
INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelorarbeit

Parallel Execution
of RSA Encryption

on the GPU of the RPi

Emma Munisamy

INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelorarbeit

Parallel Execution
of RSA Encryption

on the GPU of the RPi

Emma Munisamy

Aufgabensteller: Prof. Dr. Dieter Kranzlmüller

Betreuer: Jan Schmidt
Tobias Guggemos

Abgabetermin: 5. Dezember 2019

Hiermit versichere ich, dass ich die vorliegende Bachelorarbeit selbständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

München, den 5. Dezember 2019

. .
(Emma Munisamy)

Abstract

The Raspberry Pi is a 2012 published single-board computer purposed for private usage. It
includes a VideoCore IV graphics card. In the case that it is used headless the potential
performance of the GPU remains unused. This work uses this capacity for parallel execution
of the cryptographic algorithm RSA. RSA is an asymmetric encryption system based on the
mathematical difficulty in factoring very big integers in finite time. The most important
part of the algorithm is an efficient implementation of modular exponentiation. During this
work, different possibilities are developed how modular exponentiation for RSA could be
performed on the VideoCore IV. One of these possibilities was implemented using modular
exponentiation partly processed parallel on the GPU of the Raspberry Pi B+, using the open
source c++ library QPULib for programming the VideoCore IV processing units, the QPUs.
Although the GPU implementation doesn’t accelerate RSA, this work is a first step of how
the RSA execution can be executed on the VideoCore IV, and what difficulties complicate
the realization. Additionally the developed GPU executed RSA was integrated to OpenSSL.

vii

Contents

1 Introduction 1

2 Background 3
2.1 The RSA Cryptosystem . 3

2.1.1 Public Cryptosystems . 3

2.1.2 The RSA Algorithm . 5

2.1.3 Mathematical Background . 7

2.2 Multiprecision Arithmetic . 9

2.3 Modular Exponentiation . 9

2.3.1 Residue Multiplication . 10

2.3.2 Exponentiation by Squaring . 10

2.3.3 Montgomery Algorithm . 11

2.3.4 Montgomery Algorithm for Multiprecision Integers 14

2.4 The Raspberry Pi . 16

2.4.1 General Architecture . 18

2.4.2 The VideoCore IV GPU . 18

2.4.3 The QPULib . 20

2.5 Related work . 24

2.6 Summary . 25

3 Parallel RSA Algorithm 27
3.1 Sequential Algorithm . 27

3.2 Approaches For Parallelization . 28

3.2.1 Types of Parallelization options . 29

3.2.2 Parallelization Options for the sequential Algorithm 30

3.3 Parallelization Techniques with regard on the Limitations of the GPU and
QPULib . 33

3.3.1 Limitations . 33

3.3.2 Parallelization possibilities with the QPULib 34

3.4 Parallel Algorithm . 35

4 Implementation of RSA 37
4.1 Implementation on the CPU . 37

4.1.1 Input . 37

4.1.2 Preprocessing . 37

4.1.3 Transformation into Montgomery form 39

4.1.4 Preparation of the data for processing with the QPULib 39

4.1.5 Exponentiation by Squaring . 43

4.1.6 Transformation out of Montgomery form 44

ix

Contents

4.2 Implementation on the GPU . 45
4.2.1 Montgomery Multiplication . 45
4.2.2 Multiprecision Multiplication . 49
4.2.3 Multiplication . 49
4.2.4 Multiprecision Comparison . 50

4.3 Difficulties of the RSA Implementation . 51

5 Evaluation 53
5.1 OpenSSL Engine . 53
5.2 Testsetup . 54
5.3 Results . 55

6 Conclusion 59

Appendix 61

List of Figures 73

Bibliography 75

x

1 Introduction

The Raspberry Pi is a single board computer, which has a relatively weak performance, but
is still very often used because of its low price and power consumption. Mostly it is used
for pure computing power without a screen. All calculations are done by the CPU, while
the GPU only consumes power and is not used. Thus the resources of the Raspberry Pi
are anything but evenly utilized. At the same time, the security of digital data is becoming
increasingly important. Many calculated results are cryptographically encrypted before they
are transferred to another system. This means an additional load for the CPU, on top of the
actual calculation. These two considerations led to the idea to try to offload cryptographic
calculations on the Raspberry to its GPU. Since RSA is still used very often even though it
is a complex computation and because it requires a lot of CPU computing capacity due to
this complex computation, in the course of this work an attempt is made to execute parts of
the RSA encryption on the GPU. This way the usage of the Raspberry Pi resources should
become better distributed.

Furthermore the GPU of the Raspberry Pi, the VideoCore IV by Broadcom, has a really
large computational power. Due to its Single-Instruction-Multiple-Data architecture, it can
process more operations in parallel which leads to a theoretically better throughput than
the CPU possesses. Because of this maybe an even shorter execution time of RSA can
be achieved by executing it on the GPU. To ensure the security of the RSA encryption,
increasingly larger numbers are used for it. Since these numbers are sometimes a hundred
times larger than the machine word of a personal computer, multiprecision operations are
required. They lead to really long execution time of the RSA cryposystem compared to
other encrypting algorithms. That’s why it is even more desirable to shorten the execution
time by using the GPU.

In this work it is investigated whether it is possible to offload parts of the RSA encryption
to the GPU. Besides, it might be possible to draw a conclusion whether the execution of other
cryptographic algorithms is also possible, and if so, for which one the greatest advantages
could be expected. Possible advantages, that are also intended for RSA, would be a relief of
the CPU and perhaps even an acceleration of the algorithm’s computing process.

For this purpose several approaches of GPU executed RSA are developed. They are
differing in the parts of RSA that are executed on the GPU and additionally how the SIMD
property of the GPU is effectively used. One of these approaches is successfully implemented
on the VideoCore IV and tested in comparison to a pure CPU executed RSA algorithm.
Although the results speak against an advantage of the implementation, the analysis of the
implementation serves for determining the advantages and disadvantages of the VideoCore
IV. The result does not speak against general purpose programming of the GPU in general,
but shows that some algorithms for explainable reasons are not well suited for execution on
the VideoCore IV.

In this way, this work serves as a fundament to either implement another of the developed
GPU executed possibilities of RSA, whereby the found bottlenecks can now be avoided. Or
to use the results for a good choice, where other cryptographic algorithms could be offloaded

1

1 Introduction

to the VideoCore IV with better prospects, and to implement them successfully.

Structure

Now that the motivation and contents of this work have been explained, a detailed introduc-
tion into the mechanism of RSA and the principles used to calculate the required modular
exponentiation follows. This is followed by an overview of the Raspberry Pi and its GPU,
the VideoCore IV. In addition, the QPULib, the library used to program the VideoCore IV
with C++ code is introduced.

The next part of the thesis is the design of an RSA encryption algorithm, which can be
partly calculated on the GPU and uses the possibility of processing multiple data in parallel.

Once an algorithm was found that can be implemented on the Raspberry Pi, it was imple-
mented using the QPULib. This is described in chapter 4 with all interesting implementation
details and VideoCore IV specific features.

Finally, the partial GPU-executed RSA implementation was tested and compared to the
full CPU-executed RSA implementation of OpenSSL. Therefore an OpenSSL engine was
built, which enables RSA encryption on the Raspberry Pi’s GPU through OpenSSL. The
results are presented and discussed in chapter 5.

2

2 Background

In this chapter the background and basic principles used in the developed RSA implemen-
tation are explained.

At the beginning the cryptosystem RSA and its functionality is introduced. The basis
of RSA encryption and decryption is the modular exponentiation on very large numbers.
These will be 1024 bits large for our implementation, since RSA is only considered safe from
attacks starting at this number size.

Therefore a short insight into the computer calculation of numbers is given, which are too
large to fit into a machine word, so-called multiprecision integers.

This is followed by an introduction on how modular exponentiation can be implemented
efficiently and applied to multiprecision integers.

In addition to the RSA Cryptosystems and its implementation approaches, also the hard-
ware of the Raspberry Pis belongs to the background of this work. Therefore the Raspberry
Pi with its GPU, the VideoCore IV in focus, is introduced in this chapter as well. The tool
used for the GPU’s programming, the QPULib, is also explained.

And finally some papers are presented, which are closely related to the topic of this work
and have also served as a background for this work and could be helpful for similar works.

2.1 The RSA Cryptosystem

RSA is a public cryptosystem invented by R. L. Rivest, A. Shamir and L. Adleman in 1978
[RSA78]. It’s benefit is that it can be used for encryption without requiring secure connec-
tions for key exchange. That’s the reason why, although it takes a relatively long execution
time, it is still used widely, often to transmit a symmetric key between two communication
partners over an insecure channel to enable symmetric encryption after that. In addition, it
is used for authentication with signatures.

The security of the RSA procedure is based on the factorization problem. But due to the
increasingly powerful computers, larger and larger numbers have to be used for the procedure
to be still secure. A public key of the length 768 bits has already been cracked [KAF+10].
This is why this work will develop a RSA 1024-bit implementation, which is still considered
as secure.

In the following, first the general mechanism of public cryptosystems is explained, then
the RSA cryptosystem is explained in detail.

2.1.1 Public Cryptosystems

The concept of public (or asymmetric) encryption was published in 1976 by W. Diffie and
M. Hellman [BSW15]. It is based on the principle, that different keys are used for encryption
and decryption. By this way one key can be published without increasing insecurity. During
public cryptosystems the sender and the receiver do not have the same (symmetric) key,

3

2 Background
	

m	

dAlice	 dBob	

eBob	

fe(m,eBob)	 fd(c,dBob)	=	m	

dBob	

c	

Figure 2.1: Encryption with a public cryptosystem
	

m	

dAlice	

dBob	

eAlice	

fe(m,dAlice)	 fd(c,eAlice)	=	m	

dAlice	

c	

Figure 2.2: Using a public cryptosystem for signatures

which would have to be exchanged via a secure channel, but different keys that complement
each other[BSW15].

In the following, the procedure of asymmetric encryption is described with Alice and Bob,
who want to communicate over a public channel safely with each other using a secure public
cryptosystem (see figure 2.1). For this all communication participants have a matching key
pair consisting from a private key d and a public key e. The public key e is public to all
communication participants, e.g. in something like a telephone book, while the private (or
secret) key d is known only by the owner. Now if Alice wants to send a secret message to
Bob, she searches something like a public telephone book for Bob’s public key eBob. She
encrypts her message m with f e(m, eBob) = c and sends the resulting cipher c to Bob. The
channel used for this does not have to be secure because c is encrypted and can only we
decrypted with the matching key dBob. As soon as Bob receives the cipher c, he can decrypt
and read it with the function fd(c, dBob) = m. If Bob wants to send something to Alice, he
does the same, but instead of eBob he chooses the public key eAlice from the phone book and
Alice uses her own private key dAlice to decrypt it [BSW15].

In addition to sending messages securely an asymmetric encryption method can be used
for authentication with signatures (see figure 2.2) [Buc01]. If Alice wants to show that a
message originates from her, in other words she wants to sign this message, she proceeds
as follows. She encrypts the message with her private key dAlice. f e(m, dAlice) = c. Each
communication participant can now check the message by decrypting c with Alice public
key. fd(c, eAlice) = m. If m makes sense, it has been encrypted with Alice’s secret key and
cannot come from anyone else but her [Buc01].

By using both introduced methods a message can be signed and send securely (see figure
2.3).

4

2.1 The RSA Cryptosystem
	

m	

dAlice	 dBob	

eAlice	

fe(fe(m,dAlice),eBob)	 fd(fd(c,eAlice),	dBob)	=	m	

dAlice	

c	

eBob	

dBob	

Figure 2.3: Using a public cryptosystem for signing and encrypting a message

2.1.2 The RSA Algorithm

RSA is a public cryptosystem working as explained in the former chapter. Now it will be
explained how the public and private keys used for RSA look exactly like. And how the
encryption and decryption functions are defined for RSA. Therefore this section is divided
into 3 parts:

• RSA key generation

• RSA encryption f e and RSA decryption fd

Further it shall be mentioned that here only schoolbook RSA is explained. This means
that the basic mathematical functions of RSA are explained without padding the message
before encryption. Consequently, the resulting cipher will not be safe from attacks, because
every encryption of the same message will result in exactly the same cipher. To prevent
this, the message to be encrypted would have to be padded before real use, so that the
same messages will result in different ciphers. The default padding method is RSAES-
OAEP [rfc]. However, since this is a separate procedure, it does not belong to the RSA
algorithm, although it must be used to make RSA encryption really secure. At this point it
is already mentioned beforehand that this work implements textbook RSA without padding.
The preceding padding of the message can then be done manually by the user before the
encryption.

Key Generation

The public and private keys for the public RSA cryptosystem are consisting of two numbers.
The public key is defined as (e, n) and the private key is a tuple of (d, n), where N is the
same in both keys in a matching key pair. Now e will not stand for the whole RSA pubic
key anymore but for one part of the public key tuple, the encryption exponent. The same
for the number d that now only stands for the decryption exponent as part of the private
key. n will further also be called module. During the key generation the matching key pair
is extracted. The two keys are generated depending on two prime numbers p, q. This is
done in these two steps:

• Calculating n and φ(n)

• Calculating the exponents e and d

They are explained in the next two paragraphs.

5

2 Background

Calculating n and φ(n): To calculate n select p and q, two prime numbers [NW15]. These
must be kept secret, since the key pair, including the private key d, can be reconstructed
from them. The primes p and q must be of large size to ensure the security of the RSA
procedure. They are selected via a random number generator in combination with a prime
number test for example the Miller Rabin procedure.

From p and q n is calculated: n = p ∗ q. n is already one part of the public and private
keys. For 1024-bit RSA n has to be 1024 bits long. Due to the factorization problem, it is
not possible to deduce p and q from n if n is that large.

As a last step φ(n) is calculated. φ(n) = (p− 1) ∗ (q − 1)

Calculating the exponents e and d: Now from φ(n) the numbers e and d are calculated
[Tit00]. First, the encryption exponent e is selected. e must satisfy 1 < e < φ(n). Usually,
e is chosen so that it’s binary representation has a low number of the digit 1. In general,
the number 65537 is recommended. The public key (e, n) includes the encryption exponent
e and the module n. An OpenSSL RSA public key looks like shown in listing 2.1.

1 RSAPublicKey ::= SEQUENCE {

2 modulus INTEGER , -- n

3 publicExponent INTEGER -- e

4 }

Listing 2.1: Components of a public key [rfc]

Then the decryption exponent d is calculated. The following must be considered: d ∈ N ,
d > 1, gcd(d, φ(n)) = 1 and e∗d ≡ 1 (mod φ(n)) what in other words means e∗d+k∗φ(n) = 1
for some k. At this point it is to be pointed out, that beside n also d can reach a length of
up to 1024 bits.

With the advanced Euclidean algorithm d can be calculated from e and φ(n). Why this
works exactly is explained in section 2.1.3. Listing 2.2 shows what is included in the private
key of OpenSSL. If any one of the values, except n and e, gets published, the private key is
not secure anymore.

1 RSAPrivateKey ::= SEQUENCE {

2 version Version ,

3 modulus INTEGER , -- n

4 publicExponent INTEGER , -- e

5 privateExponent INTEGER , -- d

6 prime1 INTEGER , -- p

7 prime2 INTEGER , -- q

8 exponent1 INTEGER , -- d mod (p-1)

9 exponent2 INTEGER , -- d mod (q-1)

10 coefficient INTEGER , -- (inverse of q) mod p

11 otherPrimeInfos OtherPrimeInfos OPTIONAL

12 }

Listing 2.2: Components of a private key [rfc]

6

2.1 The RSA Cryptosystem

Encryption and Decryption

Now the RSA Encryption and Decryption functions are explained. They will be imple-
mented during this work using OpenSSL standard RSA keys, so no key generation has to be
implemented.

The Encryption is performed calculating the function f e(m) = me mod n = c [ZG15].

In order to encrypt a message, it must first be converted into a number. For example the
ASCII encoding or base64 encoding can be used for this or a 1024 bits long message is just
read as a 1024 bits long number from its binary representation. As a more basic example
several characters can be combined before they are sent. Instead of sending ’HI’ as m1 = 72
and m2 = 73, the 7273 can be sent as m at one time. In this case, encryption and decryption
must be coordinated. Please note that the number m must be smaller than the module n.

Decryption is performed using the function fd(c) = cd mod n = (me mod n)d mod n =
m [NW15]. Because c and d are inverse in the multiplicative group modulo n, (me)d

mod n = m1 mod n = m as explained in the mathematical background in section 2.1.3.
Here as well c is smaller than n

2.1.3 Mathematical Background

As can be seen in the encryption and decryption functions RSA encryption works entirely
through modular exponentiation and as already mentioned it is based on the factorization
problem. For this reason this chapter tries to give a short overview over the mathematical
principles that RSA is based on. This chapter is not necessary for the implementation of
RSA, but explains why RSA encryption works. The exact procedure of key generation and
encryption of RSA in chapter 2.1.2 is enough to understand the GPU RSA implementation.

First a short explanation of the Factorization Problem is given that ensures the security
of RSA. The encryption and decryption of RSA with different keys is only possible because
e and d are both inverse elements of the multiplicative group of number with the module n.
Why their modular exponentiation on a number after each other results again in the original
number is explained afterwards.

Integer Factorization Problem

Factoring a number means splitting the number into its prime factors. Example: 56 =
2 ∗ 2 ∗ 2 ∗ 7

Compared to multiplying the prime factors, the decomposition takes a very long time
[Wag13]. This is a so-called one-way function, since one direction, the multiplication, can be
performed very quickly, but the other one, the decomposition into it’s prime factors, takes
a very long time.

For the use of RSA only the product n = p ∗ q is published. Even with the randomly
selected public exponent e, it is not possible to calculate the prime numbers p and q, which
could be used to calculate the private key d and decode the cipher, from n. The factorization
of n into p and q cannot be solved in finite time for large[Wag13]. Until today it isn’t proven,
that there isn’t a more efficient algorithm for factoring numbers in polynomial time. If it
would be found, the factorization problem would be solved and RSA would not be secure
anymore.

The security of RSA thus depend on whether the modulo n is so large that it cannot be
broken down into its prime factors in finite time. Even though increasing calculation power

7

2 Background

of modern computers this is currently still true for modulo of size 1024 bits.

Multiplicative group of integers modulo n

The principle which RSA is based on uses multiplicative groups modulo n (Zn, ∗), in partic-
ular the inverse elements.

This set (Zn, ∗) consists of all elements that are coprime to n. Example: (Z8, ∗) =
{1, 3, 5, 7}.

Their number can be determined with the Euler’s Totient Function φ [Sch06]. For a prime
number the coprimes are the numbers {0, .., n− 1}. Therefore for a prime number p follows
φ(p) = p − 1. Example: (Z13, ∗) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} For a product n of two
prime numbers p and q, φ(n) = (p− 1) ∗ (q − 1).

With the multiplication modulo n (n∗), the set (Zn, ∗) forms an abelian group. This means
that the group operation n∗ is commutative and associative, there is a neutral element e and
for each element a there is an inverse element a−1. a ∗ a−1 mod n = a−1 ∗ a mod n = e.

For the inverse to an element a in any group (Zn, ∗) 1 is the neutral element. It applies
a ∗ a−1 mod n = a−1 ∗ a mod n = 1. For every element of the group an inverse element is
uniquely determined.

Example: Group (Z13, ∗), 3 ∗ 9 ≡ 27 ≡ 1 (mod 13).

To find two inverse elements of such a group the Extended Euclidean Algorithm can be
used [Sch06]. So it is for the RSA key generation. Why this inverse elements cancel each
other out on exponentiation (me)d mod n = m, as it is used for RSA encryption, is proven
with Euler’s theorem. Both are explained in the following paragraphs.

Extended Euclidean Algorithm The inverse a−1 to an element a of a (Zn, ∗) can be cal-
culated using the Extended Euclidean Algorithm. That’s why it is used to calculate the
decryption exponent d from the encryption exponent e.

In general for two numbers x, y the Extended Euclidean Algorithm returns the greatest
common divisor gcd, as well as the linear combination gcd(x, y) = s ∗ x+ t ∗ y, with s,t ∈ Z
[Sch06].

Since all elements in (Zn, ∗) are coprime to n (which means gcd(x ∈ (Zn, ∗), n) = 1),
1 = a ∗ s + n ∗ t applies to all a ∈ (Zn, ∗). Since the group is the multiplicative group mod
n, it follows: 1 ≡ a ∗ s+n ∗ t ≡ a ∗ s (mod n) That’s how we get to: a−1 = s. So the inverse
element to a ∈ (Zn, ∗) is value s from the Extended Euclidean Algorithm.

Euler’s theorem Euler’s theorem explains why the RSA cryptosystem is working at all.
More in detail it explains why f (fe(m)) = m [Sch06]. Euler’s theorem says:

(I.) xk∗φ(n)+1 mod n = x

In addition for any element a and its inverse a−1 from the group (Zφ(n), ∗) and k ∈ Z can
be said:

(II.) (xa)a
−1 = xa∗a

−1 ≡ x1 ≡ xk∗φ(n)+1 (mod φ(n))

8

2.2 Multiprecision Arithmetic

So let a and a−1 be elements of the group (Zφ(n), ∗), together with Euler’s theorem then
this equation is valid:

(xa)a
−1 mod n = xa∗a

−1
mod n

(II.)
= xk∗φ(n)+1 mod n

(I.)
= x

(xa)a
−1 mod n = xa∗a

−1
mod n

a∗a−1≡1 (mod φ)(n)
= xk∗φ(n)+1 mod n

Euler′sTheorem
= x

Because for RSA also two elements inverse to each other e and d = e−1 of the group
(Zφ(n), ∗) are chosen, the encryption and decryption behave like proofed in Euler’s theorem.

If a message m is encrypted and decrypted, the calculation (me)e
−1 = mφ(n)+1 = m is

performed and it results at m again. That is why the RSA cryptosystem works.

2.2 Multiprecision Arithmetic

If calculations are to be made with values that no longer fit into the machine word of
a computer, it is called multiprecision arithmetic. This is usually reached with personal
computers with a length of more than 32 or 64 bits.

Since the module n needed during safe RSA encryption alone is at least 1024 bits long,
and the message m can be almost as large as n, for the modular exponentiation me mod n
multiprecision arithmetic is required. In general, multiprecision operations work just like pri-
mary school methods, where the large number is processed step by step (usually in machine
word size) and the transfer is passed on to the next block in its own variable. Depending on
the operation, the length of the result may vary and get much larger than the operands.

How the multiprecision operations were handled in this work can be seen in the Imple-
mentation chapter under the GPU implementation 4.2.

A good introduction to multiprecision arithmetic, that also was used for this implementa-
tion, can be found in chapter 14 of the “Handbook of applied cryptography” [KMVOV96].

2.3 Modular Exponentiation

For both Encryption and Decryption in RSA algorithm the mathematical operation modular
exponentiation is used. There are three different mechanisms or algorithms that are used
to enable a more efficient calculation of modular exponentiation in this implementation
regarding thousands of bits long numbers as n and d are. These are:

• Residue Multiplication

• Exponentiation by Squaring

• Montgomery Algorithm

How they work and why they are needed is explained in this section.

9

2 Background

2.3.1 Residue Multiplication

Residue multiplication is used to keep the length of the numbers of the calculation to be
calculated down during modular exponentiation. This reduces the calculation time and the
memory space needed.

To calculate me mod n the most obvious way would be to calculate me = x and in the
next step to calculate x mod n.

In the following section the size of a number refers to the number of bits it needs to be
represented and not to the value of the number. That means that the numbers 6 and 7
would have the same length because they both need three bits to be represented.

Considering that m has to be smaller than n, and n is 1024 or even 2048 bits long concludes
that m can be that long as well. By raising m to the power of e , x can get e ∗ 1024 bits
long. That would require a huge part of the memory.

For modular multiplications the following equation can be used [Sha13]:

(a ∗ b) mod n = (a mod n ∗ b mod n) mod n (2.1)

That leads to:

me mod n = (m ∗me−1) mod n

= (m mod n ∗me−1 mod n) mod n

= ((((m mod n ∗m mod n) mod n ∗ (m mod n ∗m mod n) mod n)

mod n ∗ ...) ∗ (m mod n ∗m mod n) mod n) mod n

(2.2)

By using equation 2.2 for the modular exponentiation it can be guaranteed that the
numbers of the calculation won’t get larger than 2 ∗ 1024 bits. The reason therefore is that
the result of m mod n is an element of [0, ..., n− 1] and wont cost more bits than n. When
calculating m mod n ∗m mod n the result can not get bigger than two times the size of m
mod n, which is at most the same as 2 ∗ n. Considering (m mod n ∗m mod n) mod n,
this result will again be maximal the same size as n. Therefore no number will get larger
than 2 ∗ 1024 bits.

2.3.2 Exponentiation by Squaring

Exponentiation by squaring is used to reduce the number of multiplications during the
calculation of any exponentiation [Flea]. This shortens the computation time.

The calculation from chapter 2.3.1 of me mod n = [(m mod n ∗ m mod n) mod n ∗
... ∗ (m mod n ∗ m mod n) mod n] mod n costs e multiplications. This number can be
reduced by using a method of exponentiation by squaring. There are three different methods.
The first works recursive, the second and third work iterative and use the binary form of the
exponent. All three methods reduce the number of multiplication to 2∗log(e) multiplications.

Here the iterative version from least to the most significant bit is used. For me mod n
we choose e = 13 as example. The modulo can be discarded because it is not relevant for
the number of multiplications. So we remain with the formular m13.

13 can be written in binary form as 1101. That representation corresponds to

23 ∗ 1 + 22 ∗ 1 + 21 ∗ 0 + 20 ∗ 1 = 8 ∗ 1 + 4 ∗ 1 + 2 ∗ 0 + 1 ∗ 1 = 13. (2.3)

10

2.3 Modular Exponentiation

That leads to

m13 = m23∗1+22∗1+21∗0+20∗1

= m8∗1+4∗1+2∗0+1∗1

= m81 ∗m41 ∗m20 ∗m11

(2.4)

Based on the presentation described above the general power = me can be calculated with
the following algorithm 1.

Algorithm 1 Iterative Exponentiation by Squaring

Input: base m > 0, exponent e ≥ 0
Output: me = res
res← 1
while e 6= 0 do
if e mod 2 == 1 then
res← res×m

end if
m← m×m
e← be÷ 2c

end while
return res

That way the multiplications can be reduced to two times the number of bits needed to
represent e, which is 2 ∗ log2 e. As it will be shown in chapter 2.3.3 the division and the
modulo operation can be done with a right bit shift and logical AND, so that they won’t
need many operations relatively to the multiple precision multiplications.

2.3.3 Montgomery Algorithm

For optimizing the modulus operation during a multiplication the Montgomery algorithm
was chosen [Fleb]. Among others it uses the technique introduced in chapter 2.3.1. Instead
of performing the exponentiation at once and then performing the modulo operation it cal-
culates every modular multiplication after each other. Through this the calculation time and
memory space needed is reduced, because the resulting numbers won’t get bigger than two
times the module. These special modular multiplications performed during the Montgomery
algorithm are called Montgomery multiplications. How the Montgomery Algorithm is used
exactly will be explained in the following.

Alternatively the Barret Algorithm is often used for modular exponentiation. But for cal-
culations with very large integers Montgomery algorithm has the best performance [BGV93].

At first, the two ideas on which the Montgomery algorithm is based are presented. One
is, that the execution of a modulo operation with a power of two 2x as a module can be done
in a very short time by a bitwise AND operation. Second, that a division with a power of
two 2x as divisor can be performed with a right bit shift.

Idea

The Montgomery algorithm uses the fact that the modulo operation with a power of 2 as
module and the division with a power of 2 as divisor is easier to calculate than for other

11

2 Background

numbers. Before the Montgomery algorithm itself is explained, the two mechanisms of how
the Modulo and Division operation can be replaced during Montgomery algorithm are shown.

Modulo Operation Normally for calculating a mod b following algorithm is used:

Algorithm 2 Modulo operation

if a < b then
return a

end if
while a > b do
a← a− b

end while
return a

One modulo operation costs many comparisons and divisions. For multiple precision
integers as used in RSA this takes relatively long. Therefore Montgomery uses the following
principle for modulo operations with module n = 2x, x > 0.

In binary number system, where the base b = 2, modulus can easily be calculated for
module n = 2x = bx. All digits that are more significant than n are multiples of n. These can
be ignored for the modulus. Example with a = 217 and n = 23 = 8 in binary representation:

(217)2 = 1101 1001

(8)2 = 0000 1000

All more significant digits than 8 are a multiple of 8. 16 = 8 ∗ 2; 32 = 8 ∗ 4 etc.

Also the digit with the same value as n is divisible by n and not relevant for the result of
the modulo. That’s how 8 mod 8 = 0.

The less significant digits, the digits 0 to x, where n = 2x are enough to calculate a
mod n. Those digits can represent the values [0, ...n − 1]. The same values as the modulo
operation with module n can result.

That’s why we can replace the algorithm from above by only looking at the n least signif-
icant digits. Therefore the bitwise logical AND operation for a and n− 1 can be used. That
way the result represents only the least significant digits.

For example 217 mod 8 can be calculated that way:

(217)2 = 1101 1001

(8-1 = 7)2 = 0000 0111

& ————–

(1)2 = 0000 0001

With this principle the normal modulo operation can be replaced by one logical bitwise
AND, if the module is a power of 2.

Division Operation The division a÷ d with a divisor d = 2x can be realized by shifting a
x times to the right.

For example 217÷ 8 can be calculated that way:

(217)2 = 1101 1001

(217 � 3)2 = 0001 1011

Thus also the division can be realized much more efficient for powers of 2 than for other
numbers.

12

2.3 Modular Exponentiation

Figure 2.4: Concept of the Montgomery Exponentiation [Fleb]

Montgomery Exponentiation

The Montgomery Exponentiation uses this advantages of calculations with powers of 2 by
reducing the m of the original calculation me mod n into the Montgomery representation,
where instead of me mod n, h(m)e mod r can be calculated with r = 2x. Montgomery
algorithm itself only provides an efficient technique for modular multiplication. By using
the in chapter 2.3.2 introduced technique of exponentiation by squaring we only have to
transform m one time into Montgomery representation h(m). After that we can square it
by applying log(e) times the Montgomery multiplication resulting in h(me mod n). This
number has to be re-transformed with h−1 into the primal representation. That gives us
the final result h−1(h(me mod n)) = me mod n. Graphic 2.4 schematically shows the
difference between the Montgomery algorithm and the general procedure. Even with the
additional transforming into and out of the Montgomery representation, the faster modulo
and division operations lead to a better overall run time.

The Montgomery multiplication itself only calculates a modular multiplication not an
exponentiation. That’s why the following parts of the Montgomery Algorithm are explained
for the calculation of m ∗m mod n and not for me mod n. b is the base of the numerical
system. Best chosen is the machine word size, or an other power of 2, the smallest b = 2.
The algorithm only works, if n is odd, which is always the case if n is the product of two
(odd) primes, as it is the case in RSA algorithm. The next steps will be explained with 7 ∗ 7
mod 13 as an example.

First some parameters needed for the Montgomery algorithm have to be calculated. This
step will be called preprocessing during this work. Therefore the numbers r, r−1 and n′

have to be calculated from n [Fleb]. r is the next biggest number to n, with r = bx. It can
be calculated as r = bdlogb(n)e. With b = 2 and n = 13 and r would be 16.

r−1 and n′ have to satisfy 0 < r−1 < n, 0 < n′ < r and r ∗ r−1 − n ∗ n′ ≡ 1 (mod n).
They can be calculated with the extended Euclidean algorithm r*s+n*t=1 [Sch06]. After
this r−1 = s mod n and n′ = −t mod r.

For example calculating r−1 and n′ for n = 13:

16 ∗ (−4) + 13 ∗ 5 = 1

r−1 = −44 mod 13 = 9

n′ = −5 mod 16 = 11

13

2 Background

Montgomery Representation

The Montgomery representation is a number transformed into Montgomery form by applying
the function h : N → N , h(x) = (x∗r) mod n [Fleb]. For example to calculate 7∗7 mod 13,
the Montgomery representation of 7 would be h(7) = (7 ∗ 16) mod 13 = 8.

To get a number out of the Montgomery form the function h−1 is needed. h−1(y) = (y∗r−1)
mod n. For example h−1(8) = (8 ∗ 9) mod 13 = 7.

Montgomery Multiplication

The Montgomery multiplication or Montgomery reduction works as in algorithm 3 shown
[Mon85]. Given n and former calculated n′ and r are written in capital letters.

Algorithm 3 Montgomery Multiplication (REDC())

Input: T = h(x) ∗ h(y), N , N ′, R
Output: h(x ∗ y mod n)
m← (T mod R)×N ′ mod R(So m ¡ R)
t← (T +m×N)÷R
if t > N then

return t−N
end if
return t

First two numbers in Montgomery representation are multiplied. The product is T <
2 ∗N − 2. For the operation 7 ∗ 7 mod 13 it would be:
T = h(7) ∗ h(7) = 8 ∗ 8 = 64
m = (64 mod 16) ∗ 11 mod 16 = 0
t = (64 + 0 ∗ 13)/R = 4
Because 4 < N the return value is 4.

The return value is still in Montgomery form. To get the real result of 7 ∗ 7 mod 13 we
have to apply h−1(4) = (4 ∗ 9) mod 13 = 10.

The advantage of this algorithm compared to the general method is that the modulo
operation can be replaced by a bitwise logical AND and the division by bitshifts (see chapter
2.3.3 - Idea). This leads to better efficiency with increasing sizes of numbers.

Range of the Algorithm

Considering that a machine word has a size of 32 bits, the Montgomery algorithm introduced
in Chapter 2.3.3 does not work for big numbers as used in RSA. For the function me mod n
the parameters have the following restrictions.

The exponent e has to fit in 32 bits, so it can’t be bigger than 232 − 1. The calculation
only works with a and n having together a maximal length of 30 bits. Additionally n < 216.

2.3.4 Montgomery Algorithm for Multiprecision Integers

In order for the Montgomery algorithm to be applicable to small machine words and large
numbers (i.e. 32 bit machine words and 1024 bit integers), there is a variation of the
algorithm described above for multiprecision integers [Mon85].

14

2.3 Modular Exponentiation

The following variant algorithm decomposes numbers of all possible number systems into
their digits and calculates the modular exponentiation separately for each digit one after the
other. For easier understanding, the algorithm is explained in the following example using
decimal numbers. When using the algorithm for the calculation of multiprecision integers,
it can be imagined that the multiprecision integers are split into small integers that are
equivalent to single digits of a numeral system with the base fitting into an integer. With
these integers a computer can calculate using single precision operations. After processing
the algorithm a multiprecision integer results, which consists of many resulting integers. In
this case, the basis of the algorithm is not, as in the examples, the 10, but at most the size
of an integer, so that the algorithm can be calculated with single operations.

In parts the following Transformation and Multiplication of the variant Montgomery Algo-
rithm work similar to algorithm 2.3.3 only with multiprecision operations. For more details
the implementation in chapter 4.2 can be seen.

Montgomery Exponentiation for Multiprecision Integers

Same as done in chapter 2.3.3, the Algorithm only does a modular multiplication. For the
modular exponentiation the algorithm can be combined with exponentiation by squaring
(see chapter 2.3.2).

Montgomery Representation for Multiprecision Integers

Also here r and n′ have to be calculated from the module n represented in the numeral
system with base b [Mon85].

Therefore first the base b of the number system is chosen in which the calculation is
performed. Due to the binary computer architecture a power of two, at best a multiple of
the machine word should be chosen. As before it has to be gcd(n, b) = 1. This is fulfilled for
RSA, because n is always odd and as base a power of two greater than one is chosen, which
is always even. Here also an r is chosen which is larger than the multiprecision integer n and
at the same time a power of the base b. It can be calculated by the formula r = bx≥dlogb(n)e.

For example we could chose base b = 10, the decimal numeral system. For a given module
n = 23 we would pick r = 10x≥dlogb(23)e = 103 = 30.
The transformation into the Montgomery form works exactly like before. For the calculation
a ∗ a mod n with a, n multiprecision integers, h(a) = a ∗ r mod n. For all operations
multiprecision operations are used.

To calculate 18 ∗ 18 mod 23, for example, h(18) = 18 ∗ 30 mod 23 = 540 mod 23 = 11.
If this numbers are too large for a single precision operation they have to be performed with
multiprecision arithmetic.

During Montgomery algorithm for multiprecision integers n′ is calculated a bit different.
It must be n ∗ n′ ≡ −1 (mod b) and n′ ∈ [0, b − 1]. It will always remain smaller than the
base, which means that it will always fit in one digit. It can be calculated with the extended
euclidean algorithm b ∗ s+ n ∗ t = 1 and b as the module. n′ = −t mod b.

For n = 23 and b = 10 the extended euclidean algorithm gives:

1 = 7 ∗ 10 + 23 ∗ (−3)

n′ = 3 mod 10 = 3

The value of r−1 can be calculated as before with the extended euclidean algorithm r ∗
s+ n ∗ t = 1 and r−1 = s mod n.

15

2 Background

1 = 30 ∗ 10 + 23 ∗ (−13)

r−1 = 10 mod 23 = 10

The re-transformation out of Montgomery form is performed by applying the function
h−1(h(a)) = h(a) ∗ r−1 mod n = a. For example h−1(11) = 11 ∗ 10 mod 23 = 110
mod 23 = 18.

Montgomery Multiplication for Multiprecision Integers

The input T of the new algorithm is same as before the product of h(a) and h(a), except
that it is now a multiprecision integer. In the decimal example every digit can be seen as a
single precision. T would be h(108) ∗ h(108) = 20 ∗ 20 = 400. T is represented by 3 digits,
so it is ’multi precise’.

The output S of the algorithm represents the result of the operation in Montgomery form.
S = h(a∗a mod n). To get the result of a∗a mod n the re-transformation out of the Mont-
gomery form has to be performed. Therefore again apply h−1(S) = S ∗ r−1 mod n = a ∗ a
mod n.

The Montgomery algorithm for modular multiplication of two multiprecision integers and a
multiprecision module n follows as algorithm 4 [Mon85].

In the algorithm, the variables b, n, n′ and r are represented with capital letters. X[i]
refers to the i− 1th digit of the huge number X represented in the numeral system of base
b. The multiprecision comparison ≥ is represented by ≥*.

For the implementation of the algorithm every digit can be stored as a value of an array.
For example for an array of unsigned int the base 232 would be the most efficient. Every
value of the array would be used maximal, because digits from 0 to 232 − 1 are used, and
numbers from 0 to 232−1 can be stored in one unsigned integer. The carry c is always 0 or 1
and could be stored as a flag instead of a bigger data type to safe storage. For numbers with
2n digits, their modular multiplication can be performed in n single precision operations.

2.4 The Raspberry Pi

The Raspberry Pi is an affordable miniature single-board computer designed to develop an
understanding of computer architecture through testing, without fear of damaging much.

It is developed by the Cambridge-based nonprofit Raspberry Pi Foundation since 2012
and 100 percent manufactured in South Wales [Sev13]. The price of a Raspberry Pi varies
according to model and features, but averages 30AC [Ras].

The computer originally developed for children has exceeded the expected interest even
of experienced computer scientists due to the low price and the few restrictions. Already in
2017, after 5 years, the Raspberry Pi is regarded as the “world’s third best-selling general
purpose computer”[Mag17].

Because the developed implementation of RSA will run on the GPU there will be a really
short introduction to the general architecture of the Raspberry Pi followed by a whole
section only about the VideoCore IV GPU. Last the QPULib, the C++ library that is used
to address the GPU is explained in detail for a better understanding of the implementation
in chapter 4.2.

16

2.4 The Raspberry Pi

Algorithm 4 Multiprecision Montgomery Multiplication (Multiprecision REDC())

Input: Base B = 2x with x ∈ N
N with gcd(b,N) = 1 and represented in p digits,
R = brwith r > p and represented in r + 1 digits,
N ′ with 0 ≤ N ′ < B,
T with 0 ≤ T < R ∗N represented with r + p digits

Output: S with 0 ≤ S < N and represented in p digits
T [r + p]← 0
for 0 ≤ i < r do
c← 0
m← T [i] ∗N ′ mod B
for 0 ≤ j < p do
x← T [i+ j] +m ∗N [j] + c
T [i+ j]← x mod B
c← bx/Bc

end for
for p ≤ j ≤ r + p− i do
x← T [i+ j] + c
T [i+ j]← x mod B
c← bx/Bc

end for
end for
for 0 ≤ i ≤ p do
S[i]← T [i+ r]

end for
if S ≥* N then
return S −N

else
return S

end if

17

2 Background

2.4.1 General Architecture

A nice overview about the hardware of all Raspberry Pi models can be found at [Ras19a],
[Ras19b] or [Wik19]. Those are also used for the following information. Because for this
work a Raspberry Pi 1 Model B+ was used, the following descriptions might only fit to this
model.

Raspberry Pi 1 Model B+ includes the System on a chip (SoC) BCM2835 from Broadcom
[Bro19a]. It’s for this work important components are the following.

RAM

The Synchronous Dynamic Random Access Memory (SDRAM) has 512 MB and is shared
by the CPU and the GPU[Ras19b]. The ratio is by default evenly distributed, but can be
changed.

CPU

The CPU is a one core ARM processor, the ARM1176JZF-S with 700MHz. It is “the highest-
performance single-core processor in the Classic Arm family”[Dev19]. For more details see
[ARM19].

GPU

The GPU used is the VideoCore IV by Broadcom running with 250 MHz. Since the char-
acteristics of the GPU are most important for the implementation, they are discussed in
chapter 2.4.2 in detail.

2.4.2 The VideoCore IV GPU

The VideoCore IV graphics processing unit (GPU) by Broadcom is built in all versions of
the Raspberry Pi so far[Wik19]. This has the nice effect that the implementation of RSA
achieved during this thesis works on all Raspberry Pi models.

Available is a public Documentation of the VideoCore IV [Bro19b] and an unofficial one
that was created before the official one was released [Her19].

In this chapter first the components important for the work are roughly explained, since
they are not addressed directly, but indirectly with the help of the QPULib library.

Then follows a description of the actual arithmetic units, the Quad Processing Units
(QPUs).

Components

As shown in Figure 2.5, the GPU consists of many components. However, only the QPUs
(Quad Processing Unit) are freely programmable [Sta17]. These are addressed in this work
with the used library QPULib.

The VideoCore IV can contain up to 4 slices with 4 QPUs each. The chip built into
the Raspberry Pi consists of three slices, resulting in 12 QPUs [Sta17]. Each slice has
several caches which are shared by all 4 QPUs. Each slice also has a Special Function
Unit (SFU), which can be used to approximate functions as the square root (sqrt(x)), the
binary logarithm (log2(x)) as well as the exponential function based on two (2x) and the

18

2.4 The Raspberry Pi

Figure 2.5: Architecture overview of the VideoCore IV[Bro19b]

multiplicative inverse (1/x) for floating point numbers [Bro19b]. They are not needed for
RSA implementation. All slices have shared access to one L2 cache and one vertex pipe
memory (VPM), which can be used to access the main memory, as the GPU does not have

19

2 Background

its own memory, but uses the same memory as the CPU. The percentage of memory that is
made available to the GPU can be changed by the user [Sta17].

The Quad Processing Unit

The Quad Processing Units (QPU) are Vector processors and the programmable arithmetic
units of the VideoCore IV. The vectors consist of 16 elements, of which four are always
combined into a quad, a vector with four elements. One clock is needed to process a quad
(”Four-way physical parallelism”), so four clocks are needed to process a vector (”16-way
virtual parallelism”), by processing four Quads after each other [Bro19b]. The individual
vector elements are either 32-bit integer or 32-bit floating point values [Nay16].

Each QPU has two register files A and B, each with 32 registers, of which 5 are accumu-
lators that can be used as temporary memory, as they can be read and written directly one
after the other. The registers again consist of 16 32-bit elements to enable SIMD on all 16
vector values [Sta17].

During execution, each element is processed by the SIMD processor, which has the same
index as the element. In addition, the 16 vectors can be rotated so that each element can
also be moved to all other indexes, always keeping its neighbors [Sta17].

The QPU has two asymmetric ALUs, one for additions and one for multiplications [Sta17].
The ALU for additions has 24 different operations, also including logical operations and shift-
ing. The ALU for multiplications has only 8 different operations. Among other things there
is no modulo operation and only a 24-bit multiplication [Bro19b]. The existing operations
can be found in the VideoCore IV documentation, and chapter 2.4.3 lists which operations
can be addressed with the QPULib. Although the entire GPU has a 32-bit architecture, the
instruction set is 64 bits long [Bro19b].

Each QPU has a frequency of 250 MHz. Since 16 elements can be calculated on one
QPU in four clock cycles and a total of 12 QPUs can be used, theoretically 4*12 values can
be processed in one clock cycle. With a frequency of 250MHz this results in a theoretical
throughput of 250,000*4*12 = 12,000,000 operations a second [Nay16].

2.4.3 The QPULib

The QPULib is a C++ library that runs on the CPU of the Raspberry Pi and addresses the
GPU during runtime. It is published 2016 under the MIT License and is protected by the
copyright of Mathew Naylor. [Nay16].

As described in chapter 2.4.2 all QPUs are working with 16-vector elements. This means
that every instruction done on a QPU is executed on every vector element, which means on
all 16 elements. If you add two of these 16-vectors, you get another 16-vector, where each
vector element is the sum of the two summand elements at the same index (see figure 2.6).

How the QPULib basically is used is explained in the following sections. Everything is
cited from the README.md of the QPULib [Nay16] or concluded from the library code.

Types and Pointers

Currently, the QPULib contains the data types Int and Float, each representing a 16-vector
of 32-bit integers and a 16-vector of 32-bit floats. There is also a type Bool, that consists
of a 16-vector of boolean values. The types Ptr<Int> and Ptr<Float> are each 16-vector
filled with the addresses of each vector element of an Int or Float data type.

20

2.4 The Raspberry Pi

Figure 2.6: One operation applied on all 16 vector operands

In the following, all properties are explained only for the data type Int, since floats are
not used in this work. In fact Int and Float work similar.

The value stored at the addresses in Ptr<Int> can be accessed using the * operator. If p
is a Ptr<Int>, the *p command would load all 16 32-bit integers stored at the addresses in
p, starting at the address in the first vector element of p. The command *(p+1) would also
load 16 32-bit integers, where the first value would be the value stored at the address in the
second vector element of p. The 16 value could be outside the allocated memory.

Operations

The QPU contains the following operations on datatype Int:

• + : Addition

• - : Subtraction

• * : 24-bit Multiplication

• << : Left Shift

• >> : Right Shift

• ++ : Increment

• min : Min

• max : Max

• & : Bitwise AND

• | : Bitwise OR

• ^ : Bitwise XOR

• ~ : Bitwise NOT

• shr : Unsigned shift-right

• ror : Bitwise rotate-right

All those operations are binary with Int as operands, except Increment and Bitwise NOT,
they have only one operand. It can be seen that neither the division nor the modulo operation
is implemented.

21

2 Background

Also the Int comparisons ==, !=, <, <=, >, >= can be done. The resulting 16-vector of all
operations is of type Bool.

On type Boolean there are following single and binary operations, that are useful for
conditionals:

• ! : logical NOT

• && : logical AND

• || : logical OR

• any : returns true if any of the 16-
vector elements is true

• all : returns true if all of the 16-vector
elements are true

Only the logical AND and the logical OR are binary operations. All others have only one
Boolean as parameter.

Further the QPULib provides the functions me(), index() and numQPUs().

me() that returns a 16-vector with every vector element containing the unique id of the
respective QPU. Those ids start it 0 and go up to the number of active QPUs - 1. This is
useful to ensure that each QPU processes different data in one array.

The call index() returns a 16-vector whose elements contain the indices of the particular
vector elements. So this vector always contains all numbers from 0 to 15. This function is
needed for precise memory accesses (see 2.4.3).

The function numQPUs() returns a 16-vector containing the number of active QPUs in
every element. These can have a value from 0 up to 12. This function is also useful in
iterating over one Array shared by all QPUs, to to ensure that each QPU processes different
data.

Invoking the QPUs

To execute the functions implemented with the QPULib, e.g. foo(Ptr<Int>, Ptr<Int>),
on the GPU, auto kernel = compile(foo); must be called. With the resulting kernel of
type Kernel<Ptr<Int>, Ptr<Int>> and matching parameters, the function can be executed.

The data to be passed as parameters to the QPU must be stored by the CPU in so-
called SharedArray<int> or SharedArray<float>. These pointers can then be passed to
the kernel as parameters. The QPULib then converts the SharedArray<int> into the GPU
data types Ptr<Int>.

Before calling the kernel and the actual calculation on the GPU you can set the number
of used QPUs to a number from 1 to 12 with the call kernel.setNumQPUs(n). Otherwise
only one QPU is used by default.

To finally execute the function foo() with SharedArray<int> x and SharedArray<int>

y as parameter, kernel(&x, &y); must be called on the CPU.

Conditionals and Control Flow Instructions

The QPULib has an implementation of For and While. The For loop is structured as follows:

1 For (Int i = 0, i < n, i = i+inc)

2 ...

3 End

22

2.4 The Raspberry Pi

The difference to usual c++ for loops is, that i is not a integer but a Int datatype with
all elements containing the same value at every iteration.

The While is structured as follows with the variable b of type Boolean:

1 While (b)

2 ...

3 End

Instead of an if statement the QPULib provides the Statement Where. It is structured as
follows, again b has to be of type Boolean:

1 Where (b)

2 op1

3 op2

4 ...

5 End

This statement means that the operations op1, op2, ... are performed on all vector elements
with the same index as where b is true and all other elements stay the same.

Attention to the fact that While and For loops can be nested inside each other. These
While and For loops may also contain Where conditions. But it is not allowed that loops are
executed within a Where statement. This is not possible due to the single instruction multiple
data principle of the GPU, because otherwise only selected data get special instructions and
not all.

Memory Access

Since conservative loading and storing data with pointers takes a long time, the QPULib
has additionally implemented non-blocking loads and stores. These work via the 4-element
FIFO of each QPU where data can be stored and retrieved later in less time. The command
gather(p) is used to load data into the queue. p is a Ptr<Int>, but it must point to the
exact address of the desired integer and not only to the start address a of a 16-vector. To
do this Ptr<Int> p = x + index(); can be used so that the exact address for each vector
element is calculated.

To load the data from the queue, receive(x); is called, where x must be of type Int.
This receive(x) loads the data in the first position of the queue into the variable x.

Since the queue is 4 elements long, a maximum of 4 gathers can be executed until a receive
must be called. Also the Queue has to be emptied before the QPULib function terminates.

The function store(p) allows non-blocking stores to the address p. Where p is again a
Ptr<Int> which contains the exact address for each vector element, and e.g. can be defined
with Ptr<Int> p = x + index();.

Function Calls

As in common programming languages, a QPULib function can call subfunctions if it passes
the appropriate parameters. It should be noted, however, that Single Instruction, Multi-
ple data principle applies. For this reason, no function call can be made within a Where
statement.

23

2 Background

Emulation Mode and Debug Mode

The QPULib can be used in emulation mode on other devices, where parallel processing
is only simulated on the CPU. This emulation mode can be executed by not running the
program with the flag QPU=1. It is possible to set the number not equal to 1 or to drop
the flag.

Debug mode can only be active in combination with emulation mode. If debug is true all
operations, including NoOps because of blocking operations, that are executed on the QPUs
are printed.

2.5 Related work

Due to the frequent and sometimes very CPU-intensive use of cryptographic algorithms,
many attempts already exist to execute cryptography on the GPU although it is actually
not designed for this purpose. Because RSA is so widely used, many of these attempts deal
with the execution of RSA on the GPU.

For example, H. Fadhil and M. Younis have compared a sequential RSA calculation with
a multithread RSA calculation on the CPU and an execution on a GPU [FY14]. They also
use the Montgomery algorithm for the modular exponentiation and come to the conclusion
that starting from a key length of 1024 bits the GPU implementation always enables the
fastest calculation.

Since RSA is very slow as an asymmetric encryption method, but is still used very often,
many people are still researching new approaches to speed up RSA. Besides such practical
work on the parallelization of RSA, S. Saxena and B. Kapoor’s paper presents various ap-
proaches to RSA parallelization at a glance, which do not all use the Montgomery algorithm,
but explain different variations of software and hardware implementations for an acceleration
of the execution time of RSA [SK15].

In addition to the many parallel RSA implementations on different multicore CPUs and
GPUs there are also papers dealing with the usage of the VideoCore IV. None of them
deals with the computation of RSA, but with the difficulties arising by programming the
VideoCore IV which is not intended for executing normal code.

For example, P. Pauls has offloaded AES to VideoCore IV by programming it with assem-
bler. It is therefore possible to use the GPU of the Raspberry Pi to perform some encryption
procedures. It does not achieve any speed advantage compared to the sequential AES im-
plementation of OpenSSL yet, but gives an insight into the structure of the VideoCore IV
and its difficulties [Pau17].

Based on this work, Y. Rixen uses the QPULib presented in chapter 2.4.3 to program
the VideoCore IV for AES and achieve a better performance [Rix19]. Therefore he extends
the open source QPULib with the data type char and, with an invocation of 12 QPUs in
parallel, he reaches a nearly as fast result as the OpenSSL AES algorithm, which is executed
on the CPU. Thus not only the possibility, but also an timely advantage of the execution of
some cryptographic algorithms on the VideoCore IV has prospect for success.

As an alternative to programming the GPU using assembler or the QPULib, D. Stadel-
mann has developed an Open-CL standard implementation that allows the execution of
Open-CL C code on the VideoCore IV [Sta17]. The library is not yet complete, but already
offers some features. Also a deep insight into the structure of the GPUs as well as the
difficulties and bottlenecks to avoid is given.

24

2.6 Summary

2.6 Summary

In summary, this chapter first describes how the RSA cryptosystem works. In this thesis,
the encryption and decryption functionality will be implemented on the GPU, while the
key generation will not be programmed, but the RSA encryption will read standard keys
generated by OpenSSL.

In addition, it has been shown that RSA encryption in both directions, encryption and
decryption, is based on modular exponentiation. The GPU implementation must therefore
perform a modular exponentiation. Because the RSA keys consist of numbers up to 1024
bits in length, the modular exponentiation must be executable on multiprecision integers.

In order to carry out this very costly and time-consuming modular exponentiation, three
techniques were presented to simplify the calculation.

One is the modular multiplication which proves that not first the whole exponentiation
and then the modulo calculation has to be done. The calculation can instead be performed
by many multiplications followed directly by modulo operations. Thus the numbers do not
exceed at any time of the calculation a size of 2 times the size of the module m minus 2.
This saves memory space as well as calculation time of the multiprecision multiplications,
because all numbers are much shorter.

Second, it was shown that the required exponentiation can be shortened with exponentia-
tion by squaring to logarithmically many multiplications. This reduces the calculation time
immensely.

Third, it was shown that the single modular multiplications can be accelerated by using
the Montgomery algorithm. Thereby the runtime expensive division and modulo operation
are replaced by fast bitwise AND and bitshifts operations. Again, the calculation time is
accelerated by this. The Montgomery algorithm can also be executed with multiprecision
integers, which makes it perfect for the GPU implementation of RSA.

In the last part of this chapter the Raspberry Pi was introduced, whereby the functionality
of its GPU, the VideoCore IV, is in the foreground. Together with the following introduction
into the programming of the GPU using the QPULib, a solid basis for the implementation
of RSA encryption on the GPU of the Raspberry Pis has been created.

25

3 Parallel RSA Algorithm

In the previous chapter the basics for an RSA implementation on the GPU of the Raspberry
Pi were laid. The functionality of RSA encryption and methods for simplifying and acceler-
ating modular exponentiation were explained. By combining these methods at the beginning
of this chapter, a sequential structure of an RSA implementation is developed. After this
sequential design of an RSA encryption has been found, different possibilities are considered
where and how the RSA encryption could be offloaded to the GPU in parallel. In the previ-
ous chapter the properties and limitations of both, the VideoCore IV and the QPULib were
shown. The developed approaches for parallelization of RSA will be compared with these
and finally one parallel algorithm will be chosen, which will be partly implemented on the
GPU with the help of the QPULib.

3.1 Sequential Algorithm

As a first step to find an efficient parallel algorithm it will be designed sequentially. Since
RSA is only based on modular exponentiation, the concepts presented in Chapter 2.3 were
combined to create an efficient sequential algorithm.

The exponentiation by squaring from chapter 2.3.2 is performed as in algorithm 1, with
the variables b and res as multiprecision integers and the multiplications are replaced by
modular multiplications. Because of the residue multiplications from chapter 2.3.1 the exe-
cution of modular multiplications is allowed, and the result of the exponentiation by squar-
ing will be me mod n. For the modular multiplication the Montgomery multiplication for
multiprecision integers introduced in chapter 2.3.4 is used. The resulting modular exponen-
tiation by squaring is shown in algorithm 5. The operations on multiprecision integers are
all multiprecision operations. The Montgomery multiplication for multiprecision integers is
written as mpMontMul(a, a, n) for the calculation of a ∗ a mod n and works exactly like
the multiprecision Montgomery multiplication in algorithm 4.

The calculation of the parameters r, n′ and r−1, the transformation into Montgomery
form and out of Montgomery form are performed for multiprecision integers.

It is also possible for RSA to divide a large message M into small messages mi and
to encrypt and decrypt these small messages. Otherwise the size of encryptable messages
would be limited, because m must always be smaller than the module n. Because the same
module n is used for all messages mi that are encrypted or decrypted with the same key,
the parameters r, n′ and r−1 can still be calculated only one time for all of them. Because
this has to be done before starting the actual RSA encryption it will be referenced at as
preprocess(n).

Because Exponentiation is the repeated multiplication of the same value, for each part
mi of the whole message M that will be encrypted or decrypted, it is enough to transform
it into Montgomery form only one time, before starting the exponentiation by squaring.
The Exponentiation itself only uses the message mi in Montgomery form. This procedure is
refered to by transform(m, r, n)

27

3 Parallel RSA Algorithm

Algorithm 5 Montgomery Exponentiation by Squaring

Input: mp integer in Montgomery form h(m) > 0, exponent e ≥ 0, mp integer module
n > 0 where n odd, mp integer r, mp integer n’

Output: h(m)e mod n = res
res← 1
while e 6= 0 do

if e mod 2 == 1 then
res← mpMontMul(h(m) ∗ res, n, r, n′)

end if
m← mpMontMul(h(m) ∗ h(m), n, r, n′)
e← e >> 1

end while
return res

The result of a modular exponentiation can be re-transformed out of Montgomery form
after the Exponentiation is done. This is done as under the action retransform(h(me

mod n), r−1, n).

All this combined leads to the following algorithm 6. With this a full modular exponenti-
ation on multiprecision integer can be performed, which is equal to a RSA encryption.

Algorithm 6 Sequential RSA Algorithm

Input: mp integer m < n, exponent e ≥ 0, mp integer module n > 0 where n odd
Output: me mod n = res
r, n′, r−1 ← preprocess(n)
h(m)← transform(m, r, n)
while e 6= 0 do

if e mod 2 == 1 then
hres← mpMontMul(h(m) ∗ hres, n, r, n′)

end if
m← mpMontMul(h(m) ∗ h(m), n, r, n′)
e← e >> 1

end while
res← retransform(hres, r−1, n)
return res

The following diagram 3.1 provides a more abstract overview of the process design. The
function ModExpSquare() refers to algorithm 5, the modular exponentiation by squaring.

3.2 Approaches For Parallelization

For this work Montgomery multiplication combined with exponentiation by squaring was
chosen to perform modular exponentiation. There are four kinds of possibilities to parallelize
this way of modular exponentiation [Pea96]. All possibilities will be introduced during
this section. In the following section they will be discussed regarding their implementation
possibilities on the GPU.

In order to simplify the referencing of the different possibilities, this section labels each

28

3.2 Approaches For Parallelization

	

transform(m,r,n)	
	

Calculation	of		
Montgomery	form	h(m)	

preprocess(n)	
	

Calculation	of	r,	n',	r-1	
for	the	Montgomery	
Multiplication	

ModExpSquare(h(m),e,n,r,n')	
	

Performing	the	modular	Exponentiation	
	
	

h(me	mod	n)	

mpMontMult(a*b,n,r,n')	
	

Different	modular	multiplications	for	
the	modular	exponentiation	

	

(a,	b	are	placeholders	for	different	values)	

retransform	
(h(me	mod	n),	r-1,n)	

	

Calculation	out	of		
Montgomery	form	resulting	in		

me	mod	n	

m,n,e	given	

me	mod	n	
	

Figure 3.1: Process of the full Modular Exponentiation Algorithm

parallelization possibility from P1 to P4, with P1 being divided into three versions: P1a,
P1b and P1c. These labels will be referenced to in the next section as well.

3.2.1 Types of Parallelization options

In general, the possibilities of parallelizing RSA can be summarized in four groups. These
are briefly introduced now. In the following section they will be explained exactly in relation
to the design of the sequential algorithm.

P1 Parallel Message encryption

Normally a big message M would be partitioned into several parts , i, converted into a
number and then modular exponentiation would be applied on these parts sequentially. One
possibility of using the parallel computational power of the GPU would be to partition
the full message as before, but apply modular exponentiation parallel instead of sequential
on all parts mi. This should not decrease the time taken for one modular exponentiation
significantly, but would increase the overall efficiency of encrypting a message. Since there
are different possibilities of processing parallel message encryption, depending on what parts
of the RSA calculation are performed parallel, they are divided in versions P1a, P1b and
P1c and explained in section 3.2.2.

29

3 Parallel RSA Algorithm

P2 Parallel Exponentiation by Squaring

For the modular exponentiation exponentiation by squaring is used. This kind of exponentia-
tion can be done in parallel, by dividing the exponent in parts, performing the exponentiation
with those small parts as exponents and afterwards merging all results together to a final
result [LBPN12]. If the looping is performed from the least to the most significant bit, as
described before, the exponentiation can be parallelized saving up to 33% [Pea96].

P3 Half-Size Modular Exponentiation for Decryption

The Decryption can be divided into two half-size modular multiplications, if p and q, and
not only n and d are given in the private key. Then the modular multiplication can be
performed parallel for the modules p and q instead of n. The parallel computed results can
be combined with the Chinese Remainder Theorem to the full result. Those two half-size
modular exponentiations can be four times faster than one full modular exponentiation.

P4 Parallel Multiprecision Multiplication

Part of the exponentiation by squaring is the Montgomery multiplication for multiprecision
integers (2.3.4). This consists of some multiprecision operations, for example the complex
multiprecision multiplication.

A way to parallelize the modular exponentiation in parts, is to modify the modular mul-
tiplication, so that the multiprecision multiplication is performed parallel. Normally the
multiprecision multiplication has a complexity of O(n) = n2. But it can be partitioned and
executed parallel to reach a better performance if the communication between the process-
ing units is faster than the multiplication time itself [Pea96]. For example S. Baktir and E.
Savas reached up to 39% better performance by parallelizing the multiprecision Montgomery
multiplication [BS13].

3.2.2 Parallelization Options for the sequential Algorithm

The figure 3.2 gives an overview of the in section 3.1 found sequential structure of the
algorithm in combination with the introduced possibilities of parallelization. The different
techniques of parallelizing the algorithm are labeled as before from P1 to P4. After the
overview, each possibility is described in detail, whereby it is also discussed how the previous
sequential algorithm would change exactly for this way of executing RSA on the GPU. All
black lines stand for sequential processing. The colored ones for parallel computations. The
different colors help to differ each parallelization approach and at which step of the algorithm
they start. The purple letters are used for algorithm steps, that are only needed for P3.

Of course, some of the separately drawn possibilities could also be combined.

P1 Parallel Message encryption

P1a, P1b and P1c stand for the parallel processing of several messages simultaneously.
As explained in the following, the three approaches differ at which point the algorithm is
parallelized.

30

3.2 Approaches For Parallelization

Message M = U m

Partitioning the Message

Module N

Exponent e
(public/private key)

Base = 2^30

Preprocessing

R n‘ r-1

Montgomery
Transformation

m

h(m)

O(1)R
N

O(n)

O(n)

m

Exponentiation
by Squaring

e

Multiprecision
Multiplication

O(log n)

O(n)2

i

i

Montgomery
Multiplication

O(n)2

Montgomery
Retransformation

Chinese Remainder
Theorem

Cipher C = U c

c

c

i

i

O(n)

O(n)Merging the
Message

h (m)
h (m)q
p

h(c)

c
cp
q

p,q

Modules p,q

P2

P1a

P3P1b

P4

P1c

Figure 3.2: Process of the full Modular Exponentiation Algorithm with different paralleliza-
tion steps

31

3 Parallel RSA Algorithm

P1a: The yellow lines stand for parallel processing directly after the partition of the message
M into submessages mi. This means that the transformation into Montgomery form is
already performed on all different submessages according to the single instruction multiple
data principle on the GPU. Similarly, the entire Montgomery exponentiation including all
Montgomery multiplications is executed in parallel with different data h(m), as well as the
re-transformation from out of Montgomery form are executed on the GPU.

Only then the results ci are merged again by the CPU into a complete cipher C.

There is also the option to only offload the transformation to and out of the Montgomery
form to the GPU. (Both because exactly the same operation is performed only with different
values). But since these are not the most costly operations in the algorithm, this is not listed
as an option.

P1b: The technique that is described by the orange lines differs from P1a by the fact that
the transformation into the Montgomery form is calculated sequentially for all partial mes-
sages mi on the CPU and then the h(mi) is given to the GPU and the entire exponentiation
is then executed parallel on the GPU. The re-transformation from the Montgomery form
is then again executed sequentially with all data on the CPU. This means that only the
Montgomery exponentiation is transferred to the GPU.

P1c: The red lines stand for the version to convert the single message pieces on the CPU
sequentially into the Montgomery form, and then also to execute the exponentiation by
squaring on the CPU. This is possible because the exponent for all partial messages mi of a
message M is the same. The individual Montgomery multiplications contained therein can
then be executed on the GPU in parallel for all temporary products. The division of the
exponentiation by squaring as well as the re-transformation from the Montgomery form and
the composition of the partial ciphers ci into the final cipher C are again all executed on the
CPU.

P2 Parallel Exponentiation by Squaring

The blue lines stand for the parallelization of the exponentiation by squaring. Only one
message part mi of M is transformed sequentially into Montgomery form at a time on the
CPU. Then the exponent is divided into different parts and the message h(m) and the
different exponent parts are transferred to the GPU. The GPU calculates the Montgomery
exponentiation for h(m) in parallel with the different exponent parts instead of the exponent
e. Then the results of all on the GPU parallel performed Montgomery exponentiations are
merged sequentially on the CPU again and the algorithm is completed sequentially.

P3 Half-Size Modular Exponentiation for Decryption

The purple lines represent the method to parallelize the Montgomery exponentiation by
doing this real parallel with the two prime numbers p and q as module instead of the double
sized n and combining the two results with the Chinese Remainder Theorem. The prime
numbers p and q are the two numbers from which the private key d is calculated. This
method therefore only works for decryption and not for encryption.

Therefore at first step preprocessing() has to be performed for p and q instead of n. Then a
message mi is transformed sequentially on the CPU into Montgomery form for module p and

32

3.3 Parallelization Techniques with regard on the Limitations of the GPU and QPULib

for module q and then the Montgomery exponentiation for the messages hp(mi) and hq(mi)
are executed in parallel on the GPU. The given exponent stays the same. Without combining
this parallelization with others, as for example parallel exponentiation by Squaring, at this
moment only two values of the possible 192 would be calculated at one time on the GPU.
The re-transformation out of the Montgomery forms and the composition of the results are
then executed sequentially on the CPU again.

P4 Parallel Multiprecision Multiplication

The green lines describe the method of accelerating the performance of the algorithm through
parallel execution of the most expensive multiprecision operation, the multiprecision multi-
plication.

For this algorithm one message part mi is processed at a time. Therefore all steps are exe-
cuted sequential on the CPU up to the Montgomery multiplication. Only the multiprecision
multiplication, that’s part of it is offloaded to the GPU and executed parallel. All other parts
of the Montgomery multiplication and all the following steps, like the re-transformation, are
again calculated on the CPU.

3.3 Parallelization Techniques with regard on the Limitations of
the GPU and QPULib

Because the parallel algorithm that is developed during this thesis is executed on the Video-
Core IV with help of the QPULib (see chapter 2.4) the parallel algorithm has to be specially
adapted to the possibilities and limitations of the QPULib and its GPU.

The previous section presented all possibilities how the parallel execution power of any
GPU could theoretically be used to execute RSA. Now it has to be checked, which options
can be executed on the VideoCore IV specially.

In the following, first the difficulties that go along with the VideoCore IV and the QPULib
that were already partly mentioned in the background are shown. Afterwards, the different
parallel possibilities presented in chapter 3.2.2 are considered together with these limitations,
to arrive at the parallel implementations that are actually possible on the VideoCore IV.
From those one algorithm will be chosen.

3.3.1 Limitations

In general, the bottleneck of the GPU is the transfer of data between the GPU and the RAM
[Sta17]. Therefore it is important to reduce memory access, when developing the parallel
algorithm.

An obvious but existing limitation of the QPULib is that it is addressed differently than
in usual c. For this reason, no functions from existing libraries can be used to run on the
GPU. Because of this all multiprecision operations that have to be developed on the GPU,
have to be implemented especially for the QPULib.

In addition, the QPULib does not offer the data type long because it only has 32-bit
ALUs. There is also no implementation of unsigned int. So all operations have to be
executed on 31 bit maximum, to prevent an overflow.

Also the VideoCore IV nor the QPULib offer a modulo operation or division operation.
These can therefore not be used in the parallel algorithm.

33

3 Parallel RSA Algorithm

In the progress of this work, it turned out that the number of memory accesses in a GPU
kernel invocation is limited by the QPULib. For this reason no arbitrarily long code can be
executed in one kernel call on the GPU.

3.3.2 Parallelization possibilities with the QPULib

The variants presented in chapter 3.2.2 on how to parallelize modular exponentiation for
RSA are not all applicable to QPULib and VideoCore IV. In the following, each variant is
discussed with the former explained limitations and it is decided whether an implementation
is possible and which one will be implemented.

P1 Parallel Message encryption

For this parallelization option again all three versions will be discussed separately.

P1a: To process the different variants parallel from the transformation onwards (yellow
lines), a modulo operation with a module n is required for the transformation into the
Montgomery form. Since n is a prime number, and therefore in any case no power of 2,
a Division would be required for the modulo calculation on the GPU. The VideoCore IV
provides no Division instruction and the QPULib has no division implemented neither. So
the transformation cannot be implemented on the GPU. In addition, the transformation in
Montgomery form and the entire exponentiation by squaring would require more memory
accesses than the QPULib allows.

P1b: Processing many messages parallel during the whole exponentiation by squaring (or-
ange lines) would also require more memory accesses than the QPULib allows.

P1c: Only executing the Montgomery multiplication on the GPU (red lines) is possible
considering the number of memory accesses. In addition, all required operations are available
on the GPU.

P2 Parallel Exponentiation by Squaring

To parallelize the exponentiation by squaring on the GPU more memory accesses would be
needed than are possible with the QPULib. That’s why, although all needed operations are
provided by the QPULib this technique can’t be realised.

P3 Half-Size Modular Exponentiation for Decryption

To perform both Half-Size modular exponentiations with p and q instead of n as module
in parallel, as it is shown in figure 3.2, again more memory accesses would be needed,
than are possible. To only perform the Montgomery multiplications in parallel and the
exponentiation on the CPU as described by the red line is would be possible, but this can
only be implemented for the decryption, where the private key provides the primes p and q
beside d.

34

3.4 Parallel Algorithm

	

Label

Parallelization Variant
Limited
Memory
Access

Available
GPU

Operations

P1a Parallel Messages before Transformation ✖ ✖

P1b Parallel Messages before Exponentiation ✖ ✔

P1c Parallel Messages before Multiplication ✔ ✔

P2 Parallel Exponentiation by Squaring ✖ ✔

P3 Half-Size Modular Exponentiation ✔ ✔

P4 Parallel Multiprecision Operations ✔ ✔

Paralellization Variant

Low Memory
Access

Available
GPU

Operations

Partition Message before
Transformation

✖ ✖

Partition Message before
Exponentiation

✖ ✔

Partition Message before
Multiplication

✔ ✔

Parallel Exponentiation by Squaring ✖ ✔

Half-Size Modular Exponentiation ✖ ✔

Parallel Multiprecision Operations ✔ ✔

Figure 3.3: Overview of Parallelization Possibilities and Limitations

P4 Parallel Multiprecision Multiplication

The parallel calculation of the multiprecision operations, especially the complex multipreci-
sion multiplication, can be realized with the VideoCore IV using the QPULib.

Conclusion

Figure 3.3 gives an overview about the requirements of the QPULib for each Parallelization
possibility and their applicability.

For the reasons given above, three of the six possibilities can be implemented with the
current state of the QPULib.

Out of these three the parallel multiplication of 1024 bit integers leads to nearly no time
advantages compared to the parallel multiplication of 2048 Bit or 3072 Bit integers. Some-
times they result in even worse execution times as a sequential algorithm [BS13]. But since
this implementation tests only 1024 bit keys due to the small memory of the GPU, and
additionally tries to achieve an acceleration of the execution time, in this thesis does not
implement P4, a parallel multiprecision multiplication.

Because P3, the half-size modular exponentiation, can only be used in some cases of the
decryption, that means in less than 50% of the RSA cryptosystem usage, it was favorable to
implement the Parallelization option P1c, the offloading of the Montgomery multiplication
with different messages onto the GPU. Because P3, the half-size modular exponentiation,
is only executable on the VideoCore IV in combination with P1c, it is left as a additional
project based on this thesis.

3.4 Parallel Algorithm

The different approaches for parallelizing RSA encryption were all considered for the imple-
mentation of the GPU executed RSA, depending on their advantages and possibilities to be
combined with the QPULib and the VideoCore IV. As explained in chapter 3.3, there are
only three approaches that can be implemented. The most promising results are expected
from encrypting different messages in parallel (P1c), in comparison to performing a parallel

35

3 Parallel RSA Algorithm

	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	 	

transform(m,r,n)	
	

Calculation	of		
Montgomery	form	h(m)	

preprocess(n)	
	

Calculation	of	r,	n',	r-1	
for	the	Montgomery	
Multiplication	

ModExpSquare(h(m),e,n,n')	
	

Performing	the	modular	Exponentiation	
	
	

h(me	mod	n)	

mpMontMult(a*b,n,n')	
	

Different	modular	multiplications	for	
the	modular	exponentiation	

	

(a,	b	are	placeholders	for	different	values)	

retransform	
(h(me	mod	n),	r-1,n)	

	

Calculation	out	of		
Montgomery	form	resulting	in		

me	mod	n	

m,n,e	given	

me	mod	n	
	

GPU-
EXECUTION

CPU-
EXECUTION

Figure 3.4: Parallel Modular Exponentiation Algorithm on CPU and GPU

multiprecision multiplication on key sizes of 1024 bit or implementing only a decryption
algorithm.

The final design of this chosen algorithm is now presented in this chapter.
For the reasons listed in Chapter 3.3, we have decided to implement an algorithm that

processes different messages of 128 Byte at once. Because all those messages are encrypted
with the same key the preprocessing for the Montgomery transformation has to be done only
once at the beginning. It will be performed on the CPU, because its execution time is not
important in comparison to the modular exponentiation following and was not examined for
parallelization potential. After this all 128 Byte messages are transformed into Montgomery
form sequentially, because the modulo operation needed can not be performed on the GPU.
The exponentiation by squaring is also performed on the CPU, because its execution would
need too many memory accesses than are possible with the QPULib. Because the Key for all
messages is the same, they can all be encrypted inside the same exponentiation by squaring.
For the Montgomery multiplications, that are done in every iteration of the exponentiation
by squaring now all messages in Montgomery form h(mi) are performed real parallel on the
GPU. With 12 QPUs this would be 192 h(mi) at the same time. After the exponentiation by
squaring is done the re-transformation is again processed sequentially on all resulting ciphers
in Montgomery form h(ci), because the modulo operation here neither can be accomplished
with the GPU.

The figure 3.4 gives an overview of the structure of the algorithm chosen. The grey color
steps are executed on the CPU and the orange one on the GPU.

36

4 Implementation of RSA

Previously, we developed a technique to efficiently calculate RSA and chose a kind of paral-
lelization that will be implemented on the VideoCore IV. The selection of the implemented
algorithm design was explained and presented in chapter 3.4. This chapter presents the final
implementation of RSA encryption.

In the following, the on the CPU implemented part is presented first. It contains all
sequential concepts that are used, especially the storage of data in the memory shared by
CPU and GPU. This is followed by the implementation on the GPU, which was implemented
using the QPULib. Thereby all parallel executed functions are presented. Finally, special
problems during the implementation are mentioned.

4.1 Implementation on the CPU

In this implementation the CPU is used for more than only passing the given data to the
GPU. It takes over a lot of the algorithms processing.

In the following the implementation of all algorithm steps that are processed on the CPU
are shown chronological. Along the way the special concepts that were used to enable the
calculations and achieve a even better performance are explained.

4.1.1 Input

The initial input of the implementation are the keys n and e (or n and d) as char* and the
message M as char[][]. The message M is a two-dimensional array of the format x times
y, containing x submessages mi of y char length. All char* contain the numerical value of
the key or message as decimal string. For example char *n = ”0”; represents the decimal
number 0 and not the binary value, the number 48. Further the number of used QPUs could
be changed by a #define but is set to 12. That means all 12 available QPUs are used for
the implementation.

4.1.2 Preprocessing

During preprocessing r, n′, and r−1 have to be calculated from n.

Since the memory accesses are technically very important for the GPU runtime, the parts
of the algorithm that are executed only once are not migrated to the GPU, but executed on
the CPU. This includes the part preprocess(). The parameters r, n′, and r−1 are calculated
from n here. These remain for the entire encryption, since the same key is used with the
same module n.

It is not possible to calculate these three parameters in real parallel on the GPU, because
the GPU is addressed via single instruction multiple data, and the three parameters are not
calculated in the same way. Parallelizing single operations used in the calculation, such as
the advanced Euclidean algorithm, were not tried. Since this operation is also only executed

37

4 Implementation of RSA

twice, it is assumed that the overhead of the data transfer to the GPU combined with the
slower execution time of the GPU is greater than the time gain resulting from the parallel
execution. However, this still could be tried.

For this implementation it was nevertheless decided to execute preprocess() sequential on
the CPU. Since it contains multiprecision operations, they are calculated using the GNU
Multiple Precision Arithmetic Library (GMP) [G+], which contains the extended Euclidean
algorithm, so that n′ and r−1 can be calculated easily.

For this at first the char* input is converted to the GMP type mpz t:

1 mpz_init(n);

2 mpz_set_ui(n,0);

3 mpz_set_str(n, input_string , 10);

Listing 4.1: Initializing and loading value into multiprecision variable n as example

Unfortunately, it does not contain a logarithmic function that is actually required to
calculate r. Since r = bdlogb(n)e, r can also be calculated via a detour (see figure 4.1). For
this n has to be converted from the GMP type mpz t into the number system, in which also
the exponentiation is carried out later. This has to be done anyway, so that this doesn’t
cause additional time. r can then be represented as a number with one digit more than n,
where the most significant digit gets the value 1 and all other digits get the value 0. Then
it is converted into GMP data type mpz t again. This is done only once and is not expected
to cost long time.

mpz_t n: 1 1 9 6 0 8 9 base = 10

int[] N: 4 4 4 0 0 7 1 base = 8

int[] R: 1 0 0 0 0 0 0 0 base = 8

mpz_t r: 2 0 9 7 1 5 2 base = 10

	

	Conversion	from	decimal								to	octal	system	

						Conversion	from	octal								to	decimal	system	

Figure 4.1: Calculation of r with n = 1196089 and base = 8

After calculating n and r in GMP datatype mpz t the GNU implementation of gcd() can
be used to calculate n′ and r−1:

1 // Initialisation of the multiprecision variable n’

2 mpz_t n_;

3 mpz_init(n_);

4 mpz_set_ui(n_ ,0);

5 // Initialisation of the multiprecision variable r^(-1)

6 mpz_t r_;

7 mpz_init(r_);

8 mpz_set_ui(r_ ,0);

9

38

4.1 Implementation on the CPU

10 mpz_gcdext(NULL , r_, n_, base , n);

11 mpz_neg (n_ , n_);

12 mpz_mod (n_ , n_ , base);

13

14 mpz_gcdext(NULL , r_, NULL , r, n);

15 mpz_mod (r_ , r_ , n);

Listing 4.2: Calculating the greatest common divisor during preprocessing

At this time n, r, n′ and r−1 are all accessible as GNU multiprecision datatype mpz t.

4.1.3 Transformation into Montgomery form

The transformation into Montgomery form (h(m) = m ∗ r mod n) is processed for every mi

after each other. This is done by a for loop that iterates over one dimension of the array M .
Since the transformation includes a modulo operation, where the module is not a power

of 2, the transformation cannot be calculated on the GPU by using a logical bitwise AND
operation, as it is done during Montgomery algorithm. A modulo operation neither a division
is provided by the QPULib itself. Besides, the question arises whether the slower execution
time and memory accesses on the GPU would actually lead to longer execution time for this
one-time calculation. For these reasons, the transformation of the partial messages mi is
calculated sequentially on the CPU and only then transferred to the GPU. Therefore also
the GNU Multiple Precision Arithmetic Library (GMP) [G+] is used, that contains a modulo
operation for multiprecision intergers.

The following example shows how the Transformation is calculated using the GMP library:

1 // Initialisation of the multiprecision variable h(m)

2 mpz_t h_m;

3 mpz_init(h_m);

4 mpz_set_ui(h_m ,0);

5

6 // h(m)= (m * r) mod n

7 mpz_mul (h_m , m, r);

8 mpz_mod (h_m , h_m , n);

Listing 4.3: Transformation of m into Montgomery form h(m)

4.1.4 Preparation of the data for processing with the QPULib

All data used for RSA encryption is now prepared for the Montgomery exponentiation and
accessible as GMP type mpz t. Until the GPU can use these data for exponentiation some
more steps are needed to access the data with the QPULib on the GPU. In the following
three paragraphs, first the multiprecision integers that were defined newly for calculations
on the GPU are explained. Later the conversion of GMP type mpz t into these newly defined
GPU multiprecision integers is explained. Finally these multiprecision integers are loaded
into memory that can be accessed by the CPU and GPU.

Multiprecision numbers on the GPU Since the RSA encryption requires very large num-
bers, but the QPULib does not support a multiprecision library, the multiprecision integer
and the operations used on it must be implemented independently for the GPU.

39

4 Implementation of RSA

char[]:
 	 	 	

1 0 1 1 1 1 1 1

1 0 0 0 0 0 0 0
index	1	index	0	

Figure 4.2: Representation of the number 509 in a multiprecision integer consisting of chars

These are realized by arrays of a certain data type. They are big endian, so that the index
of each element corresponds to its value in the number system. They can be imagined as
numbers of any number system, except that the value of each array element stands for a
certain digit, and the base of the number system is one greater than the maximum possible
value of the array elements.

The figure 4.2 shows how for example char arrays can be used to represent larger numbers
than are actually possible with 8 bits.

Here the number 509, which actually can’t be represented in a char is represented by a
char array. Since a char can have a maximum value of 28 − 1 = 255, the largest possible
base can be 28 = 256. It is pointed out that any smaller value would be possible as a
base, but would lead to unused bits and resulting wastage of memory. Now the desired
number 509 must be converted into the number system with the base 256 of which the
digits can be numbers from 0 to 255. This way we get the number (517)8 = 2531, because
253 ∗ 2560 + 1 ∗ 2561 = 509. The first element of the array contains the value 253 and the
second one contains the value 1. Together they are interpreted as a multiprecision integer
with the value 509.

Since the Montgomery algorithm is executed on these multiprecision integers, the number
of iterations of the algorithm depends on the length of these arrays. For this reason it
is necessary to keep the arrays as short as possible, which means to select the individual
elements of the arrays as large as possible. The figure 4.3 shows how the performance of the
Montgomery exponentiation changes depending on which base is chosen for the algorithm.
The seconds relate to a sequential execution of the algorithm with only one 128 Byte message
as input performed on a 2,2 GHz Intel Core i7. But also here it can be seen how the base
has influence on the performance.

Because neither the QPULib nor the VideoCore IV supports the data types long and
unsigned int we chose pointer on int arrays for the multiprecision integers. In this way,
31 bits can theoretically be used in each element of the array before an overflow occurs. The
largest possible value is recommended because the bottleneck of the GPU is the memory
access.

Conversion of GMP data to multiprecision number As explained above, the numbers n,
n′ and h(m) are calculated with the GMP library. Since these numbers are used further on
the GPU, they must be transferred into a data structure usable on the GPU. For this the
multiprecision integers explained in chapter 4.1.4 were chosen.

The new multiprecision integers are filled by representing the gnu mpz t number binary
and then converting it to the base of the numeral system in which the Montgomery algorithm
will be calculated in. Since the base for the Montgomery algorithm should be a power of
two anyway, it is easy to read logb(base) many digits from the binary form and stored them
as one element of the array.

For the base, the following applies: base = 2x and the larger it is, the better, because

40

4.1 Implementation on the CPU

Figure 4.3: Performance of the sequential modular exponentiation calculated in different
number systems

then the resulting multiprecision integer is shorter. Still it must not be so large that the
operations applied on the multiprecision numbers lead to an overflow. A possible overflow is
determined by the size of the base in combination with the way the multiprecision operations
are implemented.

For this implementation the base = 230 was chosen. This means that each element of
the integer array is filled to 30 of 32 bits with data. Since the chosen data type for the
multiprecision integers is int, only 31 bits are generally available for positive numbers.
Because two numbers of the same size in a number system can lead to a carry of maximum
one digit, the sum of two numbers of 30 bits can still be stored in the 31 bits of an int. A
normal Addition operation is therefore possible with this base. For multiplication, the result
can be twice as many bits long. Therefore the base could only be 15 bits so that the result
can be stored in the available 31 bits of an int. Since this would mean a memory utilization
of only 50% during all other operations, it was decided to allow the multiplication of 30-bit
numbers by a more complex multiplication operation, since the memory access which is the
bottleneck of the GPU can be reduced by this. This is why the base = 230 is used.

In total the GMP mpz t numbers n, n′ are calculated only once for the whole message
M and the Montgomery form h(mi) is calculated only once for each message part mi on
the CPU. Still on the CPU they are stored in data structures usable for the GPU. From
this moment on it is possible to continue the calculation parallel on the GPU with as little
memory as possible.

Allocating memory accessible by CPU and GPU To be able to access the data with the
QPULib, they must be loaded into the QPULibs datatype SharedArray<int>. The chosen
length of these SharedArrays is explained later. The SharedArrays are initialized as follows:

41

4 Implementation of RSA

1 SharedArray <int > qpu_h_m(p_len *16 * numberOfQPUs),

2 qpu_n_ (16),

3 qpu_new_hm(p_len *16 * numberOfQPUs),

4 qpu_t (16*(p_len+r_len) * numberOfQPUs),

5 qpu_s (16*(p_len +1) * numberOfQPUs),

6 qpu_n (16* p_len * numberOfQPUs);

Listing 4.4: Initializing the needed SharedArray<Int>

Since each QPU calculates on a 16 values long vector, the used constants n′ and n are set
as SharedArrays, whose 16 vector elements are all filled equally.

Because n′ is always smaller than the base, a SharedArray with only 16 elements contain-
ing the value of n′ is passed to the GPU. This is done as shown in listing 4.5.

Since n only fits into a multiprecision integer, a SharedArray is created that has 16 times
the length of the multiprecision integer n. These elements are filled so that the first 16
elements each contain the 1st digit of the multiprecision integer n, the next 16 elements all
contain the second digit of the multiprecision integer n and so on. The figure 4.4 shows
abstractly how the SharedArray is filled with the data of n. The implementation is shown
in listing 4.5.

	

qpu_n	

N	

length	of	n	

(length	of	n)	*	16	

.		.		.	

Figure 4.4: Sequence of loading the multiprecision integer N into the GPU data qpu n

In order to use the computing power of the QPU, 16 different messages should always
be calculated simultaneously on one QPU. Additionally several QPUs are used. Since the
GPU executes the same instructions on all data, all data used by the QPUs which are all
h(m) must be loaded into the same SharedArray. This means that the SharedArray, which
should contain all multiprecision integers h(m), must have the length of one multiprecision
integer h(m) times 16, for all vector elements calculated simultaneously in a QPU, times the
number of QPUs used. For 12 used QPUs and a length of 35 elements per multiprecision
integer h(m) the SharedArray<int> qpu h m reaches a length of 16*12*35 integers.

Figure 4.5 shows the order in which the SharedArray<int> qpu h m is filled with the
different messages in Montgomery form h(mi). All 16*12 1st digits of the multiprecision
integers h(mi) are loaded into the first 16*12 addresses of the shared array. All 16*12 second
digits of the multiprecision integers are loaded int the addresses 16*12 to 2*16*12-1, and so
on.

42

4.1 Implementation on the CPU

	

qpu_n	

N	

.		.		.	

length	of	n	

(length	of	n)	*	16	

h(m1)	

h(m2)	

h(mi)	

.		

.			

.	

qpu_hm	

(length	of	h(m))*	i	=	(length	of	h(m))	*	16	*	(number	of	active	QPUs)	

Figure 4.5: Sequence of loading the multiprecision integers h(mi) into the GPU data qpu h m

The Listing 4.5 shows how the filling of three variables qpu n , qpu n and qpu h with data
is implemented.

1 // qpu_n__

2 for (int i = 0; i < 16; i++) {

3 qpu_n_[i] = n__;

4 }

5 // qpu_n

6 for (int i = 0; i < 16*35; i++) {

7 qpu_n[i] = N[i/16];

8 }

9 // qpu_h_m

10 for (int i = 0; i < 16*35; i++) {

11 qpu_h_m[i] = H_M [((i*35) %(35*16)) + i/16];

12 }

Listing 4.5: Loading the data into the needed SharedArray<Int>

The SharedArrays qpu new hm, qpu t, qpu s are not filled with data, because they will
be filled during the algorithm.

4.1.5 Exponentiation by Squaring

The exponentiation by squaring takes place directly afterwards. Before it starts, the QPULib
function used, the Montgomery multiplication, has to be compiled and the number of QPUs
is set, as mentioned in the background in chapter 2.4.3. The exponentiation is done as
described in the theoretical algorithm in chapter 2.3.2. The exponent, which is available as
GMP data type mpz t, is divided by 2 using the GMP library after each iteration. Within
each iteration the Montgomery multiplication is executed by a QPULib call on the GPU.

43

4 Implementation of RSA

During each multiplication, the data for each h(m) in the SharedArray is changed by the
GPU operations and serves as a new value in the next iteration. As soon as the exponent
is 0 the exponentiation is finished. This comparison is also done with the GMP library. In
the following the implementation of the exponentiation by squaring is shown:

1 // Compiling the Montgomery multiplication performed on the GPU

2 auto kernel = compile(mont_mul);

3 // Set number of QPUs

4 kernel.setNumQPUs(numberOfQPUs);

5

6 // Exponentiation by Squaring

7 int exponentiation_flag = 0; // flag for first iteration of

exponentiation

8

9 while (0 < mpz_cmp_d(mpz_exponent , 0)) {

10 if (mpz_odd_p(mpz_exponent)){

11 if(exponentiation_flag != 0){

12 kernel (&qpu_h_m , &qpu_new_hm , &qpu_t , &qpu_s , &

qpu_n , &qpu_n_);

13 }else {

14 for (int i = 0; i < 16* p_len * numberOfQPUs; i++) {

15 qpu_new_hm[i] = H_M[((i*p_len)%(p_len *16*

numberOfQPUs))

16 + i/(16* numberOfQPUs)];

17 }

18 exponentiation_flag = 1;

19 }

20 }

21 kernel (&qpu_h_m , &qpu_h_m , &qpu_t , &qpu_s , &qpu_n , &qpu_n_)

; mpz_tdiv_q_2exp(mpz_exponent , mpz_exponent , 1);

22 }

Listing 4.6: Exponentiation by Squaring

4.1.6 Transformation out of Montgomery form

After the Montgomery exponentiation, implemented as exponentiation by squaring, all re-
sults for each message in Montgomery form h(mi) are now ciphers in Montgomery form
further called h(ci). They have to be transformed out of the Montgomery form into their
original form ci.

Therefore all h(ci) are loaded individually from the qpu new hm in a for loop exactly
opposite to the loading in chapter 4.1.3, converted into the mpz t variable result h and
then transformed back out of Montgomery form using the GMP library. All used numbers
are already available as GMP data. The implementation for the re-transformation is as
follows:

1 mpz_t result;

2 mpz_init(result);

44

4.2 Implementation on the GPU

3 mpz_set_ui(result ,0);

4

5 // h(m) = (m*r)mod N

6 mpz_mul (result , result_h , r_);

7 mpz_mod (result , result , n);

Listing 4.7: Transformation out of Montgomery form

All ciphers ci calculated in the variable result are converted into a string and stored in the
two dimensional array M , returned as the result.

4.2 Implementation on the GPU

As in chapter 3.4 explained the implementation on the GPU performs solely the Montgomery
multiplication.

The QPULib is used to execute the Montgomery multiplication on the GPU. Each QPU
can process 16 data simultaneously and the VideoCore IV of the Raspberry Pi has a total
of 12 QPUs. All 12 QPUs are used during the implementation.

In the following the implementation of the Montgomery multiplication with the help of
the QPULib is explained. In addition, the implementations of the called subfunctions,
the multiprecision multiplication, multiplication, multiprecision subtraction and multipreci-
sion comparison are shown. The special aspect is that all QPUs have to access the same
SharedArray and have to be coordinated.

4.2.1 Montgomery Multiplication

To understand the implementation of the Montgomery multiplication, the algorithm intro-
duced in chapter 2.3.4 is recalled. Algorithm 7 shows the same Algorithm, but numbers
all parts to enable a more structured description of the implementation. To give a short
summary of the algorithm, first the normal product of the two multiplicants is calculated in
part 1. The product T is then processed in a double for loop so that it is finally reduced
again to half the length in part 2. The result S is then compared with the given modulo N
in part 3, and in the case that S is greater than N , N is subtracted from S in part 4. This
result is returned as NEW H M so that it can be used for the next iteration as described
in the sequential implementation.

As explained in the introduction of the QPULib the data types SharedArray<int> get
transformed to the GPU accessible data type Ptr<Int>. That’s why the implementation of
the Montgomery multiplication mont mul has input parameters of the type Ptr<Int> only in
the number matching to the kernel called in the CPU implementation. For better reading,
the variables are now again written in Capital letters. Listing 4.8 shows the function with
its parameters.

1 void mont_mul(Ptr <Int > H_M , Ptr <Int > NEW_H_M , Ptr <Int > T,

2 Ptr <Int > S, Ptr <Int > N, Ptr <Int > n__)

Listing 4.8: Montgomery Multiplication parameters

For the multiplication of both input multiplicants H M, NEW H M in part 1 the method
qpu mul is called, that performs a multiprecision multiplication. Its implementation is ex-

45

4 Implementation of RSA

Algorithm 7 Montgomery Multiplication in four parts

Input: Base B = 2x with x ∈ N
H M , NEW H M represented in p digits,
N with gcd(b,N) = 1 and represented in p digits,
N ′ with 0 ≤ N ′ < B

Output: S with 0 ≤ S < N and represented in p digits

// part 1
T ← H M ∗NEW H M
T [r + p]← 0

// part 2
for 0 ≤ i < r do
c← 0
m← T [i] ∗N ′ mod B
for 0 ≤ j < p do
x← T [i+ j] +m ∗N [j] + c
T [i+ j]← x mod B
c← bx/Bc

end for
for p ≤ j ≤ r + p− i do
x← T [i+ j] + c
T [i+ j]← x mod B
c← bx/Bc

end for
end for
for 0 ≤ i ≤ p do
S[i]← T [i+ r]

end for

// part 3
if S ≥ N then

// part 4
return S −N

else
return S

end if

46

4.2 Implementation on the GPU

plained in chapter 4.2.2. The highest value of the multiprecision integer T is set to 0 by a
store call, to not block the processing through waiting for stores.

Then the result T of the multiplication is processed in part 2. Therefore two for loops are
processed in one for loop. Its incrementation parameters are shown in listing 4.9.

1 For (Int i = 0 + me()*16, i < 35*16* num_QPUs , i = i+16* num_QPUs

)

2 ...

3 For (Int j=0, j <35*16* num_QPUs , j=j+16* num_QPUs)

4 ...

5 End

6

7 For (Int j=35*16* num_QPUs , j <=2*35*16* num_QPUs -i,

8 j=j+16* num_QPUs)

9 ...

10 End

11 End

Listing 4.9: Incrementations in the double For loop

In the implementation all often used values as of example 16*num QPUs are stored in
variables so that they don’t have to be calculated newly every time.

The increment of the counters i and j by 16 times the number of QPUs is explained by
the fact that each QPU processes 16 values at the same time. So after an iteration 16 times
number of QPUs any values were processed and the new ones, starting at the new value of
the increment have to be processed now.

The 35 in the For loop results from the fact that the multiprecision integer in this im-
plementation consists of 35 elements. Therefore the Shared arrays are also 35*16*num QPUs

long.
So the parallel processing of different data takes place via the iteration, whereby all QPUs

get different start positions of the multiprecision integer T. Therefore each QPU calculates
its starting value with the function me(), and adds this result, the unique id of the QPU,
times 16 to the given starting value that is the same on each QPU: T = T+me()*16. This
way each QPU processes different data in the end.

The individual operations used within the loops do not yet require multiprecision opera-
tions, since each element of the multiprecision integer T is iterated over individually.

However, there are three special features of the implementation at this point.
First, each modulo operation is replaced by a bitwise AND, as explained in chapter 2.3.3.

This is possible because the used module B is a power of 2. Only this allows a modulo
operation to be executed on the GPU at all, since not even a division is hardcore implemented
on the VideoCore IV.

Second, each division is calculated by a bitshift, because the divident is also a power of 2.
How this is possible was explained in chapter 2.3.3 as well.

And third, the modular multiplication of two integers is done by a split multiplication,
which is described in chapter 4.2.3, because the multiplication of two 30 bit integers could
otherwise cause an overflow.

Furthermore, in order not to wait for write and load processes, all memory accesses of the
inner For loops were implemented with gather, receive and store, as explained in chapter
2.4.3.

47

4 Implementation of RSA

After the execution of part 2, S is returned to all QPUs.

In part 3 S is now compared with N and in case S is larger than N , N is subtracted from
S in part 4 and later the result is stored in the multiprecision integer NEW H M .

Since, as explained in chapter 2.4.3, because of the SIMD principle, no For loop can be
executed in a Where condition, the algorithm cannot be implemented here as written. The
multiprecision subtraction can only be performed in a For loop, and therefore must not be
implemented in a Where statement that compares the size.

That is why the comparison of S and N is done first. Therefore the function qpu compare

is called whose implementation is described in chapter 4.2.4. As a result, each QPU receives
an Int, whose 16 elements indicate for all 16 different S whether it is greater than N . The
call of the function is shown in Listing 4.10.

1 Int compare = 1;

2 qpu_compare(S, N, &compare);

Listing 4.10: Comparison of S and N

To perform the subtraction now nevertheless only on those where S is greater than N, all
steps of the multiprecision subtraction which require only read accesses are performed on
all 16 vector elements in every iteration over the multiprecision integer. Before the result of
each iteration is written into the result NEW H M, it is now tested by a Where whether this
vector element is part of an S grater than N at all and only then actually changed.

That is why the multiprecision subtraction was not implemented in a separate function,
but embedded in the Montgomery multiplication. In detail it is performed as follows. To
subtract S from N, the same element of the multiprecision integer N is subtracted from
the element of the multiprecision integer S in each iteration of a For loop, starting with
index 0, the least significant digit of the multiprecision integers. Since each element is a
normal integer, the normal subtraction of the QPULib can also be used. Using a bitwise
AND modulo of the base on the difference the new digit for the same index of the resulting
multiprecision integers NEW H M is calculated. If the result is less than 0, a carry of 1 is stored
for the next multiprecision integer element, which is then additionally subtracted from the
next digit. Before jumping into the next iteration, the result of the compare call is used to
check whether S is greater than N, and if so, the result diff is also written to the appropriate
element of NEW H M.

1 Int c = 0;

2 Int diff = 0;

3 For (Int i = 0+me()*16, i < 35*16* num_QPUs , i = i+16* num_QPUs)

4 diff = (*(S+i) - *(N+i) - c) & BASE;

5 c = 0;

6 Where (*(S+i) - *(N+i) - c < 0)

7 c = 1;

8 End

9 Where (compare > 0)

10 *(NEW_H_M+i) = diff;

11 End

12 End

Listing 4.11: Subtraction of N from S

48

4.2 Implementation on the GPU

Listing 4.11 shows the basic implementation described above where part 3 and part 4 of
the classic algorithm is marked. Here, as well, the parallel processing of different data is
implemented by each vector element starting with a different pointer to S, N and NEW H M

because of the call me() and the incrementation of counter i leads to a skipping of all data
that was already processed by other QPUs. In addition, and not shown in the listing, all
memory accesses are also performed with gather, receive and store.

At this time a whole Montgomery multiplication has been performed, with the result of
all 16*numQPUs multiprecision integer stored unter the Ptr<Int> NEW H M. The execution is
passed back to the CPU, which completes the exponentiation by squaring, and if necessary
calls the Montgomery multiplication on the GPU again, with the data in NEW H M having
now changed.

4.2.2 Multiprecision Multiplication

The multiprecision multiplication qpu mul is the most complex multiprecision operation that
is implemented, because it iterates in a double loop over both multiplicants. It’s implemen-
tation can be seen in the appendix 6.1. As in textbook mathematics, each digit of the two
numbers, in our case each element of the multiprecision integer, is multiplied by each other.
Depending on the size of the result, a carry is set for the next iteration, that means the next
larger digit of the result.

Also here the iteration and the addition of me() to Ptr<Int> allows the parallel processing
of different data. Furthermore, the required multiprecision elements are loaded in both For

loops via gather and receive, and stored with store.

The special feature of the implementation lies in the multiplication of the individual 30
bit multiprecision elements and the storage of the carry, without the results being falsified
by an overflow. The split multiplication from chapter 4.2.3 is used for this.

4.2.3 Multiplication

Integer multiplications are performed at several points of the Montgomery algorithm. As an
example, during multiprecision multiplication, each element of a multiplicant is multiplied
by each element of the other multiplicant.

The problem with this multiplication is that both multiplicants can be up to 30 bit in
size. So their product could take up to 60 bit and therefore not fit into the used data type
Int. There can not be calculated with bigger data types on the QPU and in addition, only
24-bit multiplications are possible on the VideoCore IV.

The function qpu split mul enables this calculation and returns the result in an array
with two elements, where again each element stands for a digit in the number system of the
base. Its entire implementation can be found in appendix 6.2.

The calculation is carried out by first dividing the multiplicants with right shifts and AND
operations into four integers, which are filled in half of the base, that is 15 bit. These four
elements are now handled like a new multiprecision integer with base 15 and a multiprecision
multiplication is performed with them, only that the multiplication of the single 15 bit
elements is now possible. At the end the result is again in 4 integers, which are only filled
up to 15 bit. This process is shown in figure 4.6. Then the four integers can be stored in
two integers again with the help of left shifts and OR operations, which are again filled up
to 30 bit. This result can be seen as a two-digit number of the original number system with

49

4 Implementation of RSA

the base 30 again, whereby the higher digit in the multiprecision multiplication can be taken
over immediately as carry.

	
	 	*	x	 y	

	 	x0	 x1	 	 	y1	y0	

	

30	bit	

	15	bit	

	 	product0	 product1	

	 	 	 	pr0	 pr2	pr1	 pr3	

multiplication	of		all	15	bit	elements		with	each	other...	
	

						...	and	storing	the	results	in	four	15	bit	elements	

Figure 4.6: Multiplication of two 30 bit numbers by splitting into 15 bit numbers and merging
after the multiplication of the single 15 bit numbers

In the case of modular multiplication, as for example when calculating T[i] * n’ mod B

= t*n’ mod B, during the For loops in Montgomery multiplication also the split multipli-
cation is used, whereby the least significant result digit directly represents the result of the
modulo operation. A normal multiplication is not possible, although the possible overflow
would not matter because of the following modulo operation. This is because only 24 bit
numbers and no 30 bit numbers can be calculated on the QPU. The result would still be
wrong.

4.2.4 Multiprecision Comparison

The comparison of two multiprecision integers is performed with the function qpu compare.
To do this, pointers to the two shared arrays S, N with the multiprecision integers and a
result Int are passed as parameters.

As before, all QPUs get the same pointers, which they use to access different data for
different multiprecision integers using me(). As result, each QPU passes its own Int.

The method iterates over the given multiprecision integers, starting with the most signifi-
cant bit. As soon as it is noticed that one element is larger than the other, the result can be
set. If S is greater than N, the result is set to 1. If the size is same than 0, and otherwise -1.

Because each QPU compares 16 values simultaneously, this is done via a Where. Depend-
ing on where x > y the result Int is set to 1, otherwise it remains as it is.

As soon as the result for one of the 16 elements is fixed, this element is set to 1 in another
Int, the flag. This shows in the next iteration if a decision is fixed or if you still have to
set the result for this element.

How to compare the flag and the elements in the For loop is shown in Listing 4.12. The
gather and receive commands used in the real implementation have been omitted for better
understanding. The full method is listed in the appendix 6.3.

50

4.3 Difficulties of the RSA Implementation

1 For (Int i = 0+me()*16, i < 35*16* qpu_nums , i = i+16* qpu_nums)

2 Int x = *(S + (34*16 * qpu_nums - i + 16));

3 Int y = *(N + (34*16 * qpu_nums - i + 16));

4 receive(xOld);

5 receive(yOld);

6 Where (flag == 0)

7 Where (x > y)

8 *result = 1;

9 flag = 1;

10 End

11 Where (x < y)

12 *result = -1;

13 flag = 1;

14 End

15 End

16 End

Listing 4.12: Comparison of single multiprecision integer elements

4.3 Difficulties of the RSA Implementation

The previous sections described exactly how the RSA algorithm from chapter 3.4 was imple-
mented. First the part that was calculated sequentially on the CPU was described, then the
part that is executed in parallel on the VideoCore IV. In addition to the concepts already
described, there are additional optimization possibilities and special issues considered during
implementation that are discussed in detail here.

Especially with the GPU implementation a further optimization could be done by omitting
the multiprecision integer S in the Montgomery multiplication and simply replacing it with
a pointer pointing to the desired position in T . This could skip a few operations that are
currently being performed. Unfortunately this was not possible in this implementation due
to time constraints.

Some behavior of the QPULib or VideoCore IV could not be explained during the imple-
mentation and led to individual differences in the implementation which have not yet been
listed. For example, the application of gather and receive does not always work. At one
place the wrong data is delivered. For this reason, the data is read and written back using
pointers instead. The values loaded using gather and receive are therefore not used. But
as soon as the gathers are commented out, the Montgomery multiplication returns wrong
results at some stage of the exponentiation although the FIFO was empty at the beginning
and at the end again. Therefore, in the final implementation, gather and receive are called,
but not used.

Also unclear is the different behavior of all QPUs in some cases. In general, variables which
store the results of very frequent calculations have been created for the implementation so
that they do not always have to be recalculated. For example, in all For loops the value of
me()*16 was replaced by a variable. At exactly one point in the implementation, this only
does not work for some QPUs. Which and how many is always different. In any case, 3 of
the 12 QPUs usually give incorrect results, while the others give the correct result as soon
as the variable instead of me()*16 is given at a certain position. Because always different

51

4 Implementation of RSA

QPUs give wrong results, it was found that every QPU can sometimes get the right result.
Again, no explanation could be given why the operation me()*16 has to be recalculated at
this point instead of being loaded from a variable.

With special attention to these peculiarities the implementation of RSA which runs parallel
on VideoCore IV works. How the implementation was tested and which results were drawn
can be found in the next chapter.

52

5 Evaluation

In this chapter the developed RSA implementation, that runs partly on the Raspberry Pi’s
GPU, will be tested.

The fact that the implementation also fulfills the RSA standard was verified by encrypting
data on the GPU and afterwards successfully decrypting it with the raw OpenSSL RSA
algorithm and the other way around. Therefore, the RSA implementation is considered
correct. At this point it is mentioned again that the algorithm is still not necessarily secure
because it does not automatically pad the message to be encrypted. But still outsourcing of
parts of the RSA algorithm to the GPU is thus possible.

Furthermore, the question shall be answered whether the parallel execution on the GPU
has an advantage over the sequential execution on the CPU. For this the execution time of
the partially parallel algorithm is compared with that of a sequential implementation.

As a sequential comparative algorithm the RSA implementation of OpenSSL was chosen.
In order to be able to compare the two execution times in the correct ratio, it was decided
to execute both implementations the same way using an OpenSSL engine. How this was
implemented is explained in chapter 5.1.

To test the performance of cryptography, OpenSSL provides the functionality speed, which
measures the maximum number of engine calls for 10 seconds and calculates the throughput
of bytes per second for each engine. Unfortunately, the speed function cannot be used for
the engines used because the input of the GPU implementation does not correspond to the
usual number of bytes. For this reason it was decided to measure the execution time of 100
invocations for both engines and then to calculate a comparable throughput for each. The
exact details of this test can be found in chapter 5.2.

After that the measured test results are presented and compared in chapter 5.3 and finally
possible reasons for the results are discussed.

5.1 OpenSSL Engine

The OpenSSL engine is provided by OpenSSL to modify only single parts of existing OpenSSL
implementations, to for example optimize them to a special hardware, as it is the case here.
It has to be implemented in c code. To run such an engine instead of the usual OpenSSL
algorithm, simply the flag -engine and the absolute path to the compiled engine have to be
added to the usual OpenSSL call.

Two RSA engines were implemented for the evaluation. One that tests the GPU im-
plementation and one that tests the standard sequential RSA encryption on the CPU in
the same experimental setup to produce comparable results. In both engines the standard
methods rsa pub enc for encryption and rsa priv dec for decryption were overwritten.

Normally both engines read the key and data automatically and provide it in every part
of the engine. The result is also written to a file automatically. A developer just gets the
message in a pointer, encrypts it with his own implementation, and then writes the cipher

53

5 Evaluation

to another pointer again. The key is provided the same way, in a pointer on a OpenSSL
BIGNUM data type and doesn’t have to be read manually neither. But the length of input
data is limited to 256 bytes, whereby the output must not exceed 128 bytes. This is much
less than the 24576 bytes that the developed RSA algorithm processes. For this reason, both
engines read a file with the data to be processed and also write the result to a file during the
actual encryption code. The file names are given inside the code. The padding is also not
taken over by the engine. For this reason, both engines encrypt without padding, which is
why the encryption is correct, but not secure. The padding could be added as future work.

Apart from reading the same data and writing the results to a file, the encryption and
decryption methods called by the engines behave differently.

The engine for the GPU implementation brings all 24576 bytes data into the form expected
by the implementation as parameters and then executes the parallel implementation only
once on all data at the same time. The result is again ordered from a two-dimensional array
into a sequential byte sequence before it is written into the result file. The encryption and
decryption of the GPU engine differs only in the use of either the public key for encryption
or the private key for decryption.

The engine that runs the sequential OpenSSL RSA algorithm splits the 24576 bytes read
data into 128 byte packets and successively performs the usual RSA encryption or decryption
method on all 128 byte packets.

This means that both engines process the same amount of data, with the only differ-
ence that one algorithm runs partially in parallel on the GPU and the other completely
sequentially. The implementation of both engines can be found in Appendix 6.

5.2 Testsetup

In addition to the fact that the RSA implementation on the GPU is also correctly encrypted
and decrypted, the execution time of the parallel GPU implementation shall be examined
against a sequential implementation on the CPU. That’s why the execution times of the
encryption and decryption of the two engines introduced in the previous chapter are tested.
The GPU engine represents the execution time of the RSA algorithm which is partially
implemented on the GPU in parallel. The OpenSSL engine represents an RSA algorithm
executed sequentially on the CPU.

By measuring the execution times of the four methods, encrypting with the GPU engine,
decrypting with the GPU engine, encrypting with the OpenSSL engine and decrypting with
the OpenSSL engine, the four variants can be compared and conclusions drawn about the
benefits of outsourcing to the GPU.

In order to measure the execution times of the two engines and compare them later, all
four methods were executed 100 times in sequence and the time command was used to
measure the time from the first to the last execution. By measuring the time of one hundred
executions, the four methods can already be compared well with each other. In addition,
an average execution time per call and a throughput of bytes per second can be calculated,
considering that in 100 executions exactly 24.576 KB are processed.

The tests were carried out on the Raspberry Pi 1B+, which ran with a CPU frequency of
700 GHz and a GPU frequency of 250 GHz. The RAM was equally split between CPU and
GPU. Further hardware details can also be found in chapter 2.4.

54

5.3 Results

5.3 Results

In this chapter, the results of the tests on the parallel RSA algorithm implemented in this
thesis are compared with the test results of the sequentially executed standard OpenSSL
RSA algorithm, that were used on exactly the same data. Later, possible reasons for the
results are discussed.

With the OpenSSL implementation, the encryption of 24.576 KB sequentially takes 34.547
seconds with a throughput of approximately 71.1379 KB/s. With the GPU implementation,
174.286 seconds are required, which corresponds to a throughput of 13.9132 KB/s. The
comparison of both times for 100 executions is shown in graph 5.1. As a result, the OpenSSL
implementation requires only 19.8% of the execution time of the GPU implementation on
exactly the same data.

1,743	

0,345	

0	
0,2	
0,4	
0,6	
0,8	
1	

1,2	
1,4	
1,6	
1,8	
2	

GPU	 OpenSSL	

5m
e	
in
	se

co
nd

s	

RSA	Encryp5on	

Figure 5.1: Comparison of RSA Encryption executed on the CPU and on the GPU

The decryption by the sequential OpenSSL engine processes 24.576 KB in 244.103 sec-
onds, which corresponds to a throughput of 10067.8812 Bytes/s. The 100 executions of the
GPU implementation take 4768.421 seconds, resulting in a throughput of 514.6127 Bytes/s.
These values are reflected in figure 5.2. For the more complex decryption, the sequential
implementation also takes 5.1% of the time required by the GPU algorithm.

47,684	

2,441	
0	

10	

20	

30	

40	

50	

60	

GPU	 OpenSSL	

5m
e	
in
	se

co
nd

s	

RSA	Decryp5on	

Figure 5.2: Comparison of RSA Decryption executed on the CPU and on the GPU

55

5 Evaluation

The table 5.3 summarizes all results at once.

Operation Time 100 Executions Time single Execution Throughput

OpenSSL Encryption 34.547 s 0.345 s 71.2348 KB/s

GPU Encryption 174.286 s 1.743 s 14.0998 KB/s

OpenSSL Decryption 244.103 s 2.441 s 10.0680 KB/s

GPU Decryption 4768.421 s 47.684 s 0.5154 KB/s.

Figure 5.3: Overview of test results

Overall, the sequential execution on the CPU, as implemented by OpenSSL, is more than
five times faster than the algorithm executed partially parallel on the GPU. Whether this
result generally speaks against offloading calculations to the GPU, and which reasons could
cause the longer execution time of RSA, are discussed in the following.

Discussion

The implementation, which has been partially tested on the GPU, requires a much longer
execution time than a sequentially working one. Chapter 2.4.2 has already shown that the
GPU with its multiple vector processors actually has a theoretically much greater computa-
tional potential than the CPU. Why the resulting GPU implementation is still slower than
the sequential one will be discussed in the following. But it should be pointed out that the
OpenSSL implementation is probably one of the best optimized RSA implementations and
very difficult to rival.

One possibility for the slow calculation might be that the implementation is not optimized
well. In fact, the implementation still has small weaknesses that could not be fixed due to
time constraints. For example, in very few cases results are written into a new variable and
then further calculated in this new variable instead of in the old one. However, this happens
so rarely and only once that it cannot be the reason for the much slower calculation time.

What already costs more time is that the implementation works with the multiprecision
operations of the GMP library. But the OpenSSL engine provides the numbers for the
RSA encryption as OpenSSL data type BIGNUM. Therefore a transformation from BIGNUM

multiprecision integers to GMP multiprecision integers still takes a lot of time and could be
saved if the GPU implementation would use only OpenSSL BIGNUM operations instead of the
operations offered by the GMP library. But since this also only happens once for input and
output, it can’t be the reason for the slow computation time either.

In addition, it has not yet been tested for which number of QPUs the execution time is
fastest in proportion to the sequential implementation. It may be that processing less than
192 data, in other words using less than 12 QPUs, leads to a faster processing time due to
less memory usage.

Another possibility for the long execution time is that RSA is generally not suitable for
acceleration by outsourcing to VideoCore IV.

Chapter 3.3 showed that RSA can be parallelized in different ways. It also explained that
many of these possibilities are not yet feasible with the QPULib and VideoCore IV. The
finally implemented algorithm switches between the CPU and the GPU for each Montgomery
multiplication. This switching always causes a large overhead [Sta17]. During decryption
this switching may be done almost 2*1024 times and thus brings overhead just as often.

56

5.3 Results

Because the decryption is even slower in relation to the encryption, it is assumed that this
overhead is to a great part responsible for the slower execution time. This change, and
the resulting overhead, would not occur so often with other parallelization options. Maybe
the migration to the GPU could be accelerated by implementing another parallelization
proposal. For this the QPULib would of course have to be extended, or another method for
programming the QPUs would have to be used.

In addition, the 16-SIMD feature of the QPUs does not only bring advantages. Many steps
in the implementation must be carried out, although they would not be necessary for all 16
data. For example, almost every step of multiprecision subtraction is performed on all data,
even those that do not need to be subtracted. Their calculated result is simply discarded and
not written back to memory. But it is calculated anyway. In the sequential algorithm this
would not be necessary, but instead these steps could be omitted and therefore the whole
process would be shorter.

The probably biggest factor that leads to the slow execution time of the GPU implemen-
tation is the bottleneck, which occurs during memory accesses. Although all QPUs can
perform parallel operations, they share a VPM for memory access. This can only work
sequentially and takes a very long time to load the data, since always 16 data have to be
loaded. If all 12 QPUs load data from memory at the same time, then 11 QPUs have to
wait and accordingly the last QPU is blocked for 11 memory accesses, which means more
than 100 clock cycles [Sta17]. Since all multiprecision operations work in such a way that an
array element is read and written directly back into memory and then the next element is
loaded again, a lot of memory accesses occur and result in a lot of blocking. Because always
new data is read from memory and never the same in a row, the L2 cache also doesn’t bring
any advantage. And since RSA consists almost exclusively of multiprecision operations, a
huge bottleneck is created by memory accesses during RSA on the GPU, which becomes
even more visible during decryption because many more memory accesses occur than during
encryption. Maybe this could be reduced by always fetching as much data as possible from
memory and then calculating all of them. This could still be tried although the registers of
the QPUs are so few, that it should not make a really big difference. The bottleneck nev-
ertheless cannot be avoided when accessing memory, and is seen as one of the main reasons
for the bad performance of the GPU RSA implementation.

In summary, the GPU implementation does not nearly reach the performance of the CPU
implementation of OpenSSL. This is mainly caused by the overhead of switching between
CPU and GPU during exponentiation by squaring, as well as a large bottleneck in memory
accesses by the QPUs.

57

6 Conclusion

The aim of this work was to run RSA on the GPU of the Raspberry Pi instead of on the
CPU to relieve the CPU’s workload. Furthermore, due to the theoretical potential of the
GPU, an acceleration of the RSA algorithm was attempted. Due to the programmable 12
vector processors of the GPU, the theoretical computing power of the GPU is considerably
higher than that of the CPU despite the lower frequency.

As a first step it was worked out how RSA can be calculated efficiently and in which
way the found algorithm on the VideoCore IV, the GPU of the Raspberry Pi, could be
parallelized.

The selected variant was then programmed on CPU and GPU using the c++ library
QPULib. The implementation encrypts and decrypts 192 messages at once, whereby the
individual multiplications of the exponentiation are simultaneously calculated on all 192
messages in parallel on the GPU.

After the implementation is able to successfully encrypt and decrypt RSA, it was integrated
into the OpenSSL library. With the help of this OpenSSL engine the GPU implementation
was tested and compared to a purely CPU calculated implementation. It appeared that the
GPU implementation takes much longer than the RSA encryption on the CPU, even though
the GPU’s computing power is more powerful.

As a result of this work, it was concluded that the implementation of RSA according to the
algorithm selected in chapter 3.3 makes no sense. Probably not even the CPU was relieved,
but GPU and CPU were additionally loaded, since the implementation needs at least 5 times
longer than the pure CPU implementation.

This is mainly attributed to two reasons. First, the frequent change between CPU and
GPU execution with each multiplication leads each time to an overhead. In addition, RSA
is based on multiprecision operations. And for these, a lot of memory accesses have to
be made one after the other, leading to a large bottleneck when sequentially loading data
from memory for 12 QPUs requesting simultaneously. For these reasons, the partially GPU
executed RSA implementation is much slower than the CPU computed one by OpenSSL,
with decryption being proportionally even slower than encryption.

In the future, we could work on methodologies to reduce these two problems of the current
implementation and improve the run time a bit. Exactly what these are will be explained
in the next section. However, the result of this work is that RSA is not suitable for running
on the GPU of the Raspberry Pi, since the multiprecision operations required are none of
the calculations that would make ideal use of the GPU’s parallel computing power. It is not
expected that RSA on the VideoCore IV can be greatly accelerated in comparison to a CPU
implementation.

Future Work

This work is a first attempt to calculate RSA to the GPU of the Raspberry Pi. Although
only one attempt for parallelization was implemented, several possibilities of how RSA could

59

6 Conclusion

be executed on the VideoCore IV were developed.
For this reason, the next step would be to test the other parallelization possibilities in

comparison to this one. Some of these variants were excluded because the QPULib does not
allow the required number of memory accesses. However, it is assumed that the QPULib
can be modified so that the number of accesses is unlimited. So this modification should
be done so that not only the single multiplications but also the whole exponentiation can
be executed to the GPU. Thus, the overhead that occurs when switching between CPU
and GPU and currently can be almost 2*1024 times during decryption would only occur
once. This implementation could therefore have a big run time advantage over the current
implementation. In addition, different messages could be encrypted with different keys, or
a message could be encrypted faster by parallelizing a modular exponentiation.

This work provides enough ideas to execute RSA in a different way on the GPU. Never-
theless, I believe that there are some cryptographic algorithms that have greater potential
to be accelerated through the features of VideoCore IV. For this reason, I hope that this
work will be used as a negative example to give an insight into the behavior of VideoCore IV
and QPULib for RSA. The strengths of VideoCore IV lie in performing many operations on
the same data with as few memory accesses as possible. Repeated read accesses to the same
data can also be performed relatively quickly. In addition, its special feature is that it can
rotate the data within the 16 vector without having to store it temporarily. Furthermore the
cryptographic algorithm should encrypt so much data that all 192 possible operations can
be used efficiently. Hopefully with this information a better choice for a new cryptographic
algorithm can be made and successfully accelerated on the GPU of the Raspberry Pi.

60

Appendix

GPU methods

1 #define BASE_SIZE 30

2 #define HALF_BASE_SIZE 15

3 #define MOD_BASE 32767

4 #define qpu_nums 12

5

6 void qpu_big_mul(Ptr <Int > a, Ptr <Int > b, Ptr <Int > res){

7 Int c;

8 Ptr <Int > p = a + index () + (me() <<4);

9 Ptr <Int > q = b + index () + (me() <<4);

10 Ptr <Int > r = res + index () + (me() <<4);

11 gather(p);

12 Int aOld , bOld;

13

14 For (Int i=0, i <35*16* qpu_nums , i=i+16* qpu_nums)

15 c = 0;

16 gather(q);

17 receive(aOld);

18

19 For (Int j=0, j <35*16* qpu_nums , j=j+16* qpu_nums)

20 gather(q+j+16 * qpu_nums);

21 receive(bOld);

22

23 //split into smaller datatypes

24 Int a_0 = aOld & MOD_BASE;

25 Int a_1 = aOld >> HALF_BASE_SIZE;

26 Int b_0 = bOld & MOD_BASE;

27 Int b_1 = bOld >> HALF_BASE_SIZE;

28

29 // Multiply small parts

30 // a_0*b_0

31 Int res_0 = (a_0 * b_0) & MOD_BASE;

32 Int res_1 = ((a_0 * b_0) >> HALF_BASE_SIZE)

33 +((a_1 * b_0) & MOD_BASE);

34 // a_1*b_0

35 Int c_c = ((a_1 * b_0) >> HALF_BASE_SIZE)

36 + (res_1 >> HALF_BASE_SIZE);

37 res_1 = (res_1& MOD_BASE)+((a_0*b_1) & MOD_BASE);

61

Appendix

38 Int res_2 = c_c;

39 Int res_3 = res_2 >> HALF_BASE_SIZE;

40 res_2 = res_2& MOD_BASE;

41 // a_0*b_1

42 c_c = ((a_0 * b_1)>> HALF_BASE_SIZE)

43 + (res_1 >> HALF_BASE_SIZE);

44 res_1 = res_1& MOD_BASE;

45 res_2 = res_2 + c_c;

46 res_3 = res_2 >> HALF_BASE_SIZE;

47 res_2 = res_2& MOD_BASE;

48 // a_1*b_1

49 res_2 = res_2 + ((a_1*b_1) & MOD_BASE);

50 c_c = ((a_1 * b_1)>> HALF_BASE_SIZE)

51 + (res_2 >> HALF_BASE_SIZE);

52 res_2 = res_2& MOD_BASE;

53 res_3 = res_3 + c_c;

54

55 // calculate result in original base_size

56 Int low15 = res_1 << HALF_BASE_SIZE;

57 low15 = res_0 | low15;

58 Int high15 = res_3 << HALF_BASE_SIZE;

59 high15 = res_2 | high15;

60

61 // end of split multiplication

62

63 low15 = low15+res[i+j + (me() <<4)];

64 Where (low15 >= BASE)

65 high15 ++;

66 low15 = low15 - BASE;

67 End

68 low15 = low15+c;

69 Where (low15 >= BASE)

70 high15 ++;

71 low15 = low15 - BASE;

72 End

73

74 *(res+i+j + (me() <<4)) = low15;

75 c = high15;

76 End

77 gather(p+i+16 * qpu_nums);

78 receive(bOld);

79 *(res+i+35*16 * qpu_nums + (me() <<4))=c;

80 End

81 receive(aOld);

82 }

Listing 6.1: GPU Multiprecision Multiplication

62

1 #define BASE_SIZE 30

2 #define HALF_BASE_SIZE 15

3 #define MOD_BASE 32767

4

5 void qpu_split_mul(Int& a, Ptr <Int > b, Int& high30 , Int& low30)

{

6 Int a_0 = a & MOD_BASE;

7 Int a_1 = a >> HALF_BASE_SIZE;

8 Int b_0 = *b & MOD_BASE;

9 Int b_1 = *b >> HALF_BASE_SIZE;

10

11 // a_0*b_0

12 Int res_0 = (a_0 * b_0) & MOD_BASE;

13 Int res_1 = ((a_0 * b_0) >> HALF_BASE_SIZE)

14 +((a_1 * b_0) & MOD_BASE);

15

16 // a_1*b_0

17 Int c_c = ((a_1 * b_0) >> HALF_BASE_SIZE)

18 +(res_1 >> HALF_BASE_SIZE);

19 res_1 = (res_1& MOD_BASE)+((a_0*b_1) & MOD_BASE);

20 Int res_2 = c_c;

21 Int res_3 = res_2 >> HALF_BASE_SIZE;

22 res_2 = res_2& MOD_BASE;

23

24 // a_0*b_1

25 c_c = ((a_0 * b_1)>> HALF_BASE_SIZE)

26 +(res_1 >> HALF_BASE_SIZE);

27 res_1 = res_1& MOD_BASE;

28 res_2 = res_2 + c_c;

29 res_3 = res_2 >> HALF_BASE_SIZE;

30 res_2 = res_2& MOD_BASE;

31

32 // a_1*b_1

33 res_2 = res_2 + ((a_1*b_1) & MOD_BASE);

34 c_c = ((a_1 * b_1)>> HALF_BASE_SIZE)

35 +(res_2 >> HALF_BASE_SIZE);

36 res_2 = res_2& MOD_BASE;

37 res_3 = res_3 + c_c;

38

39 // calculate result in original base_size

40 low30 = res_1 << HALF_BASE_SIZE;

41 low30 = res_0 | low30;

42 high30 = res_3 << HALF_BASE_SIZE;

43 high30 = res_2 | high30;

44 }

Listing 6.2: GPU Split Multiplication

63

Appendix

1 void qpu_compare(Ptr <Int > a, Ptr <Int > b, Int *result){

2

3 Ptr <Int > p = a + index () + (me() <<4);

4 Ptr <Int > q = b + index ();

5 Int xOld , yOld;

6

7 gather(p + (35*16 * qpu_nums));

8 gather(p + (34*16 * qpu_nums));

9 gather(q + (34*16 * qpu_nums));

10

11 Int flag = 0;

12 *result = 0;

13

14 receive(xOld);

15

16 Where (xOld > 0)

17 *result = 1;

18 flag = 1;

19 End

20

21 For (Int i = 0, i < 35*16 * qpu_nums , i = i+16 * qpu_nums)

22

23 gather(p + (34*16 * qpu_nums - i + 16));

24 gather(q + (34*16 * qpu_nums - i + 16));

25

26 receive(xOld);

27 receive(yOld);

28

29 Where (flag == 0)

30 Where (xOld > yOld)

31 *result = 1;

32 flag = 1;

33 End

34 Where (xOld < yOld)

35 *result = -1;

36 flag = 1;

37 End

38 End

39 End

40 receive(xOld);

41 receive(yOld);

42 }

Listing 6.3: Multiprecision Comparison

64

Engines

1 #include <stdio.h>

2 #include <string.h>

3 #include <openssl/engine.h>

4 #include <openssl/rsa.h>

5 #include <openssl/bn.h>

6

7 #include "gpu_methods.h"

8

9 #define NO_QPUs 12

10

11 static const char *engine_id = "GPU_RSA";

12 static const char *engine_name = "RSA performed partially on

the GPU of the RPi";

13

14 static int public_encrypt(int flen , const unsigned char *from ,

unsigned char *to, RSA *rsa , int padding){

15 char *filename = "message.txt";

16 printf("Public RSA encryption of file %s\n", filename);

17

18 // read in message

19 char * buffer = 0;

20 int length;

21 FILE * f = fopen (filename , "rb");

22 if (f){

23 fseek (f, 0, SEEK_END);

24 length = ftell (f);

25 if(length != 128*16* NO_QPUs){

26 printf("Message has the wrong size.");

27 return 0;

28 }

29 fseek (f, 0, SEEK_SET);

30 buffer = malloc (length);

31 if (buffer){fread (buffer , 1, length , f);}

32 fclose (f);

33 }

34

35 const BIGNUM *n;

36 const BIGNUM *e;

37 RSA_get0_key(rsa , &n, &e, NULL);

38 char *module_string = BN_bn2dec(n);

39 char *exponent_string = BN_bn2dec(e);

40

41 // message

42 char strm_array [16* NO_QPUs][310];

65

Appendix

43 for (size_t i = 0; i < 16 * NO_QPUs; i++) {

44 BIGNUM * message = BN_bin2bn(buffer+i*128, sizeof(char)

*128, NULL);

45 char *message_string = BN_bn2dec(message);

46 memset(strm_array[i], 0, sizeof(char)*309);

47 strncpy(strm_array[i], message_string , sizeof(char)*309);

48 }

49

50 // message encryption

51 gpu_RSA_encrypt(strm_array ,

52 exponent_string ,

53 module_string

54);

55

56 unsigned char dest [128*16* NO_QPUs +1];

57 memset(dest , 0, 128*16* NO_QPUs);

58

59 for (size_t i = 0; i < 16 * NO_QPUs; i++) {

60 BIGNUM *result;

61 BN_dec2bn (&result , strm_array[i]);

62 unsigned char result_string [309];

63 memset(result_string , 0, sizeof(char)*309);

64 BN_bn2bin(result , result_string);

65 int string_length = BN_num_bytes(result);

66 memcpy(dest+i*128+128 - string_length , result_string ,

string_length*sizeof(char));

67 }

68

69 // write cipher to file

70 FILE *fp;

71 fp = fopen("gpu_result_cipher.txt", "wb");

72 fwrite(dest , sizeof(char), sizeof(char)*128*16* NO_QPUs

+1, fp);

73 fclose(fp);

74 printf("Result is written into: gpu_result_cipher.txt");

75 return flen;

76

77 }

78

79 static int private_decrypt(int flen , const unsigned char *from ,

unsigned char *to, RSA *rsa , int padding){

80 char *filename = "gpu_result_cipher.txt";

81 printf("Private RSA decryption of file %s\n", filename);

82

83 // read in message

84 char * buffer = 0;

85 int length;

66

86 FILE * f = fopen ("gpu_result_cipher.txt", "rb");

87 if (f){

88 fseek (f, 0, SEEK_END);

89 length = ftell (f);

90 if(length != 128*16* NO_QPUs +1){

91 printf("Message has the wrong size.");

92 return 0;

93 }

94 fseek (f, 0, SEEK_SET);

95 buffer = malloc (length);

96 if (buffer){fread (buffer , 1, length , f);}

97 fclose (f);

98 }

99

100 const BIGNUM *n;

101 const BIGNUM *d;

102 RSA_get0_key(rsa , &n, NULL , &d);

103 char *module_string = BN_bn2dec(n);

104 char *exponent_string = BN_bn2dec(d);

105

106 // message

107 char strm_array [16* NO_QPUs][310];

108 for (size_t i = 0; i < 16 * NO_QPUs; i++) {

109 BIGNUM * message = BN_bin2bn(buffer+i*128, sizeof(char)

*128, NULL);

110 char *message_string = BN_bn2dec(message);

111 strncpy(strm_array[i], message_string , sizeof(char)*310);

112 }

113

114 // decrypt cipher

115 gpu_RSA_encrypt(strm_array ,

116 exponent_string ,

117 module_string

118);

119

120 unsigned char dest [128*16* NO_QPUs];

121 for (size_t i = 0; i < 16 * NO_QPUs; i++) {

122 BIGNUM *result;

123 BN_dec2bn (&result , strm_array[i]);

124 unsigned char result_string [309];

125 memset(result_string , 0, sizeof(char)*309);

126 BN_bn2bin(result , result_string);

127 int string_length = BN_num_bytes(result);

128 memcpy(dest+i*128+128 - string_length , result_string ,

string_length*sizeof(char));

129 }

130

67

Appendix

131 // Write result to file

132 FILE *fp;

133 fp = fopen("gpu_result_message.txt", "wb");

134 fwrite(dest , sizeof(char), sizeof(char)*128*16* NO_QPUs ,

fp);

135 fclose(fp);

136 printf("Result is written into: gpu_result_message.txt");

137 return flen;

138 }

139

140 static int bind(ENGINE *e, const char *id){

141 int ret = 0;

142 //set new RSA encryption and decryption methods

143 RSA_METHOD *meth = RSA_meth_dup(RSA_get_default_method ());

144 if (! RSA_meth_set_pub_enc(meth , &public_encrypt)) {

145 printf("set_meth failed");

146 goto end;

147 }

148 if (! RSA_meth_set_priv_dec(meth , &private_decrypt)) {

149 printf("set_meth failed");

150 goto end;

151 }

152

153 if (! ENGINE_set_id(e, engine_id)) {

154 fprintf(stderr , "ENGINE_set_id failed\n");

155 goto end;

156 }

157 if (! ENGINE_set_name(e, engine_name)) {

158 printf("ENGINE_set_name failed\n");

159 goto end;

160 }

161 if (! ENGINE_set_RSA(e, meth)) {

162 fprintf(stderr , "ENGINE_set_default_RSA failed\n");

163 goto end;

164 }

165 ret = 1;

166 end:

167 return ret;

168 }

169

170 IMPLEMENT_DYNAMIC_BIND_FN(bind)

171 IMPLEMENT_DYNAMIC_CHECK_FN ()

Listing 6.4: Engine for GPU excecution

68

1 #include <stdio.h>

2 #include <string.h>

3 #include <openssl/engine.h>

4 #include <openssl/rsa.h>

5

6 #define NO_QPUs 12 // This is equivalent to number of 16*128

bit messages

7

8 static const char *engine_id = "sequential_RSA";

9 static const char *engine_name = "RSA performed fully on the

CPU";

10

11 static int public_encrypt(int flen , const unsigned char *from ,

unsigned char *to, RSA *rsa , int padding) {

12 char * buffer = 0;

13 int length;

14 FILE * f = fopen ("message.txt", "rb");

15 if (f){

16 fseek (f, 0, SEEK_END);

17 length = ftell (f);

18 if(length != 128*16* NO_QPUs){

19 printf("Message has the wrong size.");

20 return 0;

21 }

22 fseek (f, 0, SEEK_SET);

23 buffer = malloc (length);

24 if (buffer){fread (buffer , 1, length , f);}

25 fclose (f);

26 }

27

28 const RSA_METHOD *default_rsa = RSA_get_default_method ();

29

30 unsigned char dest [128*16* NO_QPUs];

31

32 int len;

33 for (size_t i = 0; i < 16* NO_QPUs; i++) {

34 char msg [129];

35 msg [128] = 0;

36 memcpy(msg , buffer+i*128, sizeof(char)*128);

37 len = (RSA_meth_get_pub_enc(default_rsa)) (128,

msg , to , rsa , 3);

38 memcpy(dest+i*128, to , 128* sizeof(char));

39 }

40

41 FILE *fp;

42 fp = fopen("openssl_result_cipher.txt", "wb");

43 fwrite(dest , sizeof(char), sizeof(char)*128* NO_QPUs *16,

69

Appendix

fp);

44 fclose(fp);

45 printf("Result is written into: openssl_result_cipher.

txt");

46

47 return len;

48 }

49

50 static int private_decrypt(int flen , const unsigned char *from ,

unsigned char *to, RSA *rsa , int padding){

51 char *buffer;

52 int length;

53 FILE * f = fopen ("openssl_result_cipher.txt", "rb");

54 if (f){

55 fseek (f, 0, SEEK_END);

56 length = ftell (f);

57 if(length != 128*16* NO_QPUs){

58 printf("Message has the wrong size.");

59 return 0;

60 }

61 fseek (f, 0, SEEK_SET);

62 buffer = malloc (length);

63 if (buffer){fread (buffer , 1, length , f);}

64 fclose (f);

65 }

66

67 const RSA_METHOD *default_rsa = RSA_get_default_method ();

68

69 unsigned char dest [128*16* NO_QPUs];

70

71 int len;

72 for (size_t i = 0; i < 16* NO_QPUs; i++) {

73 char msg [129];

74 msg [128] = 0;

75 memcpy(msg , buffer+i*128, sizeof(char)*128);

76 len = (RSA_meth_get_priv_dec(default_rsa)) (128,

msg , to , rsa , 3);

77 memcpy(dest+i*128, to , 128* sizeof(char));

78 }

79

80 FILE *fp;

81 fp = fopen("openssl_result_message.txt", "wb");

82 fwrite(dest , sizeof(char), sizeof(char)*128*16* NO_QPUs ,

fp);

83 fclose(fp);

84 printf("Result is written into: openssl_result_message.

txt");

70

85

86 return len;

87

88 return 1;

89 }

90

91 static int bind(ENGINE *e, const char *id){

92 int ret = 0;

93 //set new RSA encryption and decryption methods

94 RSA_METHOD *meth = RSA_meth_dup(RSA_get_default_method ());

95 if (! RSA_meth_set_pub_enc(meth , &public_encrypt)) {

96 printf("set_meth failed");

97 goto end;

98 }

99 if (! RSA_meth_set_priv_dec(meth , &private_decrypt)) {

100 printf("set_meth failed");

101 goto end;

102 }

103

104 if (! ENGINE_set_id(e, engine_id)) {

105 fprintf(stderr , "ENGINE_set_id failed\n");

106 goto end;

107 }

108 if (! ENGINE_set_name(e, engine_name)) {

109 printf("ENGINE_set_name failed\n");

110 goto end;

111 }

112 if (! ENGINE_set_RSA(e, meth)) {

113 fprintf(stderr , "ENGINE_set_default_RSA failed\n");

114 goto end;

115 }

116 ret = 1;

117 end:

118 return ret;

119 }

120

121 IMPLEMENT_DYNAMIC_BIND_FN(bind)

122 IMPLEMENT_DYNAMIC_CHECK_FN ()

Listing 6.5: Engine with sequential openSSL RSA implementation

71

List of Figures

2.1 Encryption with a public cryptosystem . 4
2.2 Using a public cryptosystem for signatures . 4
2.3 Using a public cryptosystem for signing and encrypting a message 5
2.4 Concept of the Montgomery Exponentiation [Fleb] 13
2.5 Architecture overview of the VideoCore IV[Bro19b] 19
2.6 One operation applied on all 16 vector operands 21

3.1 Process of the full Modular Exponentiation Algorithm 29
3.2 Process of the full Modular Exponentiation Algorithm with different paral-

lelization steps . 31
3.3 Overview of Parallelization Possibilities and Limitations 35
3.4 Parallel Modular Exponentiation Algorithm on CPU and GPU 36

4.1 Calculation of r with n = 1196089 and base = 8 38
4.2 Representation of the number 509 in a multiprecision integer consisting of chars 40
4.3 Performance of the sequential modular exponentiation calculated in different

number systems . 41
4.4 Sequence of loading the multiprecision integer N into the GPU data qpu n . . 42
4.5 Sequence of loading the multiprecision integers h(mi) into the GPU data qpu h m 43
4.6 Multiplication of two 30 bit numbers by splitting into 15 bit numbers and

merging after the multiplication of the single 15 bit numbers 50

5.1 Comparison of RSA Encryption executed on the CPU and on the GPU . . . 55
5.2 Comparison of RSA Decryption executed on the CPU and on the GPU . . . 55
5.3 Overview of test results . 56

73

Bibliography

[ARM19] ARM: ARM1176JZF-S Technical Reference Manual. http://infocenter.

arm.com/help/index.jsp?topic=/com.arm.doc.ddi0301h/index.html.
Version: 2019. – Online; accessed 23-May-2019

[BGV93] Bosselaers, Antoon ; Govaerts, René ; Vandewalle, Joos: Comparison
of three modular reduction functions. In: Annual International Cryptology
Conference Springer, 1993, S. 175–186

[Bro19a] Broadcom: BCM2835 ARM Peripherals. https://www.

raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/

BCM2835-ARM-Peripherals.pdf. Version: 2019. – Online; accessed 23-
May-2019

[Bro19b] Broadcom: VideoCore IV 3D, Architecture Reference Guide. https://docs.
broadcom.com/docs/12358545. Version: 2019. – Online; accessed 23-May-
2019

[BS13] Baktir, Selçuk ; Savaş, Erkay: Highly-parallel montgomery multiplication
for multi-core general-purpose microprocessors. In: Computer and Information
Sciences III. Springer, 2013, S. 467–476

[BSW15] Beutelspacher, Albrecht ; Schwenk, Jörg ; Wolfenstetter, Klaus-
Dieter: Moderne Verfahren der Kryptographie: Von RSA zu Zero-Knowledge.
Springer-Verlag, 2015

[Buc01] Buchmann, Johannes: Einführung in die Kryptographie. Bd. 3. Springer,
2001

[Dev19] Developer, ARM: ARM11. https://developer.arm.com/ip-products/

processors/classic-processors. Version: 2019. – Online; accessed 23-May-
2019

[Flea] Flensburg, Hochschule: Modulare Exponentiation iterativ. http://www.

inf.fh-flensburg.de/lang/krypto/algo/modexp2.htm. – Online; accessed
26-November-2019

[Fleb] Flensburg, Hochschule: Montgomery Multiplication. http:

//www.inf.fh-flensburg.de/lang/algorithmen/arithmetik/

montgomery-multiplikation.htm. – Online; accessed 26-November-2019

[FY14] Fadhil, Heba M. ; Younis, Mohammed I.: Parallelizing RSA algorithm on
multicore CPU and GPU. In: International Journal of Computer Applications
87 (2014), Nr. 6

75

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0301h/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0301h/index.html
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://docs.broadcom.com/docs/12358545
https://docs.broadcom.com/docs/12358545
https://developer.arm.com/ip-products/processors/classic-processors
https://developer.arm.com/ip-products/processors/classic-processors
http://www.inf.fh-flensburg.de/lang/krypto/algo/modexp2.htm
http://www.inf.fh-flensburg.de/lang/krypto/algo/modexp2.htm
http://www.inf.fh-flensburg.de/lang/algorithmen/arithmetik/montgomery-multiplikation.htm
http://www.inf.fh-flensburg.de/lang/algorithmen/arithmetik/montgomery-multiplikation.htm
http://www.inf.fh-flensburg.de/lang/algorithmen/arithmetik/montgomery-multiplikation.htm

Bibliography

[G+] Granlund, Torbjörn u. a.: GNU Multiple Precision Arithmetic Library 6.1.2.
https://gmplib.org/. – Online; accessed 27-November-2019

[Her19] Hermitage, Herman: VideoCore IV Programmers Man-
ual. https://github.com/hermanhermitage/videocoreiv/wiki/

VideoCore-IV-Programmers-Manual. Version: 2019. – Online; accessed
23-May-2019

[KAF+10] Kleinjung, Thorsten ; Aoki, Kazumaro ; Franke, Jens ; Lenstra, Ar-
jen K. ; Thomé, Emmanuel ; Bos, Joppe W. ; Gaudry, Pierrick ; Kruppa,
Alexander ; Montgomery, Peter L. ; Osvik, Dag A. u. a.: Factorization of
a 768-bit RSA modulus. In: Annual Cryptology Conference Springer, 2010, S.
333–350

[KMVOV96] Katz, Jonathan ; Menezes, Alfred J. ; Van Oorschot, Paul C. ; Vanstone,
Scott A.: Handbook of applied cryptography. CRC press, 1996

[LBPN12] Lara, Pedro ; Borges, Fábio ; Portugal, Renato ; Nedjah, Nadia: Parallel
modular exponentiation using load balancing without precomputation. In:
Journal of Computer and System Sciences 78 (2012), Nr. 2, S. 575–582

[Mag17] MagPi: Sales soar and Raspberry Pi beats Commodore 64. https://www.

raspberrypi.org/magpi/raspberry-pi-sales/. Version: 2017. – Online;
accessed 23-May-2019

[Mon85] Montgomery, Peter L.: Modular multiplication without trial division. In:
Mathematics of computation 44 (1985), Nr. 170, S. 519–521

[Nay16] Naylor, Matthew: QPULib. https://github.com/mn416/QPULib.
Version: 2016. – Online; accessed 23-May-2019

[NW15] Niederreiter, Harald ; Winterhof, Arne: Applied number theory.
Springer, 2015

[Pau17] Pauls, Paul: Parallelization of AES on Raspberry Pi GPU in Assem-
bly. Munich, Ludwig-Maximilians-Universität, Bachelorthesis, 2017. http:

//mnm-team.org/pub/Fopras/paul17/

[Pea96] Pearson, David: A parallel implementation of RSA. In: Cornell University
(July 1996) (1996)

[Ras] RaspberryPi: Products. https://www.raspberrypi.org/products/. – On-
line; accessed 23-May-2019

[Ras19a] RaspberryPi: The computer hardware. https://www.raspberrypi.org/

documentation/faqs/#hardware. Version: 2019. – Online; accessed 23-May-
2019

[Ras19b] RaspberryPi: Raspberry Pi hardware. https://www.raspberrypi.org/

documentation/hardware/raspberrypi/README.md. Version: 2019. – Online;
accessed 23-May-2019

76

https://gmplib.org/
https://github.com/hermanhermitage/videocoreiv/wiki/VideoCore-IV-Programmers-Manual
https://github.com/hermanhermitage/videocoreiv/wiki/VideoCore-IV-Programmers-Manual
https://www.raspberrypi.org/magpi/raspberry-pi-sales/
https://www.raspberrypi.org/magpi/raspberry-pi-sales/
https://github.com/mn416/QPULib
http://mnm-team.org/pub/Fopras/paul17/
http://mnm-team.org/pub/Fopras/paul17/
https://www.raspberrypi.org/products/
https://www.raspberrypi.org/documentation/faqs/#hardware
https://www.raspberrypi.org/documentation/faqs/#hardware
https://www.raspberrypi.org/documentation/hardware/raspberrypi/README.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/README.md

Bibliography

[rfc] Public-Key Cryptography Standards (PKCS) No.1: RSA Cryptography; Specifi-
cations Version 2.1. https://tools.ietf.org/html/rfc3447#appendix-A.

1.2. – Online; accessed 26-November-2019

[Rix19] Rixen, Yannek: SIMD processing of AES on the Raspberry Pi’s GPU. Munich,
Ludwig-Maximilians-Universität, Bachelorthesis, 2019

[RSA78] Rivest, Ronald L. ; Shamir, Adi ; Adleman, Leonard: A method for ob-
taining digital signatures and public-key cryptosystems. In: Communications
of the ACM 21 (1978), Nr. 2, S. 120–126

[Sch06] Schulz, Ralph-Hardo: Mathematische Grundlagen von öffentlichen Ver-
schlüsselungsverfahren. (2006)

[Sev13] Severance, Charles: Eben upton: Raspberry pi. In: Computer 46 (2013),
Nr. 10, S. 14–16

[Sha13] Sharoun, Assaid O.: Residue number system (RNS). In: Poznan University
of Technology Academic Journals. Electrical Engineering (2013)

[SK15] Saxena, Sapna ; Kapoor, Bhanu: State of the art parallel approaches for
RSA public key based cryptosystem. In: arXiv preprint arXiv:1503.03593
(2015)

[Sta17] Stadelmann, Daniel: Entwicklung einer OpenCL-Implementierung für die
VideoCore IV GPU des Raspberry Pi. 2017. – 7 –12 S.

[Tit00] Tittel, Inka: Das RSA - Verfahren und die Implementierung in Mathematica.
2000

[Wag13] Wagstaff, Samuel S.: The joy of factoring. Bd. 68. American Mathematical
Soc., 2013

[Wik19] Wikipedia: RaspberryPi, Specifications. https://en.wikipedia.org/wiki/
Raspberry_Pi. Version: 2019. – Online; accessed 23-May-2019

[ZG15] Zur Gathen, Joachim v.: CryptoSchool. Springer, 2015

77

https://tools.ietf.org/html/rfc3447#appendix-A.1.2
https://tools.ietf.org/html/rfc3447#appendix-A.1.2
https://en.wikipedia.org/wiki/Raspberry_Pi
https://en.wikipedia.org/wiki/Raspberry_Pi

	Introduction
	Background
	The RSA Cryptosystem
	Public Cryptosystems
	The RSA Algorithm
	Mathematical Background

	Multiprecision Arithmetic
	Modular Exponentiation
	Residue Multiplication
	Exponentiation by Squaring
	Montgomery Algorithm
	Montgomery Algorithm for Multiprecision Integers

	The Raspberry Pi
	General Architecture
	The VideoCore IV GPU
	The QPULib

	Related work
	Summary

	Parallel RSA Algorithm
	Sequential Algorithm
	Approaches For Parallelization
	Types of Parallelization options
	Parallelization Options for the sequential Algorithm

	Parallelization Techniques with regard on the Limitations of the GPU and QPULib
	Limitations
	Parallelization possibilities with the QPULib

	Parallel Algorithm

	Implementation of RSA
	Implementation on the CPU
	Input
	Preprocessing
	Transformation into Montgomery form
	Preparation of the data for processing with the QPULib
	Exponentiation by Squaring
	Transformation out of Montgomery form

	Implementation on the GPU
	Montgomery Multiplication
	Multiprecision Multiplication
	Multiplication
	Multiprecision Comparison

	Difficulties of the RSA Implementation

	Evaluation
	OpenSSL Engine
	Testsetup
	Results

	Conclusion
	Appendix
	List of Figures
	Bibliography

