and quantities of resources in combination with their configurations
that are needed for constructing and managing the resulting infrastructure service. During
deployment, information from the resource topology model is applied to assigned
resources from the data center environment.

Chapter 10: Summary and Conclusions

265

Resource topology (the design model) and infrastructure service (the manifestation of a
resource topology at run-time) are central abstractions of the DCI-OS architecture. They
are new abstractions that do not exist in operating systems or in IT management.
Resource construction is a concept which partially exists in operating systems by
recognizing the fact that resources do not only exist as physical components in machines
or data centers, but must be considered relatively building one upon another. Constructed
(aggregated, transformed, virtualized) resources must be recognized as fully qualified and
identifiable elements in the system. Operating systems only construct limited sets of
resources such as processes on processors or virtual memory on physical memory and
disk space. Complex constructions such as resource topologies are not known in
operating systems.
Resource Topology design describes the process of creating the models for resource
topologies. Design processes are not common in IT or in IT management where systems
are usually planned, architected and deployed, lacking an explicit design step and lacking
explicit formal design representations. IT architecture typically refers to defining general
building blocks for IT components or systems. The further breakdown into designs and
further into detailed configurations on systems usually occurs during deployment where
design choices are made that are often not documented. The lack of detailed, formalized
deployment specifications (designs) prevents the automation of deployment processes. It
also leads to the lack of information about intended or desired state information, about
what “should be” in the managed environment, which is essential information for the
comparison to what “is” in the managed environment. Knowing both, what “is” and what
“should be” is a precondition for automatically determining a valid state and automating
operational management tasks as it is performed by the generalized IT management
automation controller.
The existence of formalized, detailed models or designs of IT components or systems is a
prerequisite for most automation capabilities. Other industries, such as the semiconductor
industry, have developed sophisticated modeling techniques and tool chains that are
going even further validating designs before their implementation and production. All
these capabilities are enabled once modeling methodologies and tool chains are
established. IT and IT management are just at the beginning of this development that is
fostered by increasing automation.
Developing modeling methodologies and tool chains for IT designs is a major challenge.
Figure 22 showed an early prototype of a Resource Topology Designer tool developed by
the author in 2003, which generated a machine-readable model representation from a
visually constructed resource topology. The resulting models could then drive further
automation processes. Section 7.4 presented later research that demonstrated how design
processes from different layers could be linked to systematically derive more
comprehensive sets of IT configurations through several transformation stages
supplementing the logical designs with non-functional requirements all the way to a fully
resolved, deployable resource topology model. This specific research occurred in
collaboration with SAP Research [Bel07], [Bel07a], [Gra08]. It resulted in another design
tool developed by the author for SAP deployments called the ModelWeaver [Gra08a] and
was targeted to HP’s automated blade infrastructure software.

Chapter 10: Summary and Conclusions

266

Introducing a design discipline in IT in combination with the creation of design tools and
subsequent automation systems marks a major shift in how IT infrastructure, IT systems
and IT services are designed, created, deployed and managed in future. The availability
of detailed, machine-readable models will further foster automated management.
Policy-based design and configuration has been another research work the author has
contributed to. The goal was to automate the construction of complex and detailed
resource topology specifications from higher-level definitions using constraint-
satisfaction techniques. Section 7.6 introduced this work. An extension was developed for
the Resource Topology Designer tool that provided this capability. A number of
publications document this work [Sah04], [Sah04a], [Gra05].
Grounding of resource specifications. The term grounding originated in Grid
computing [Fost03] from the need to manage resource reservations more independently
from specific resource properties that were available at a time in a data center. Those
could change over time causing matching problems with existing reservations. Grounding
is the process of mapping higher-order resource requirement definitions into concrete
descriptions of resources in terms of specific types and quantities that are available in a
data center at the time the reservation becomes due. For example, rather than requesting
server resources with specific properties of CPU-type, clock speed, cache and memory
sizes. Server resource can also be requested in higher terms of a certain processor
architecture and a capacity metric expressed by some benchmark numbers. This
definition than can be matched by a variety of concrete server types that are available in
the data center. Grounding means the mapping of those higher-ordered resource
definitions into concrete realization choices. Choices for these mappings increase the
flexibility in the resource management system to optimize resource use. For instance, if
servers of lower capacity are requested, the choice may exist to render them as a virtual
machine rather than a dedicated physical server. The policy-based design approach has
been applied to implement grounding using the same constraint satisfaction technique
that was used for policy-based design and configuration [Sah04], [Sah04a], [Gra05].
To some extend, the practice of sizing in enterprise IT systems can be compared to the
process of grounding. In sizing, capacity requirements are factored into the functional
architecture of applications and systems. Decisions are made for concrete resources and
systems in terms of types and the needed capacities. While sizing requires an expert
today, constraint-based sizing has been automated and applied to cases of SAP
application and system sizing as part of that research [Gra08], [Rol08].
Resource allocation traditionally has been a manual planning task in data centers. Grid
clusters and high-performance compute farms have developed reservation systems that
automate the management of allocation schedules. They are often restricted to managing
compute resources, but do not take storage and networking resources into account. In the
DCI-OS, resource topologies are the unit of allocation, deployment and operation, which
include compute, storage and networking resources. A process of resource allocation had
to be developed for the DCI-OS, which was described in Section 9.4.3. A complex
resource request format with capacity and demand profiles is the central abstraction for
that. The data representation and the match-making algorithms were developed during a
Master’s Thesis in HP Labs [Kön04].

Chapter 10: Summary and Conclusions

267

Late binding of resource allocations to specific resource instances is another concept that
had emerged from the work on resource allocation for resource topologies recognizing
the fact that most applications today support a range of hardware and software platforms
for deployment (within specified constraints) providing the DCI-OS with flexibility to
construct those configurations that are most economic.
Resource Assignment is the last stage of pre-deployment resource management. It was
presented in section 9.4.4. Research contributions mainly focused on optimizing resource
selection from resource pools for constructing resource topologies.
The resulting effects of these new principles of policy-based configuration, grounding,
the separation of resource allocation, and the late binding to resource instances are:

• tolerance of change in physical inventory in the data center;
• reusability of resource topology designs for different configurations and in

different data centers;
• increased efficiency by utilizing configuration choices by the DCI-OS;
• the automated generation of deployment configurations enabling easier re-

configuration by re-computing new deployment configurations using new sets of
constraints;

• the optimization of resource assignments for making placement decisions.
IT Management automation controller. A fundamental shortcoming in model-based IT
management systems has been that they only capture the currently observed state of
managed elements. Based on only that, the management system cannot determine
whether this state is the intended (or desired) state of the element or not. The
management system can only report the current state to a human who possesses the
information about the intended state, but cannot take action itself.
To enable automation, the concept of model-driven management was extended into the
concept of an IT management automation controller that was presented in section 8.1. It
maintains distinct representations of the desired state and the observed state about a
managed element. The overall goal of the controller is to maintain alignment between the
desired state model and the observed state model. The controller has two simultaneous
control flows. One flow supports model-driven management. Intended changes are made
to the desired state model first. They create a difference to the observed state model from
which the controller derives a sequence of actions and applies them to the managed
element facilitating the change. The other flow is the continuous discovery cycle that is
updating the observed state model with the states detected from the managed element.
Both control flows work together in two ways. First, changes made to the desired state
model are actuated by the controller in the managed environment based on the difference
they create between the new desired state and the currently observed state. Once the
change is effective in the managed environment, it is reflected back to the observed state
model by the discovery cycle re-aligning both models again. This flow is called the affect
loop. Second, in case unintended changes occur to managed elements, such as failures,
the discovery cycle reports the observed change back to the observed state model, also
causing a difference to the desired state model, based on which the controller can
determine corrective actions and actuate them on the managed element. This is the
correction loop.

Chapter 10: Summary and Conclusions

268

While controllers have been used in IT management for automatically aligning numeric
properties such as controlling server capacity to align with actually observed server
demand, generalizing the controller concept to finite sets of discrete management states is
another contribution by the author. Section 8.1 presented a realization of the IT
management automation controller using executable Petri nets [Gra07]. An execution
engine was built for this purpose. The controller concept was implemented and tested in a
number of pilot engagements that were discussed in section 6.5.
The discrete state controller can be used as a general automation pattern for a wide range
of automation tasks in data centers.
Finalizing the discussion of the questions that have been asked in the introduction of this
thesis, question 8 asked how an information model for the new abstractions of the
architecture of the DCI-OS can be defined. The information model for the DCI-OS was
presented in Chapter 9. Data model representations have been developed as extensions to
the CIM core model for actors, roles, activities, relationships, contexts, views, policies
and resources (see section 9.3) as well as for resource topologies, resource constructions
with construction and mapping relationships, complex resource request and allocation
formats, resource capacity and demand profiles, lifecycle states, and for desired and
observed state models of managed elements that are needed for the IT management
automation controller.

10.4 Open Issues and Conclusions
Data center automation is an ongoing effort requiring continued research and
development. Confidence needs to evolve over time and over generations of automation
systems. However, a broad implementation of this architecture has not occurred. It
requires substantial effort to develop, test and deploy a data center automation system of
this nature.
Vendors of automation systems have acknowledged the complexity of data center
automation by scaling down the scope of automation solutions and systems. For example,
HP’s early automation technology (UDC, 2002) was still scoped for an entire data center.
Current solutions focus on smaller domains, such as the domain of a rack or an isle in a
data center. Integrated automation solutions are being built for these domains and are
successful in the market. HP’s Server Automation Software [HPSAS10] is a recent
(2010) offering that provides rack-scale automation capabilities for farms of standard
server and storage blades.
Another major issue and obstacle to data center IT infrastructure automation remains the
complexity of the data models needed to drive complex automation tasks. Neither
experience nor tools exist for creating and managing this complex information. This issue
needs to be addressed by developing a design discipline with design tools for IT systems,
solutions and IT infrastructures. Over the years, the author has developed a number of
such design tools as prototypes addressing this issue. Technologies were developed to
generate the detailed and complex information models for resource topologies from
higher-ordered requirement specifications. More work needs to be done, not only for
designing IT infrastructure in data centers, but also for designing systems and solutions in
IT in general.

Chapter 10: Summary and Conclusions

269

Other industries have successfully demonstrated the power and capabilities emerging
from using computer models. Computerization of designs and design processes has
allowed addressing scales that are beyond human capabilities, such as the millions of
elements that are part of a modern semiconductor design. Scales in data centers have not
reached into those dimensions, but they are growing demanding more systematic
approaches and the development of design models and tools changing how infrastructures,
systems and solutions in IT are being planned, designed, produced and managed. The
development of a design discipline for IT is a prerequisite for this.
And finally, the fragmentation of management processes across systems, people and
organizations remains an open issue that cannot easily be overcome. It is deeply built into
IT organizations and the ways they operate.
Nevertheless, the efficient management of data centers is critical in today’s information-
centered world. Automation has proven to increase efficiency in other industries. Data
center management, as part of overall IT management, must face the challenges of
developing suitable and effective automation solutions in order to address the increasing
scales of data centers, the desire for more agile IT environments, and to reduce
operational cost. In conclusion, enterprise data center and IT management architectures
need to accelerate progress in automation for achieving these goals.

10.5 Final Remarks
The established enterprise data center and IT architectures are increasingly being
challenged by a new type of IT infrastructures that have evolved with the trend of “cloud
computing”. Those IT infrastructures are of extreme scales and are designed and built for
scale from the beginning. Due to their scale, they are highly uniform and are highly
automated. The automation they incorporate delivers unprecedented low operational cost
per unit for IT infrastructure, systems and services.
Luiz Barroso and Urs Hölzle (from Google) describe these new data center
infrastructures in their recent book “The Datacenter as a Computer” [Hölz09], for which
a new class of management automation software has been developed from the ground up.
Those infrastructures are increasingly being developed by the large Internet service
providers. The subtitle of the book, “An Introduction to the Design of Warehouse-Scale
Machines”, draws on the analogy to large-scale machines. It also implies the presence of
automated management systems, or operating systems, that have been developed for
those warehouse-scale machines.
This thesis considered the conventional domain of enterprise data centers and the
problems and challenges for increasing automation in them. There is still a large legacy
of applications in enterprises that cannot be migrated to the new “warehouse-scale
machine” and hence providing the potential for significant innovation in this area.
However, there is no fundamental technical reason why the information processing
functions enterprises rely on could not be delivered from these new, highly efficient,
warehouse-scale machine infrastructures. A new generation of enterprise software and IT
service delivery methods may emerge that are making this transition occur.
The Architecture for the Automated Management of Data Center IT Infrastructure that
was presented in this thesis can serve as a blue print or as a general pattern for building
more comprehensive automation solutions for enterprise data centers. It exposed a

Chapter 10: Summary and Conclusions

270

number of fundamental problems and presented solutions that have been validated though
experimentation and practical realizations. The goal of the fully automated, autonomous
and transparent operation of data centers, however, remains a challenge requiring
continued effort in research and development.

 References

271

References

[Aal99] Aalst, Wil M. P.: Formalization and Verification of Event-driven Process Chains. Information &
Software Technology 41(10): 639-650 (1999).

[Acc86] Accetta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R, Tevanajan, A., Young, M.: Mach: A
New Kernel Foundation for UNIX Development, Usenix Summer Conference, Atlanta, GA, June 1986.

[Andr02] Andrzejak, A., Graupner, S., Kotov, V., Trinks, H.: Algorithms for Self-Organization and
Adaptive Service Placement in Dynamic Distributed Systems, HP Labs Technical Report, HPL-2002-259,
September 2002.

[Andr06] Andrzejak, A., Graupner, S., Plantikov, S.: Predicting Resource Demand in Dynamic Utility
Computing Environments, IEEE International Conf. on Autonomic and Autonomous Systems (ICAS 2006),
Santa Clara, CA, July 19-21, 2006.

[ASN1] International Telecommunications Union (ITU) and OSI: Abstract Syntax Notation One (ASN.1):
Specification of basic notation, http://www.itu.int/ITU-T/studygroups/com17/languages.

[Ass93] Assenmacher, H., Breitbach, T., Buhler, P. Huebsch, V., Schwarz, R.: The PANDA System
Architecture – A Pico-Kernel Approach, 3rd Workshop of Future Trends in Distributed Systems, 1993.

[Ast94] Astrom, K.J., Wittenmark, B.: Adaptive Control, (2nd Edition), Prentice Hall, 1994.

[Bals04] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni, Model-based Performance Prediction in
Software Development: A survey, IEEE Transactions on Software Engineering, vol. 30, no. 5, pp, 295-310,
May 2004.

[Bard78] Y. Bard and M. Schatzoff, Statistical Methods in Computer Performance Analysis, Current
Trends in Programming Methodology, Vol. III: Software Modeling, K.M. Chandy and R.T. Yeh, Eds.
Englewood Cliffs, NJ:Prentice-Hall, 1978.

[Bart04] Bartolini, C., Boulmakou, A., Christodouku, A., Farrell, A., Salle, M., Trastour, D.: Management
by Contract: IT Management driven by Business Objectives, 11th Workshop of the HP OpenView
University Association (HPOVUA 2004), Paris, France, June 2004.

[Bart04a] Claudio Bartolini, Mathias Sallé: Business Driven Prioritization of Service Incidents. DSOM
2004: 64-75.

[Bel07] G. Belrose, K. Brand, N. Edwards, S. Graupner, J. Rolia, and L. Wilcock, Business-driven IT for
SAP - The model information flow, Second IEEE/IFIP International Workshop on Business-driven IT
Management (BDIM 2007) in conjunction with IM 2007, Munich, Germany, pp. 45-54, May 21, 2007.

[Bel07a] Belrose, G., Brand, K., Edwards, N., Graupner, S., Rolia, J., Wilcock, L.: Adaptive Infrastructure
Meets Adaptive Applications, paper at HP TechCon 2007, San Antonio, Texas, April 22-25, 2007.

[Ber95] Berhad, B.N., Savage, S., Pardyak, P., Sirer, E.G., Fiuczynski, M., Becker D., Chambers, C.,
Eggers, S.: Extensibility, Safety and Performance in the SPIN Operating System, Proceedings of the 15th
SOSP, pages 267-284, December 1995.

[Bla98] Blanding, S.: Handbook of Data Center Management, Auerbach publications, 2nd Edition, 672
pages, October 1998.

[Blan99] Blanding, S.: Enterprise Operations Management Handbook, Second Edition, 672 p., ISBN 0-
8493-9824-X, Auerbach Pub, October 1999.

[Bom92] Bomberger, A.C., et.al.: The KeyKOS Nanokernel Architecture, Usenix Workshop on Micro-
Kernels and Other Kernel Architectures, April 1992.

References

272

[Bon02] van Bon, J. (ed.): IT Service Management: An Introduction, van Haren Publishing, ISBN 90-
806713-4-7, 2002.

[Boo98] Booch, G., Rumbaugh, J., Jaconson, I.: The Unified Modeling Language (UML), Addison Wesley,
ISBN 0-201-57168-4, 1998.

[BPF] TM Forum (TMF), eTOM Business Process Framework,
http://www.tmforum.org/BestPracticesStandards/BusinessProcessFramework/6637/Home.html.

[Burg93] Burgess, M.: Cfengine: A System Configuration Engine, University of Oslo report 1993,
http://www.cfengine.org.

[Buz73] J.P. Buzen, Computation Algorithms for Closed Queuing Networks with Exponential Servers,
Communications of the ACM, vol. 16, no. 9, pp. 527-531, September 1973.

[Camp93] Campbell, R.H., Islam, N., Raila, D, Madany, P: Designing and Implementing Choices: An
Object-Oriented Operating System in C++, Communications of the ACM, 36(9):117-126, September 1993.

[Can07] Cannon, D., Wheeldon, D.: Service Operation, Vol 4, ITIL Version 3, 262 pages, Publisher:
Stationery Office; Version 3 edition, May 31, 2007, http://www.itil-itsm-world.com/servo.htm.

[Cass00] Cassidy, A., Guggenberger, K.: A Practical Guide to Information Systems Process Improvement,
288 p., ISBN 1-5744-4281-3, CRC Press, September, 2000.

[Cher06] Cherkasova, L. and Rolia, J.: R-Opus: A Composite Framework for Application Performability
and QoS in Shared Resource Pools, in Proceedings of the 36th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN’06), 2006.

[Cher84] Cheriton, D.R., The V Kernel: A Software Base for Distributed Computing, IEEE Software,
pages 19-42, 1984.

[Cho82] Choo, Y.: Hierarchical Nets: A Structured Petri Net Approach to Concurrency, Technical Report
CaltechCSTR:1982.5044-tr-82, California Institute of Technology, 1982.

[CIM] Distributed Management Task Force (DMTF), Common Information Model (CIM),
http://www.dmtf.org/standards/cim.

[CIMPol] DMTF, CIM Policy, http://www.dmtf.org/standards/documents/CIM/CIM_Schema26/
CIM_Policy26.pdf.

[CIMv2.7] DMTF, CIM Schema: Version 2.7, http://www.dmtf.org/standards/cim/cim_schema_v27.

[CMIP] IETF: OSI, Common Management Information Protocol (CMIP), RFC 1189,
http://tools.ietf.org/html/rfc1189.

[COB] Information Systems Audit and Control Association (ISACA): Control OBjectives for Information
and related Technology (COBIT), http:// www.isaca.org/cobit/.

[Col05] Coleman, D., Cook, N., Eidt, E., Fleck, J., Graupner, S., Mukerji, J., Singhal, S., Thompson, C.:
Specification of the Service Delivery Controller (SDC), Hewlett-Packard, Software Global Business Unit,
Cupertino, July 2005.

[Cond96] Epema, D.H., Livny, M. van Dantzig, R, Evers, X., Pruyne, J., A Worldwide Flock of Condors:
Load Sharing among Workstation Clusters, Journal on Future Generations of Computer Systems, Volume
12, 1996 The Condor Project, http://www.cs.wisc.edu/condor/publications.html.

[Cook06] Cook, N., Graupner, S., Coleman, D., Fowler, C., Sarni, J.: IT Utility Services Using Model-
based Automation, Service-Oriented Architecture and Grid, paper at HP TechCon 2006, Los Angeles,
California, April 2-5, 2006.

[Cook06a] Cook, N., Coleman, D., Graupner, Sarni, J., Singhal, S., Thompson, C.: Applying Service
Delivery Controller in a Blade Automation Case, poster at HP TechCon 2006, Los Angeles, California,
April 2-5, 2006.

[Cor65] F. J. Corbató, V. A. Vyssotsky: Introduction and Overview of the Multics System, AFIPS Conf
Proc 27, 185-196, 1965, http://www.multicians.org/fjcc1.html.

[CORBA] Object Management Group: Common Object Request Broker Architecture (CORBA),
http://www.corba.org.

[CPN] CPN Tools, http://wiki.daimi.au.dk/cpntools/cpntools.wiki.

[DCE] OpenGroup, Distributed Computing Environment (DCE), http:// www.opengroup.org/dce.

 References

273

[DCML] Oasis, Data Center Markup Language (DCML), http://www.dcml.org.
[DCOM] Microsoft, Distributed Component Object Model (DCOM), Remote Protocol Specification,
http://msdn.microsoft.com/library/cc201989.aspx.

[Deit03] Deitel, H.M., Deitel, P.J., Choffnes, D.R.: Operating Systems (3rd Edition), 1209 p., ISBN 0-1318-
2827-4, December 2003.

[Den68] Peter J. Denning: The Working Set Model for Program Behavior, Communications of the ACM,
Volume 11, Issue 5, pages: 323-333, May 1968.

[DFS] Silberschatz, Galvin. Operating System concepts, chapter 17, Distributed File System (DFS),
Addison-Wesley Publishing Company, 1994.

[Dij68] Dijkstra, E.W.: Cooperating Sequential Processes, Programming Languages (F. Genuys, ed.),
pages 43-112, Academic Press, London and New York, 1968.

[Dij71] Dijkstra, E.W.: Hierarchical Ordering of Sequential Processes, Acta Informatica, 1(1):115-138,
January 1971.

[DMTF] Distributed Management Task Force (DMTF), http://www.dmtf.org.

[Dre02] Dreo Rodosek, G.: A Framework for IT Service Management, Ludwig–Maximilians-Universität
München, Habilitation, June, 2002.

[Duj99] J. J. Dujmovic, Universal Benchmark Suites, Proceedings of IEEE MASCOTS Conference, pp.
197-205, 1999.

[Edw07] Edwards, N., Belrose, G., Brand, K., Graupner, S., Rolia, J., Wilcock, L.: Adaptive Infrastructure
Meets Adaptive Applications, Proceedings of the 14th HP OpenView University Association Conference
(HP-OVUA), pp. 41-50, Munich, Germany, July 8-11, 2007.

[EGA] Enterprise Grid Alliance: The EGA Reference Model, 2005, http://www.gridalliance.org/en/
WorkGroups/referencemodel_request.asp.

[eTOM] TeleManagement Forum: Enhanced Telecom Operations Map (eTOM),
http://www.tmforum.org/BusinessProcessFramework/1647/home.html.

[Fel99] Felfernig, A., Friedrich, G.E., et al., UML as a Domain-specific Knowledge for the Construction of
Knowledge-based Configuration Systems, In the Proceedings of SEKE'99 Eleventh International
Conference on Software Engineering and Knowledge Engineering, 1999.

[FML] Hewlett-Packard, Farm Markup Language FML, internal specification, 2002.

[Fost03] Foster, I., Kesselman, C.: The Grid 2: Blueprint For A New Computing Infrastructure, 2nd Edition,
748 p., ISBN: 1-55860-933-4, Morgan Kaufmann Publishers Inc, 2003.

[Fost98] Foster, I., Kesselman, C.: The Grid: Blueprint For A New Computing Infrastructure, 677 p.,
ISBN:1-55860-475-8, Morgan Kaufmann Publishers Inc, 1998.

[Gal00] Galis, A.: Multi-Domain Communication Management, ISBN 0-8493-0587-X, CRC Press LLC,
Boca Raton, Florida, 2000.

[Gma07] Daniel Gmach, Jerry Rolia, Ludmila Cherkasova, Alfons Kemper: Capacity Management and
Demand Prediction for Next Generation Data Centers. ICWS 2007: 43-50, 2007.

[Gma08] Gmach, D., Rolia, J., Cherkasova, L., Belrose, G., Turicchi, T., Kemper, A.: An Integrated
Approach to Resource Pool Management: Policies, Efficiency and Quality Metrics, Proceedings of the 38th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'08), Anchorage,
Alaska, June 24 - 27, 2008.

[Gma09] Gmach, D.: Managing Shared Resource Pools for Enterprise Applications, Ph.D. Dissertation,
Technische Universität München, 2009.

[Gma10] Gmach, D., Chen, Y, Hyser, C., Wang, Z., Bash, C., Hoover, C., Singhal, S.: Integrated
Management of Application Performance, Power and Cooling in Data Centers, 2010 Network Operations
and Management Symposium (NOMS 2010), Osaka, Japan, April 19-23, 2010.

[Gol04] Goldsack, P.: Smart Framework for Object Groups, http://www.smartfrog.org, 2004.

[Gosc91] Goscinski, A.: Distributed Operating Systems – The Logical Design, 913 p., ISBN 0-201-41704-
9, Addison-Wesley, July 1991.

References

274

[Gra97] Graupner, S.: A Coherent Architecture of Operating Systems, Ph.D. Dissertation, Chemnitz
University of Technology, 198 p., published in Shaker Verlag, Aachen, ISBN 3-8265-3261-9, December
1997.

[Gra01] Graupner, S., Kotov, V., Trinks, H.: Massive Deployment of Management Agents in Virtual Data
Centers, HP Labs Technical Report, HPL-2001-321, December, 2001.

[Gra02] Graupner, S., Kotov, V., Trinks, H.: Resource-Sharing and Service Deployment in Virtual Data
Centers, The 22nd International Conference on Distributed Computing Systems Workshops (ICDCS 2002),
pp. 666-671, Vienna, Austria, July 2-5, 2002.

[Gra03] Graupner, S., König, R., Machiraju, V., Pruyne, J., Sahai, V., van Moorsel, A.: Impact of
Virtualization on Management Systems, 10th Workshop of the HP OpenView University Association (HP-
OVUA), University of Geneva, Switzerland, July 6-9, 2003.

[Gra03a] Graupner, S.; Chevrot, J.-M.; Cook, N.; Kavanappillil, R.; Nitzsche, T.: Adaptive Control System
for Server Groups in Enterprise Data Centers, HPL-2003-273, 2003.

[Gra03b] Graupner, S., Singhal, S.: Conceptual Architecture of Quartermaster, HP internal, architectural
specification, April 2003.

[Gra04] Graupner, S., Nitzsche, T.: Using HP's Web Services Management Framework for Adaptive
Control, HP TechCon 2004, Orlando, Florida, June 20-23, 2004.

[Gra04a] Graupner, S., Pruyne, J., Singhal, S.: HP – Making the Utility Data Center A Power Station for
the Enterprise Grid, GRIDtoday, No. 740114, Vol. 3, No. 35, August 30, 2004.

[Gra04b] Graupner, S., Sahai, A.: Web Services in the Enterprise: Concepts, Standards and Management,
Springer Verlag, ISBN 0-387-23374-1, 310 Seiten, 2004.

[Gra04c] Graupner, S., Chevrot, J.-M., Cook, N., Kavanappillil, R., Nitzsche, T.: Adaptive Control for
Server Groups in Enterprise Data Centers, 4th IEEE/ACM Int. Symposium on Cluster Computing and the
Grid (CCGrid 2004), Chicago, USA, April 19-22, 2004, also as HPL-2003-273.

[Gra04d] Graupner, S., Cook, N., Chevrot, J.-M., Kavanappillil, R.: OGSI-based Adaptive Control System
for the Utility Data Center, Globusworld 2004, San Francisco, January 20 - 23, 2004.

[Gra04e] Graupner, S., Nitzsche, T.: Web Services-based Management for Adaptive Control, HPL-2004-94,
May 20, 2004.

[Gra05] Graupner, S., Sahai, A.: Policy-based Resource Topology Design for Enterprise Grids, 5th
IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2005), Cardiff, UK,
May 9-12, 2005; also appeared as HPL-2005-59 Technical Report, 2005.

[Gra05a] Graupner, S., Nitzsche, T.: Extending Radia Into A Service Delivery Controller, HP TechCon
2005, Phoenix, Arizona, March 20-23, 2005; also appeared as HPL-2005-52, March 11, 2005.

[Gra05b] Graupner, S., Nitzsche, T.: Model-driven Software Configuration With the Radia SDC,
Proceedings of the 12th HP OpenView University Association Conference (HP-OVUA), pp. 397-400,
Porto, Portugal, July 10-13, 2005.

[Gra05c] Graupner, S., Andrzejak, A., Kotov, V., Trinks, H.: Adaptive Service Placement Algorithms for
Autonomous Service Networks, in Brueckner, S., Di Marzo Serugendo, G., Karageorgos, A., Nagpal, R.
(Eds.): “Engineering Self-Organizing Systems”, pages 280-298, LNCS 3464, Springer Verlag, May 2005.

[Gra06] Graupner, S., Cook, N., Coleman, D., Nitzsche, T.: Management Middleware for Enterprise Grids,
6th IEEE International Symposium on Cluster Computing and the Grid (CCGrid 2006), Singapore, May,
2006.

[Gra06a] Graupner, S., Cook, N., Coleman, D., Nitzsche, T.: Platform for Delivering IT Management
Services, COMSWARE 2006, New Delhi, India, January 8-12, 2006.

[Gra07] Graupner, S., Cook, N., Coleman, D.: Automation Controller for Operational IT Management, the
10th IFIP/IEEE Symposium on Integrated Management (IM 2007), Munich, Germany, May 21-25, 2007.

[Gra08] Graupner, S., Jerry Rolia, Nigel Edwards: Deriving IT Configurations from Business Processes.
CEC/EEE 2008: 317-322, 2008.

[Gra08a] Graupner, S.: ModelWeaver – A Service Design Environment for SAP, Hewlett-Packard internal
document, 2008.

 References

275

[Grac96] R. Grace, The Benchmark Book, Prentice Hall, 1996.

[GT4] The Globus Toolkit GT4, http://www.globus.org.

[Hab76] Habermann, A.N., Flon, L., Cooprider, L.: Modularization and Hierarchy in a Family of
Operating Systems, Communications of the ACM, 19(5):266-272, May 1976.

[Hal04] Halpern, J., Ellesoson, E.: IETF Policy Framework, concluded working group in IETF, 2004,
http://www.ietf.org/wg/concluded/policy.html.

[Han01] Per Brinch Hansen: Classic Operating Systems: From Batch Processing to Distributed Systems,
Springer; 1 edition, January, 2001.

[Härt90] Härtig, H., Kühnhauser, W., Kowalski, O., Lux, W., Reck, W., Streich, H., Goos, G.:
Architecture of the BirliX Operating System, Technical Report, German National Research Center for
Computer Science (GMD), Birlinghoven, March 1990.

[Heg94] Hegering, H.G., Abeck, S.: Integrated Network and System Management, Addison Wesley, 1994.

[Heg99] Hegering, H.G., Abeck, S., Neumair, B.: Integrated Network of Networked Systems: Concepts,
Architectures and their Operational Application, The Morgan Kaufmann Series in Networking, 1999.

[Heg00] Hegering, H.G., Dreo Rodosek, G.: Enterprise Management: Ganzheitliche Sicht auf das IT–
Management in Unternehmen, In Enterprise Networks and Call Centers, Congressband III, C320.1–
C320.13, Online Verlag, Düsseldorf, February, 2000.

[Hell01] Hellerstein, J.L., Gandhi, N., Parekh, S.S.: Managing the Performance of Lotus Notes: A Control
Theoretic Approach, International CMG Conference, 397-408, 2001.

[Hell04] Hellerstein, J.L., Diao, Y., Parekh, S.S., Tilbury, D.: Feedback Control of Computing Systems,
John Wiley & Sons, New York, 2004.

[Hen89] van Hentenryck, P., Constraint Satisfaction in Logic Programming, The MIT Press, Cambridge,
Mass, 1989.

[Herz01] Herzog, U., Rolia, J.: Performance Validation Tools for Software / Hardware Systems,
Performance Evaluation 904 (2001), 1-22.

[Hin04] T. Hinrichs, N. Love, C. Pertie, L. Ramshaw, A. Sahai, S. Singhal: Using Object Oriented
Constraint Satisfaction for Automated Configuration Generation. the 15th IFIP/IEEE International
Workshop on Distributed Systems: Operations and Management (DSOM 2004), Davis, CA, USA,
November 15-17, 2004.

[Hoa78] Hoare, C.A.R.: Communicating Sequential Processes, Communications of the ACM, 21(8):666-
677, August 1978.

[Hol00] Holtsnider, B., Jaffe, B.D.: IT Manager's Handbook: Getting Your New Job Done, 337 pages,
ISBN 1-5586-0646-7, Morgan Kaufmann; October, 2000.

[Hölz09] Hölzle, U., Barroso, L.A.: The Datacenter as a Computer: An Introduction to the Design of
Warehouse-Scale Machines, Google, Synthesis Digital Library of Engineering and Computer Science,
Synthesis Lectures on Computer Architecture, Morgan&Claypool Publishers, 2009.
http://www.morganclaypool.com.

[HP08] Hewlett-Packard: Transforming Capacity Planning in Enterprise Data Centers: Enabling real-time
Analysis and Optimization of Server Capacity and Power Use; http://docs.hp.com/en/15052/CapPlan4AA1-
9758ENW.pdf.

[HPAEM03] Hewlett-Packard, HP Management Solutions for the Adaptive Enterprise, Whitepaper,
Hewlett-Packard, 2003, http://h71028.www7.hp.com/enterprise/cache/7504-0-0-0-121.aspx.

[HPBA03] Hewlett-Packard: The HP Vision for the Adaptive Enterprise: Achieving Business Agility,
Whitepaper, 2003, http://h71028.www7.hp.com/enterprise/cache/7504-0-0-0-121.aspx.

[HPSAS10] HP Server Automation Software, https://h10078.www1.hp.com/cda/hpms/display/main/
hpms_content.jsp?zn=bto&cp=1-11-271-273^14711_4000_100, 2010.

[Hri99] C. E. Hrischuk, M. Woodside, and J.A. Rolia, Trace-based load characterization for generating
performance software models, Hrischuk, C.E.; Murray Woodside, C.; Rolia, J.A., IEEE Transactions on
Software Engineering, vol. 25, no. 1, pp. 122-135, January-February 1999.

References

276

[Hub91] Huber, P., Jensen, K., Shapiro, R.M.: Hierarchies in Colored Petri Nets, In: G. Rozenberg (ed.):
Advances in Petri Nets 1990, Lecture Notes in Computer Science Vol. 483, pages 313-341, Springer-
Verlag, 1991.

[Hur05] Hurd, M.: Automation Key to IT Cost Savings, Computerworld, December 2005,
http://www.computerworld.com/s/article/107029/Automation_key_to_IT_cost_savings_says_HP_s_Hurd.

[IDC03] IDC: Enabling Business Agility: Hewlett-Packard’s Adaptive Enterprise Strategy, IDC
Whitepaper, May 2003.

[IDS] IDS Scheer: Aris, http://www.ids-scheer.com.

[IETF] Internet Engineering Task Force (IETF), http://www.ietf.org.

[IETFPol] IETF: IETF Policy, http://www.ietf.org/html.charters/policy-charter.html.

[Iqb07] Iqbal, M., Nieves, M.: Service Strategy, Vol 1, ITIL Version 3, 276 pages, Publisher: Stationery
Office; Version 3 edition, Publisher: TSO, 2007, http://www.itil-itsm-world.com/servs.htm.

[ISO2K] ISO/IEC 20000, international standard for IT Service Management, http:// 20000.fwtk.org/.

[ISO9K] ISO 9001:2008 Quality management systems – Requirements. http://www.iso.org.

[ITIL] IT Infrastructure Library (ITIL), http://www.itil.co.uk., http://www.itil-itsm-world.com.

[ITSM] IT Service Management, The ITIL and ITSM Directory, http://www.itil-itsm-world.com.

[itSMF] The IT Service Management Forum, http://www.itsmfi.org.

[J2EE] Sun Microsystems, Java 2 Platform, Enterprise Edition (J2EE), http://java.sun.com/javaee.

[Jac09] Jackson, K.: The Dawning of the IT Automation Era, IT Business Edge, November 10, 2009,
http://www.itbusinessedge.com/cm/community/features/guestopinions/blog/the-dawning-of-the-it-
automation-era/?cs=37375.

[Jen97] K. Jensen: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use, Volumes 1-
3, Monographs in Theoretical Computer Science, Springer-Verlag, ISBN: 3-540-60943-1, 2nd corrected
printing, 1997.

[Jen98] Jensen, K.: An Introduction to the Practical Use of Coloured Petri Nets, In: W. Reisig and G.
Rozenberg (eds.): Lectures on Petri Nets II: Applications, Lecture Notes in Computer Science vol. 1492,
pages 237-292, Springer-Verlag 1998.

[Joch05] Jochum, C.: Intelligent IT Sourcing in the Financial Industry: Background, Preconditions and
Requirements of Future IT Organization Design, Chapter in: The Practical Real-Time Enterprise, Springer
Verlag Berlin Heidelberg, ISBN 9783540219958, http://www.springerlink.com/content/l83562nj48245026,
December 2005.

[Kaa95] Kaashoek, M.F., Engler, D.R., O’Toole, J.: Exokernel: An Operating System Architecture for
Application-Level Resource Management, Proceedings of the 15th SOSP, pages 251-266, December 1995.

[Kal90] Kalfa, W.: Betriebssysteme, 400 pages., Akademie Verlag, Berlin, 2. Auflage, 1990.

[Kell06] Keller, A., Diao, Y.: Quantifying the Complexity of IT Service Management Processes. DSOM
2006: 61-73.

[Kep03] Kephart, J., Chess, D.M.: The Vision of Autonomic Computing, IEEE Computer 36(1), 41-50,
2003. http://researchweb.watson.ibm.com/ autonomic.

[Kön04] König, R.: Resource Management for a Federated Resource Utility, Diploma (M.S.) Thesis, 95
pages, Chemnitz University of Technology with Hewlett-Packard Laboratories, Palo Alto, USA, January
2004.

[Kri00] U. Krishnaswamy and D. Scherson, A Framework for Computer Performance Evaluation using
Benchmark Sets, IEEE Transactions on Computers, vol. 49, no. 12, pp. 1325-1338, December 2000.

[Kri04] D. Krishnamurthy, Synthetic Workload Generation for Stress Testing Session-Based Systems, PhD
thesis, Dept. of Systems and Computer Eng., Carleton Univ., Ottawa, Canada, Jan. 2004.

[Kri06] D. Krishnamurthy, J. Rolia, and S. Majumdar, A Synthetic Workload Generation Technique for
Stress Testing of Session-based Systems, IEEE Transactions on Software Engineering, vol. 32, no. 11, pp.
868-882, November 2006.

 References

277

[Kri08] D. Krishnamurthy, J. Rolia, and M. Xu, WAM - The Weighted Average Method for Predicting the
Performance of Systems with Bursts of Customer Sessions, HP Labs Technical Report, HPL-2008-66.

[Lac07] Lacy, S, Macfarlane, I.: Service Transition, Vol 3, ITIL Version 3, 261 pages, Publisher:
Stationery Office; Version 3 edition, May 31, 2007, http://www.itil-itsm-world.com/servt.htm.

[Laz81] Lazowska, E.D., Levy, H.M., Almes, G.T., Fisher, M.J., Fowler, R.J., Vestal, S.C., The
Architecture of the Eden System, Proceedings of the 8th SOSP, pp.148-159, Pacific Crove, California, 1981.

[LDAP] IETF, Lightweight Directory Access Protocol (LDAP), RFC 1777,
http://tools.ietf.org/html/rfc1777.

[Ley01] Leymann, F.: Business Process Execution Language for Web Services (BPEL). Leymann, F.: Web
Services Flow Language (WSFL), 2001.

[Lie95] Liedtke, J.: On µ-Kernel Construction , Proceedings of the 15th SOSP, pages 237-250, December
1995.

[Liu05] Liu, X., Zhu, X., Singhal, S., Arlitt, M.: Adaptive Entitlement Control of Resource Containers on
Shared Servers, IFIP/IEEE International Symposium on Integrated Network Management (IM 2005), Nice,
France, May 2005.

[LSF] Platform, Inc., Load Sharing Facility LSF, http://www.platform.com/products/LSF.

[Maui] Maui Scheduler, http://www.supercluster.org/maui.

[MIB] IETF, Management Information Base (MIB), RFC 3418, http://tools.ietf.org/html/rfc3418.

[MOF] Microsoft Operations Framework (MOF), http://www.microsoft.com/MOF.

[MPI] Message Passing Interface, http://www.mcs.anl.gov/mpi.

[MU-WS] OASIS: Management Using Web Services (MUWS 1.0), Working Draft September 29 2004.

[N1] Sun Microsystems, The Sun N1 Grid Engine, http://wwws.sun.com/gridware.

[Nai04] Naik, V.K., Mohindra, A., Bantz, D.F.: An Architecture for the Coordination of System
Management Services, p. 78-95, IBM Systems Journal, Vol. 43, No. 1, 2004.

[NGOSS] NGOSS SLA Management Handbook, TeleManagement Forum (TMF), 2005.

[NOW95] Anderson, T.E., Culler, D.E., Patterson, D.A.: A Case for Networks of Workstations: NOW.
IEEE Micro, February 1995.

[OASIS] The Organization for the Advancement of Structured Information Standards (OASIS),
http://www.oasis-open.org.

[OCL] IBM, Object Constraint Language (OCL), http://www.ibm.com/software/awdtools/library/
standards/ocl.html.

[OGF] The Open Grid Forum (OGF), http://www.gridforum.org.

[OGSA] Foster, I., Kesselman, C., Nick, J., Tuecke, S., The Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration, 2002, http://www.globus.org/research/papers/ogsa.pdf.

[OGSI] Global Grid Forum: Open Grid Services Infrastructure (OGSI), v1.0, April 2003.

[OMG] Object Management Group (OMG), http://www.omg.org.

[OSA] The Parlay Group, Open Services Architecture (OSA), ETSI OSA Parlay 3.0 Specifications,
http://portal.etsi.org/docbox/TISPAN/Open/OSA/ParlayX30.html.

[OSF] Open Software Foundation (OSF), now OpenGroup, http:// www.opengroup.org.

[Pan01] Pande, Peter S.; Neuman, Robert P.; Cavanagh, Roland R.: The Six Sigma Way: How GE,
Motorola, and Other Top Companies are Honing Their Performance. New York: McGraw-Hill
Professional, 229 pages, ISBN 0071358064, 2001.

[Parlay] The Parlay Group, http://www.parlay.org.

[PARPol] PARLAY Policy Management, http://www.parlay.org/specs.

[Pat03] Patel, C., Janakiraman, J., Bash, C., Farkas, K., Graupner, S.: The Smart Data Center, Proceedings
of HP TechCon 2003, Keystone, Colorado, April 27-30, 2003.

References

278

[Pat03a] Patel, C., Sharma, R., Bash, C., Graupner, S.: Energy Aware Grid: Global Workload Placement
Based on Energy Efficiency, Int. Mechanical Engineering Congress and Exhibition (IMECE-2003),
Washington DC, Nov 16-21, 2003.

[PBS] Portable Batch System PBS, http://www.openpbs.com.

[Pegasus] The Open Group: OpenPegasus, http://www.openpegasus.org.

[Petr07] D. C. Petriu, C. M. Woodside, D. B. Petriu, J. Xu, T. Israr, G. Georg, R. France, J. M. Bieman, S.
H. Houmb, and J. Jurjens, Performance Analysis of Security Aspects in UML Models, Proceedings of the
6th ACM International Workshop on Software and Performance (WOSP07), pp 91-102, Buenos Aires,
February 2007.

[Petri62] Petri, C.A.: Kommunikation mit Automaten, Ph.D. Dissertation, University of Bonn, Germany
1962.

[Pett81] Petterson, J.L.: Petri Net Theory and the Modeling of Systems, Prentice-Hall, Englewood Cliffs,
1981.

[Pop85] Popek, G., Walker, B.J.: The LOCUS Distributed System Architecture, The MIT Press, Cambridge,
Mass., 1985.

[PRM-IT] The IBM Process Reference Model for IT (PRM-IT), http://www-
01.ibm.com/software/tivoli/governance/servicemanagement/welcome/process_reference.html.

[PVM] Parallel Virtual Machine (PVM), http://www.epm.ornl.gov/pvm.

[RAD] Novadigm, Inc.: Radia Configuration Management, 2004.

[Ram06] Ramshaw, L., Sahai, A., Saxe, J., Singhal, S.: Cauldron: A Policy-based Design Tool, 2006 IEEE
Workshop on Policies for Distributed Systems and Networks (Policy 2006). The University of Western
Ontario, Canada, June 5-7, 2006.

[Ram98] Raman, R., Livny, M., Solomon, M., MatchMaking: Distributed Resource Management for High
Throughput Computing, In the proceedings of HPDC 98.

[Rash86] Rashid, R.F.: Experiences with the Accent Network Operating System, in Miller, G., Blanc, R.P.
Networking in Open Systems, LNCS 248, pages 259-269, Springer, 1986.

[Rei79] M. Reiser, A Queuing Network Analysis of Computer Communication Networks with Window Flow
Control, IEEE Transactions on Communications, vol. 27, no. 8, pp. 1201-1209, August 1979.

[RFC 3703] IETF, Policy Core Lightweight Directory Access Protocol (LDAP) Schema, RFC 3703,
http://tools.ietf.org/html/rfc3703.

[RFC2608] IETF, Service Location Protocol, Version 2, RFC 2608, http://tools.ietf.org/html/rfc2608.

[RFC2753] IETF, A Framework for Policy-based Admission Control, RFC 2753,
http://tools.ietf.org/html/rfc2753.

[RFC3060] IETF, Policy Core Information Model, RFC 3060, http://tools.ietf.org/html/rfc3060.

[Rob04] Robison, S., Grids for the Enterprise, Grid.Middleware Spectra, 3rd Edition, Spring 2004.

[Rol95] Rolia, J., Sevcik, K.C.: The Method of Layers, IEEE Transactions on Software Engineering, vol.
21, no. 8, pp. 689-700, August 1995.

[Rol98] Rolia, J., Vetland, V.: Correlating Resource Demand Information with ARM Data for Application
Services, Proceedings of the ACM Workshop on Software and Performance (WOSP '98), pages 219-230,
Santa Fe, NM, USA, October 1998.

[Rol04] Rolia. J., Cherkasova, L., Arlitt, M., Andrzejak, A.: A Capacity Management Service for Resource
Pools. WOSP 2005: 229-237, 2005.

[Rol05] Rolia, J., et. al., Capacity Management for Adaptive Enterprise Resource Pools, HP TechCon 2005,
Phoenix, Arizona, March 20-23, 2005.

[Rol06] Rolia, J., Cherkasova, L., Arlitt, M., Machiraju, V.: Supporting Application QoS in Shared
Resource Pools, Communications of ACM, special issue on Self-managed Systems and Services Vol. 49,
Issue 3, pages 55-60, March 2006.

[Rol08] Rolia, J., Krishnamurthy, D., Xu, M., Graupner, S.: APE: An Automated Performance Engineering
Process for Software as a Service Environments, submitted to the Special Issue of IEEE Transactions on

 References

279

Software Engineering on Quantitative Evaluation of Computer Systems, HPL-2008-65, 37 pages, June 7,
2008.

[RSL] Globus, The Globus Resource Specification Language RSL v1.0, http://www.globus.org/gram/
rsl_spec1.html.

[Rud07] Rudd, C., Lloyd, V.: Service Design, Vol 2, ITIL Version 3, 334 pages, Publisher: Stationery
Office; Version 3 edition, May 31, 2007, http://www.itil-itsm-world.com/servd.htm.

[Sad06] Sadiq, W, Sadqi, S., Schulz, K.: Model Driven Distribution of Collaborative Processes, IEEE
International Conference on Services Computing (SCC 2006), Chicago, USA. Sep 2006.

[Sah03] Sahai, A., Graupner, S., Machiraju, V., van Moorsel, A.: Specifying and Monitoring Guarantees in
Commercial Grids through SLA, Thef 3rd IEEE/ACM International Symposium on Cluster Computing and
the Grid (CCGrid 2003), pp. 292-299, Tokyo, Japan, May 12-15, 2003.

[Sah04] Sahai, S. Singhal, V. Machiraju, R. Joshi: Automated Generation of Resource Configurations
through Policies, in IEEE 5th International Workshop on Policies for Distributed Systems and Networks
(Policy 2004), Yorktown Heights, NY, June 7-9, 2004.

[Sah04a] Akhil Sahai, Sharad Singhal, Rajeev Joshi, Vijay Machiraju: Automated Policy-Based Resource
Construction in Utility Environments, the 9th IEEE/IFIP Network Operations and Management Symposium
(NOMS 2004). COEX Convention Center, Seoul, Korea, 19-23 April, 2004.

[Sah05] Sahai, A., Goswami, K., Pruyne, J., Singhal, S., Potts, M., Sparkes, A., Polakowski, K., Machiraju,
V., Graupner, S.: Virtual Desktop Initiative: Desktops as Services in a Utility Computing Environment,
HPL-2005-219, Dec 2005.

[Sah06] Sahai, A., Goswami, K., Blaho, B., Smith, M., Graupner, S., Hochmuth, R., Young, D., Sarni, D.:
Virtual Desktop System: Consolidating Enterprise User Desktops, paper at HP TechCon 2006, Los Angeles,
California, April 2-5, 2006.

[San04] Santos, A. Sahai, X. Zhu, V. Machiraju, S. Singhal: Policy-based Resource Assignment in Utility
Computing Environments, the 15th IFIP/IEEE International Workshop on Distributed Systems: Operations
and Management (DSOM 2004), Davis, CA, USA, November 15-17, 2004.

[San05] Santos, C., et. al.: RAMP-A Solver for Automated Resource Assignment in Computing Utilities, HP
TechCon 2005.

[SAP08] SAP Business by Design, http://www.sap.com/solutions/sme/businessbydesign/index.epx.

[Sauv06] Sauve, J. P., Marques, F. T., Moura, J.A.B., Sampaio, M.C., Jornada, J., Radziuk, E.: Business-
Oriented Capacity Planning of IT Infrastructure to Handle Load Surges. In: IEEE/IFIP Network
Operations & Management Symposium - NOMS 2006, 2006, Vancouver. Proceedings of 10th IEEE/IFIP
Network Operations & Management Symposium. Vancouver : IEEE, v. 10. p. 1-4., 2006.

[Sauv07] Sauve, J. P., Santos, R. A., Almeida, R. R., Moura, J.A.B.: On the Risk Exposure and Priority
Determination of Changes in IT Service Management, In: The 18th IFIP/IEEE International Workshop on
Distributed Systems: Operations and Management, DSOM 2007, 2007, San José, United States. Large
Scale Management of Distributed Systems, Springer Verlag Berlin Heidelberg, 2007.

[Sauv09] Sauve, J. P., Moura, J.A.B., Marques, F. T.: Business-Driven Design of Infrastructures for IT
Services, Journal of Network and Systems Management, Vol. 17, No. 4,
http://www.springerlink.com/content/h271580kq8413443, December 2009.

[Scha07] Schaaf, T.: Frameworks for Business-driven Service Level Management, Second IEEE/IFIP
International Workshop on Business-driven IT Management (BDIM 2007) in conjunction with IM 2007,
Munich, Germany, May 21, 2007.

[Sche04] Scheer, A.W., Abolhassan, F., Jost, W., Kirchmer, M. (Eds.): Business Process Automation,
ISBN 3540207945, Springer Verlag, 2004.

[Sche06] Scheer, A.W.: Business Process Design, Springer; 3 Edition, September 22, 2006.

[Schie01] Schiesser, R.: IT Systems Management: Designing, Implementing, and Managing World-Class
Infrastructures, 528 p., ISBN 0-1308-7678-X, Prentice Hall, December 2001.

[Schie02] Schiesser, Rich: IT Systems Management, Prentice Hall, 2002.

[Schie04] Schiesser, Rich: IT Management Reference Guide: Capacity Planning – Part One: Why It is
Seldom Done Well, http://www.informit.com/guides/content.aspx?g=it_management&seqNum=34.

References

280

[SF04] The SmartFrog Reference Manual – A Guide to Programming with the SmartFrog Framework, July
2004, http://www.smartfrog.org.

[Silb02] Silberschatz, A., Galvin, P.B., Gagne, G., Operating System Concepts, 6th Edition, 976 p., ISBN
0-4712-5060-0, John Wiley & Sons, March 2002.

[Sing04] Singhal, S., Graupner, S., Sahai, A., Machiraju, V., Pruyne, J., Zhu, X., Rolia, J., Arlitt, M.,
Santos, C., Beyer, D., Ward, J.: Quartermaster - A Resource Utility, HP TechCon 2004, Orlando, Florida,
June 20-23, 2004, also appeared as HPL-2004-152, Sep 9, 2004.

[Sing05] Singhal, S., Graupner, S., Sahai, A., Machiraju, V.: Quartermaster – A Resource Utility System,
IM 2005, Nice, France, May 15-19, 2005.

[Slo01] Sloman, M., Damianou, N., Dulay, N., Lupu, E., The Ponder Policy Specification Language, pages
18-38, POLICY 2001.

[Slo93] Sloman, M.J., Policy Conflict Analysis in Distributed Systems, In the proceedings of Journal of
Organizational Computing, 1993.

[Slo94] Sloman, M.: Network and Distributed Systems Management, 666 p., Addison Wesley, June 1994.

[Smith04] Smith, B.F., Kreitz, J., Wilson, M.M.: Autonomic IMS and IMS Tools, The Mainstream, The
IBM eServer zSeries and S/390 Software Newsletter, Issue 8, April 12, 2004.

[Smith90] C.U. Smith, Performance Engineering of Software Systems, Addison-Wesley, 1990.

[SML] SML: The Service Modeling Language Specification, v0.5, Draft Specification, July 2006.
http://go.microsoft.com/fwlink/?LinkId=70293.

[Sne02] Snevely, R.: Enterprise Data Center Design and Methodology, Sun Blueprint Series, 224 pages,
ISBN 0-1304-7393-6, Prentice Hall, January 2002.

[SNIA] Storage Networking Industry Association (SNIA), http://www.snia.org.

[SNIA-OM] The Open Group: SNIA CIM Object Manager, http://www.opengroup.org/snia-cimom.

[SNMP] IETF, Simple Network Management Protocol (SNMP), RFC 1157,
http://tools.ietf.org/html/rfc1157.

[Spa07] Spalding, G.: Continual Service Improvement, Vol 5, ITIL Version 3, 221 pages, Publisher:
Stationery Office; Version 3 edition, May 31, 2007, http://www.itil-itsm-world.com/cserv.htm.

[Stal04] Stallings, W.: Operating Systems (5th Edition), 832 p., ISBN 0-1314-7954-7, Prentice Hall, July
2004.

[Stew07] C. Stewart, T. Kelly, and A. Zhang, Exploiting non-Stationarity for Performance Prediction,
Proceedings of the EuroSys Conference, pp. 31-34, Lisbon, Portugal, March 2007.

[Stra03] Strassner, J.: Policy-Based Network Management: Solutions for the Next Generation, The Morgan
Kaufmann Series in Networking, 2003.

[Sun99] X. Sun, Estimating Resource Demands for Application Services, M. Sc. Thesis, Department of
Systems and Computer Engineering, Carleton University, Ottawa, Canada, 1999.

[Tan91] Tanenbaum, A.S., Kaashoek, M.F., Renesse, R. van, Bal, H.: The Amoeba Distributed Operating
System, Computer Communications, Vol. 14, pp. 324-335, July/August 1991.

[Tan94] Tanenbaum, A.S.: Distributed Operating Systems, 648 pages, Prentice Hall, 1994.

[Tan01] Tanenbaum, A.S.: Modern Operating Systems (2nd Edition), 976 p., ISBN 0-1303-1358-0, Prentice
Hall, February 2001.

[Thom05] Thompson, C., Coleman, D.: Model Based Automation and Management for the Adaptive
Enterprise, 12th Annual Workshop of HP OpenView University Association, Porto, Portugal, July 10-13,
2005.

[Tiw06] N. Tiwari and P. Mynampati, Experiences of using LQN and QPN tools for performance modeling
of a J2EE application, International Computer Measurement Group (CMG) Conference, pp. 537-548, 2006.

[TMF] TeleManagement Forum (TMF), http://www.tmforum.org.

[TOM] TM Forum (TMF), Telecom Operations Map (TOM), http://www.tmforum.org.

[TQ04] TeamQuest Corp.: Capacity Planning Discipline for Data Center Decisions,
http://www.teamquest.com/pdfs/whitepaper/tqeb01.pdf, 2004.

 References

281

[UDC] Hewlett-Packard, The Utility Data Center, Hewlett-Packard, http://www.hp.com/go/udc.

[Ver01] Verma, D., Beigi, M., Jennings, R., Policy-based SLA Management in Enterprise Networks,
Workshop on Policy, POLICY 2001.

[Vetl93] V. Vetland, Measurement-based composite computational work modeling of software, Ph.D.
Thesis, University of Trondheim, August 1993.

[Vos99] Vose, M.D.: The Simple Genetic Algorithm: Foundations and Theory, MIT Press, Cambridge, MA,
1999.

[Wang05] Wang, Z., Zhu, X., Singhal, S.: Utilization and SLO-Based Control for Dynamic Sizing of
Resource Partitions, Distributed Systems: Operations and Management Workshop (DSOM 2005),
Barcelona, Spain, October 24-26, 2005.

[WBEM] DMTF, Web-Based Enterprise Management (WBEM), http://www.dmtf.org/standards/wbem.

[Wels03] Welsh, M., Culler, D.: Adaptive Overload Control for Busy Internet Servers, 4th USENIX
Symposium on Internet Technologies and Systems (USITS 2003), Seattle, March 2003.

[Wes07] Weske, M.: Business Process Management: Concepts, Languages, Architectures, 368 pages,
ISBN 978-3-540-73521-2, Springer Verlag, 2007.

[Wett93] Wettstein, H.: Systemarchitektur, Hanser Studienbücherei der Informatik, Carl Hanser Verlag,
MünchenWien, 1993.

[Wood95] M. Woodside, J. E. Nielsen, D. C. Petriu, and S. Majumdar, The stochastic rendezvous network
model for performance of synchronous client-server-like distributed software, IEEE Transactions on
Computers, vol. 44, no. 1, pp, 20-34, January 1995.

[WS-DM] OASIS: Web Services Distributed Management (WSDM), http://www.oasis-open.org/specs,
Working Draft September 29 2004.

[WS-MAN] Web Services for Management (WS-Management), v1.0, April 2006,
http://www.dmtf.org/standards/wsman.

[WS-Pol] OASIS, WS-Policy WG, http://www.oasis-open.org.

[WS-RF] OASIS TC and Global Grid Forum, The Web Services Resource Framework (WSRF), April 2004,
http://www.globus.org/wsrf.

[xmlCIM] Distributed Management Task Force: WBEM: CIM-XML,
http://www.dmtf.org/standards/wbem/CIM-XML.

[Xu06] Xu, W., Zhu, X., Singhal, S., Wang, Z.: Predictive Control for Dynamic Resource Allocation in
Enterprise Data Centers, 2006 IEEE/IFIP Network Operations and Management Symposium (NOMS
2006), Vancouver, Canada, April 3-7, 2006.

[Zhang07] Q. Zhang, L. Cherkasova, and E. Smirni, A regression-based analytic model for dynamic
resource provisioning of multi-tier applications, 4th International Conference on Autonomic Computing,
pp. 27-27, June 2007.

[Zhu01] Zhu, X., Singhal, S.: Optimal Resource Assignment in Internet Data Centers, 9th International
Workshop on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS 2001), Cincinnati, August 15-18, 2001.

[Zhu03] Zhu, X., Santos, C., Ward, J., Beyer, D., Singhal, S.: Resource Assignment for Large Scale
Computing Utilities, HP Labs Technical Report, HPL-2003-243, 2003.

[Zhu04] Zhu, X., Santos, C., Beyer, D., Singhal, S., Extension of the Resource Assignment Problem:
Assigning Multiple Application Components to a Single Server in a Generalized LAN Tree Topology, HP
Labs Technical Report, HPL-2004-42, 2004, http://www.hpl.hp.com/techreports/2004/HPL-2004-142.html.

[Zhu08] Zhu. X., Young, D., Watson, B., Wang, Z., Rolia, J., Singhal, S., McKee, B., Hyser, C., Gmach,
D., Gardner, R., Christian, T., Cherkasova, L.: 1000 Islands: Integrated Capacity and Workload
Management for the Next Generation Data Center, HP Labs (internal) Technical Report, HPL-2008-3,
2008, Proceedings of the 5th IEEE International Conference on Autonomic Computing (ICAC'08), July 2 -
6, 2008, Chicago, IL, USA.

References

282

 List of Figures

283

List of Figures

Figure 1: Categorization of Operating System concepts... 17
Figure 2: Categorization of IT Management concepts.. 33
Figure 3: Scope of the Data Center Infrastructure Operating System (DCI-OS).............. 40
Figure 4: Control racks of the Utility Data Center (HP Labs, Palo Alto, Nov 2004). 56
Figure 5: Programmable resources as basis for the Utility Data Center (UDC). 57
Figure 6: Resource Farm as abstraction for a configured resource set. 57
Figure 7: Architecture of a Data Center Infrastructure Operating System (DCI-OS). 80
Figure 8: Discussion of research in context of the layers of the DCI-OS architecture. 95
Figure 9: The Planning and Design Layer. ... 109
Figure 10: The Model Information Flow (MIF).. 117
Figure 11 Models contributing to business object mix M... 118
Figure 12: Benchmark performance models for infrastructure alternatives. 120
Figure 13: LQM for C-TPC-W System. ... 122
Figure 14: LQM for H-TPC-W System. ... 123
Figure 15: Using 100 benchmarks to synthesize TPC-W business object mixes. 124
Figure 16: Synthesized mixes for 10 business object mixes... 125
Figure 17: Example of Sales and Distribution (SD) process from SAP. 128
Figure 18: Supplementing demands for the SD process. .. 128
Figure 19: Automation process of deriving grounded models.. 130
Figure 20: LQM results. .. 131
Figure 21: The LQM results as spread sheet... 132
Figure 22: Resource Topology Designer prototype with Resource Topology................ 133
Figure 23: Product-level Resource Topology Designer used in the UDC. 134
Figure 24: Automating the Resource Topology lifecycle. .. 137
Figure 25: Conceptual model for resource construction. .. 140
Figure 26: Elements of construction policy. ... 141
Figure 27: Resource construction process... 142
Figure 28: Example of a composition policy for a server resource. 143
Figure 29: Capability-based component selection. ... 146
Figure 30: Hardware and software partition overlays for a server resource. 147
Figure 31: Example for policy for hardware and software partitions in a server............ 148

List of Figures

284

Figure 32: Example for multi-function and polymorphic resources. 149
Figure 33: Example for class-of-service based resource selection. 151
Figure 34: Example of Managed Object Format (MOF). ... 152
Figure 35: Example of a constraint expression added to a class. 153
Figure 36: Policy engine as part of the automation tool chain.. 153
Figure 37: Infrastructure Services Layer with run-time support system......................... 157
Figure 38: Overview of the Task Automation Controller. .. 163
Figure 39: Basic workflow patterns as Petri Nets. .. 167
Figure 40: Simple lifecycle models for a server expressed as Petri Nets. 167
Figure 41: Expansion of a transition into a transition state... 169
Figure 42: Desired state model before and after firing transition t1,2.............................. 170
Figure 43: Observed state model with connector places... 171
Figure 44: Linkage between initiating change and observing it. 172
Figure 45: Extended observed state model with error correction. 172
Figure 46: Composition of Task Automation Controllers .. 173
Figure 47: Integration of the Radia Deployment Manager into the DCI-OS.................. 179
Figure 48: Externally shared integration model for the Radia Deployment Manager. ... 180
Figure 49: CIM representation of the integration model as used in the DCI-OS............ 181
Figure 50: Control loop for server resource flexing.. 184
Figure 51: Component view of control loop. .. 186
Figure 52: State diagram for server flex operations.. 187
Figure 53: Interaction diagrams for server flex operations. .. 189
Figure 54: Effects of flexing on workload. ... 190
Figure 55: The DCI-OS Layer. ... 193
Figure 56: Model of Core Policy IETF Policy [RFC3060]... 199
Figure 57: UML diagram of the CIM Meta-model. .. 205
Figure 58: Example of a MOF description in the Common Information Model. 207
Figure 59: First-class entities of the DCI-OS Information Model. 208
Figure 60: Top-level relationships among first-class entities. .. 210
Figure 61: Refinement of relationships among first-class entities. 211
Figure 62: Relationships between actor, activity, and role. .. 213
Figure 63: Relationship entity. .. 214
Figure 64: Context entity containing other entities or entity references. 214
Figure 65: Views as transformations of entity properties and interfaces. 216
Figure 66: Policy entity with policy representation. ... 217
Figure 67: Resource entity and associated resource in a resource pool. 218
Figure 68: Classification of complex resource constructions. .. 220
Figure 69: Architecture of the Resource Pool Manager.. 224

 List of Figures

285

Figure 70: Resource Request Workflow. .. 225
Figure 71: Refined Use-state of the resource request workflow..................................... 229
Figure 72: Resource request for a Resource Topology with external dependencies. 233
Figure 73: Time model for the resource profile. ... 237
Figure 74: Capacity profiles of ground resources. .. 239
Figure 75: Resource demand profiles.. 240
Figure 76: Data structures of the allocation calendar.. 241
Figure 77: Relationships between capacity and demand profiles. 242
Figure 78: Flow of resource request through the allocation system. 243
Figure 79: Detailed flow of resource request validation step from Figure 77. 244
Figure 80: Resource assignment process using an optimizer.. 246
Figure 81: Interaction between management system and managed component. 247
Figure 82: Comparison between SNMP and CIM/WBEM-based management............. 250
Figure 83: Management environment based on CIM and WBEM. 250
Figure 84: OGSI component design and basic control flow. .. 253

List of Tables

286

List of Tables

Table 1: Generalized operating system concepts in the structural dimension. 24
Table 2: Generalized operating system concepts in the functional dimension. 25
Table 3: Generalized operating system concepts in the organizational dimension........... 27
Table 4: Generalized IT Management concepts in the structural dimension.................... 45
Table 5: Generalized IT Management concepts in the functional dimension................... 48
Table 6: Generalized IT Management concepts in the organizational dimension. 54
Table 7: DCI-OS requirements supporting data center management. 70
Table 8: DCI-OS requirements supporting the management of infrastructure services. .. 77
Table 9: First-class entities as conceptual basis of the DCI-OS Information Model. 209
Table 10: Examples of actors and related activities. ... 212
Table 11: Resource classification in resource atoms and resource constructions........... 219
Table 12: Example of two resource views on the same ground resource. 231
Table 13: Two resource constructions on the same set of ground resources. 231
Table 14: Quantity model for the resource profile. ... 239
Table 15: Basic WBEM operations... 251

