
INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelor Thesis

Designing a MLIR Dialect
for the

Brainfuck Language

Jacob Schwaiger

Draft vom November 22, 2023

INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelor Thesis

Designing a MLIR Dialect
for the

Brainfuck Language

Jacob Schwaiger

Aufgabensteller: Prof. Dr. Dieter Kranzlmüller

Betreuer: Pascal Jungblut

Abgabetermin: 23. November 2023

Hiermit versichere ich, dass ich die vorliegende Bachelorarbeit selbständig verfasst und

keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

München, den 23. November 2023

. .

(Unterschrift des Kandidaten)

Abstract

MLIR is an extensible compiler infrastructure with support for parsing, printing, documenta-
tion, conversion and optimization of intermediate representation (IR). While being a rather
young project, it is already used in applications ranging from representation of machine
learning models, polyhedral optimization and quantum assembly languages. The extensi-
bility of MLIR’s IR is enabled by the concepts of operation (Op) and dialect. While Ops
are a way to model functionality of any level, dialects can group operations of a common
functionality or motivation.

The extensibility of MLIR makes it a rather complex framework. Users can extend the
MLIR IR and pass infrastructure both declarative and imperative. Furthermore, they can
use existing dialects and passes to combine them with their custom ones. To improve the
accessibility of MLIR for the general public, we designed a starter project simple enough to
focus on the possibilities of MLIR and complex enough to include the use of many of MLIR’s
features.

This thesis presents a MLIR-based compiler for the Brainfuck language: the MLIR Brain-
fuck project. We implemented frontend, middleware and backend based on an import script
to translate Brainfuck programs to an MLIR representation, three MLIR inherent abstrac-
tions to model Brainfuck on di↵erent levels, conversion passes between them and a conversion
to the LLVM intermediate representation.

vii

Contents

1 Introduction 1

2 The Brainfuck Language 3

2.1 Specification . 3
2.2 Brainfuck Configuration . 3
2.3 Properties . 4

2.3.1 Syntactic Correctness . 4
2.3.2 Instruction Classification . 4
2.3.3 Abstractions . 4
2.3.4 C Language Representation . 4
2.3.5 Computational Class . 5

2.4 Examples . 5

3 Theoretical Foundations 7

3.1 Compilers . 7
3.2 Intermediate Representation of Data and Flow 8
3.3 Compiler Frameworks . 9
3.4 LLVM . 9

3.4.1 LLVM Program Representation . 9
3.4.2 Compiler Architecture . 10
3.4.3 Limitations . 11

4 MLIR 13

4.1 IR Design . 13
4.1.1 Operations . 14
4.1.2 Regions and Blocks . 14
4.1.3 Attributes and Types . 15
4.1.4 Dialects . 15
4.1.5 Symbols and Symbol Tables . 15

4.2 Passes and the Conversion Framework . 16
4.2.1 Traits and Interfaces . 16
4.2.2 Pass Infrastructure . 16
4.2.3 Conversion Framework . 16

4.3 An Overview of Used Dialects . 17

5 MLIR Brainfuck 19

5.1 Bf Dialect . 19
5.1.1 Operations without a Region . 20
5.1.2 Operations with a Region . 20
5.1.3 Example . 21

ix

Contents

5.2 bf red dialect . 21
5.2.1 Operations . 22

5.3 bf pointer dialect . 22
5.3.1 Operations . 22

5.4 Lowerings . 23
5.4.1 Optimizable Brainfuck . 23
5.4.2 Explicit Brainfuck . 24
5.4.3 llvm Brainfuck . 30

5.5 Project Structure, Tools and Usage . 31

6 Evaluation 33

6.1 Results . 33
6.2 Dialect and Pass Design . 33
6.3 Semantic and Regressions Tests . 35

6.3.1 Regression Tests with Lit and Filecheck 35
6.3.2 Semantic Test . 35

7 Related Work 39

7.1 MLIR ONNX Compiler . 39
7.2 Polygeist . 39

8 Discussion 41

8.1 Limitations . 41
8.2 Opportunities and Future Work . 41

8.2.1 Optimizations . 41
8.2.2 Raise MLIR Brainfuck to a�ne . 41

8.3 Takeaways on working with MLIR . 42

9 Conclusion 43

Listings 45

List of Figures 47

List of Tables 49

Bibliography 51

x

1 Introduction

MLIR is a compiler framework inspired by LLVM integrating core compiler tasks such as
parsing, printing, documentation, conversion and optimization of an intermediate repre-
sentation (IR) while being fully extensible in terms of IR constructs and ways to operate
on it (passes)[LAB+21]. As a consequence, MLIR is used in the realms of machine learn-
ing [JBL+20], polyhedral optimization [MCZZ21] and quantum assembly languages [MN21].
Despite the di↵erences in the subjects, they require representing concepts of di↵erent ab-
stractions and exploitation of an existing compiler infrastructure.

MLIR builds on concepts to enable extending the IR with constructs of di↵erent abstrac-
tion levels while still allowing them to coexist in a combined IR. The fundamental concept
of MLIR is an operation (Op) [LAB+21]. Ops are used to represent constructs of any level
of abstraction (module, function, instruction). Operations can be grouped by functionality
to form dialects [LAB+21]. Core or custom dialects are integrated into the MLIR repository
and can be used [noa23k]. This approach makes it possible to implement frontend (parsing,
higher-level-representation), middleware (optimizations on di↵erent levels of abstraction)
and backend (generation and optimization of machine code) of a compiler in MLIR by com-
bining compositions of existing or self-defined dialects. Since users should be able to add
new constructs in a quick and standardized way, MLIR integrated a declarative TableGen
[noa23a] based infrastructure to declare and partially define constructs and generate the
required Cpp code automatically. Some constructs require additional definition trough the
Cpp API [noa23g, noa23x].

Unfortunately, the extensibility of MLIR makes it a rather complex framework. To get
started users have to understand the MLIR IR, the existing dialects, the pass framework and
the declarative and imperative infrastructures to extend MLIR and how they work together.
An experimental starter project could help improving accessibility.

The MLIR Brainfuck project aims to experiment with the MLIR infrastructure to provide
a compiler for a simple programming language while exploiting the framework as much as
possible. As a language, we chose the Brainfuck language [noa23e], a minimalist but Turing-
complete programming language.

We implemented a MLIR dialect to model Brainfuck at the highest level, merged further
custom and existing dialects to represent Brainfuck in three levels of abstraction and lowered
the language to the LLVM intermediate representation. The custom dialects are declared
and defined declaratively with the help of the Operation Definition Specification (ODS)
[noa23w]. The conversion passes used in the lowering steps are declared and partially defined
declarative, but for the most part, implemented directly using the Cpp API of MLIR.

The thesis is structured as follows: After an overview of the Brainfuck language in section
2, we present core principles of compiler design and a short description of the LLVM compiler
framework in section 3. Section 4 gives an overview of the MLIR compiler framework. The
core part of the thesis is the presentation, evaluation and discussion of the MLIR Brainfuck
project in sections 5, 6 and 8 respectively.

1

2 The Brainfuck Language

The Brainfuck language is a minimalist programming language invented by Urban Mueller
[noa23e]. It only consists of eight commands. The textual representation of each command
is one character. This enables small program files and compilers. Brainfuck is proven to be
Turing-complete.[Mor15]

2.1 Specification

A Brainfuck program uses eight commands to operate on a linear arrangement of cells called
memory. Through a pointer each cell can be accessed. We refer to the cell accessible by the
pointer at a given moment in execution time as the current cell (cc).

The memory length and storage size of the cells are not specified. Di↵erent implemen-
tations use di↵erent memory and cell sizes, leading to di↵erent languages. Note that the
storage size of the pointer must be at least as large as the memory length.[noa23e]

We give the syntax and semantics of each Brainfuck command respectively.

Command E↵ect

> Shifts pointer to the right by one cell

< Shifts pointer to the left by one cell

+ Increases the current cell

� Decreases the current cell

. Outputs the current cell

, Inputs a new value for the current cell

[If cc is zero, moves pointer to matching]

] If cc is not zero, moves pointer to matching [

The ’Command’ column contains all characters that Brainfuck recognizes; all other char-
acters are ignored [noa23e]. Since the command ’[’ matches the command ’]’ i↵ the current
cell is not zero, Brainfuck code contained in the brackets is executed as long as cc 6= 0; we
will refer to this condition as the Brainfuck loop condition.

2.2 Brainfuck Configuration

In the following, we assume that the memory contains 30000 cells, that each cell can store
one byte and is wrapped accordingly and that the cell values are input and output as ASCII
values. We ensure all cells are set to zero and the pointer is set to the first cell at execution
start. This reflects the settings of Urban Mueller’s reference Brainfuck compiler [26223b].

3

2 The Brainfuck Language

2.3 Properties

We list properties of the Brainfuck Language either because they are important for its
implementation (Syntactic Correctness, Instruction Classification, Abstractions, C Language
Representation) or to justify the MLIR Brainfuck project (C Language Representation,
Computational Class).

2.3.1 Syntactic Correctness

A Brainfuck program is syntactically correct if it contains an even number of brackets. For
each occurrence of ’[’ there has to be an occurrence of ’]’.

2.3.2 Instruction Classification

Given that a Brainfuck program is syntactically correct, the commands ’[’ and ’]’ form a
loop with respect to the Brainfuck loop condition.

The Brainfuck commands can be divided into classes. The instructions ’>’, ’<’, ’+’, ’-’, ’.’
and ’,’ form the class of primitive commands. The instructions ’[’ and ’]’ form the class of
context inducing commands. This is because an executing device must memorize the amount
of opened and closed brackets to ensure correct execution.

Since the semantics of a loop are induced by the instructions it contains, it is also justified
to speak of the second class of instructions as composed instructions.

An implicit composed Brainfuck construct is a Brainfuck module given by Brainfuck code
stored in a file; we represent this as (code, file).

2.3.3 Abstractions

The Brainfuck language depends on memory, pointer and console. The memory is used to
store the cells targeted by the primitive commands. The pointer is used to address the current
cell. The console is needed to provide input and show output. All three constructs are not
directly accessible to the users. Once the memory size and pointer width are defined, the
language can be specified without giving details on their implementation. Implementations
have to find ways to represent the memory, pointer and console accordingly. The parameters
to be reflected during implementation will depend on the properties of Brainfuck and the
properties of the framework used for implementation.

2.3.4 C Language Representation

We can give a C langauge representation of the Brainfuck language. Listing 2.3.4 provides
such an implementation regarding our specified configuration 2.2. The following listing gives
a mapping between Brainfuck commands and their C language representation. Note that

• the first two mappings abbreviate Brainfuck code with ’..’,

• assuming syntactic correctness, we represent [and] as one command,

• the implicit Brainfuck abstractions memory, pointer and console are explicit in the C
implementation.

4

2.4 Examples

1 (.. , .bf) => int mem [30000] = { 0 };
2 int p = 0;
3 int main() { .. }
4 [..] => while (mem[p] != 0) { .. }
5 + => ++mem[p];
6 - => --mem[p];
7 > => ++p;
8 < => --p;
9 . => putchar(mem[p]);

10 , => mem[p] = getchar ();

Listing 2.1: C Language Representation of Brainfuck.

2.3.5 Computational Class

The Brainfuck language has been shown to be Turing-complete under idealizations [noa23e].
An example of a proof using the idealization of an unbounded memory and a bounded
cell size is Daniel B. Cristofani’s [Cri23] implementation of a (universal) Turing machine in
Brainfuck, which proves the Turing-completeness by simulation [noa23e]. The ratio behind a
proof by simulation is the observation that if, for given languages P and Q, an interpreter for
P can be written in Q, then Q can solve as many problems as P [noa23h]. Since in our case
P 7! TuringMachine and Q 7! Brainfuck this results in Brainfuck being Turing-complete.

2.4 Examples

We present some example code to get acquainted with the Brainfuck language.

[..] Any Brainfuck program of the form [..] does nothing: since the cells are set to
zero at execution start, the loop is not executed or, in other words, the opening bracket
matches the closing bracket immediately.

+ The idiom + (-) increments (decrements) the current cell. Any sequence of n incremen-
tations (decrementations) can be read as

current cell = current cell + n

(current cell = current cell � n)

which is of course not a Brainfuck expression and can only be expressed in Brainfuck via the
associated n sequence. We could give a C language implementation of Brainfuck that can
express the shortened version.

[-] The idiom [-] ([+]) can be used to set the current cell to zero. The loop is executed
until the current cell is equal to zero. Since the 8-bit cells are wrapped, once the minimal
(maximal) value that can be represented in 8-bits is reached, any further decrement (incre-
ment) would flip all bits to zero. Then the loop terminates. This means that after loop
execution the current cell is always zero.

5

2 The Brainfuck Language

< The idiom < (>) shifts the current cell to the left (right). Note, that in the Brainfuck
configuration 2.2 < at execution start is illegal, since it leaves the Brainfuck memory. Any
sequence of n left (right) shifts can be read as

pointer = pointer � n

(pointer = pointer + n)

which is of course not a Brainfuck expression and can only be expressed in Brainfuck via
the associated n sequence. Again, we could give a C language implementation of Brainfuck
that can express the shortened version.

> .. < The idiom > .. < ends at the same cell as it started since the commands > and <

cancel each other, assuming that the intermediate Brainfuck code contains either no shifting
commands or only occurrences of the idiom.

+[>,.<] The idiom +[>,.<] is a never terminating feedback loop. The program starts with
incrementing the current cell; we fix this cell as c0. Therefore, the following loop will execute
at least one time. We observe that the loop body matches the previous idiom. This means
that the opening bracket and the closing bracket always check against c0. Accordingly, the
loop never terminates, since c0 is never zero. Therefore, the loop body ’,.’ inside the previous
idiom gets executed ’forever’; it inputs a new value and then outputs it again.

6

3 Theoretical Foundations

3.1 Compilers

Compilers are programs that convert a source language to a target language. Often the
target language is the machine language.[WG84, ULSA08]

Compiler Pipeline Let us fix some source language L and a program P written in L. P is
input to a compiler CL as a stream of signs. Zooming into CL, which tasks are found? A
classical pipeline [ULSA08] consists of a

1. Lexer: Groups the incoming signs to tokens defined by L,

2. Syntactical Analyzer: Transforms the token stream to a syntax tree that corresponds
to the rules of composition of L and stores symbols in a symbol table,

3. Semantical Analyzer: Uses the syntax tree and the symbols to verify that the semantics
of P are consistent with the language definition,

4. Inherent Code Generator: Uses the syntax tree and the symbol table to generate
compiler inherent code,

5. Inherent Code Optimizer: Uses the compiler inherent code to perform optimizations,

6. Machine Code Generator: Uses the compiler’s inherent, optimized code to generate
machine code

7. Machine Code Optimizer: Optimizes the generated machine code.

We can further classify the components involved in the pipeline. We will refer to the lexer,
syntactical analyzer and semantical analyzer as the frontend. The pair of inherent code
generator and optimizer we will call middleware. Additionally, we call the inherent compiler
code intermediate representation and abbreviate it with IR. Note that steps four and five are
repeatable since a compiler can specify IR of di↵erent abstractions to enable optimizations
that require di↵erent levels of abstraction. The pair of machine code generator and optimizer
is labelled as backend.

Dependency of Compiler Components We characterize the dependencies of frontend, mid-
dleware and backend; they can be dependent on the source language and on the machine
language.

The frontend is dependent on the source language since the steps involved require knowl-
edge about its specification: the specification declares the language tokens, their rules of
composition and their semantics.

The middleware can be dependent on the source language. Some language-specific con-
structs need special representation in order to be optimized. Still, abstractions to more than

7

3 Theoretical Foundations

one source language are possible: since programming languages share common constructs,
there are common ways to represent them in a way that can be optimized.

The backend is machine code dependent: it targets a specific machine-related instruction
set. It seems plausible to abstract machine-related instruction sets and outsource specific
machine code generation.

Passes It is possible to group steps functionally. We will refer to a step grouping that
expects an input object i and returns a specified product o as pass; we can represent a pass
with the notation i ! o.

An example is the grouping of steps one to four under the specification P ! CL(IR). This
pass is a frontend pass. Accordingly, a backend pass is given by CL(IR) 7! machine(IR).
[ULSA08] A pass associated with steps four and five takes the IR and returns some optimized
form of it; these passes are referred to as optimization passes. If a compiler has multiple
IRs, it requires transformations between them; passes that perform a mapping IR1 ! IR2

are called conversion passes.

3.2 Intermediate Representation of Data and Flow

A compiler IR must concisely present data to enable simple data flow analysis for optimiza-
tions. One approach is the Single Static Assignment (SSA) form [CFR+91]. A program is
in SSA form if each statement evaluates an expression and either assigns the result to some
variables or determines a branch.

An assignment consists of a n tuple of variables at the left-hand side and a matching n

tuple of expressions at the right-hand side separated by some sign designating an assignment.
Note that each entry i 2 {1, .., n} at the right-hand side matches the entry j 2 {1, .., n} at
the left-hand side with i = j. Further, note that each variable is unique since it is the target
of exactly one assignment.[CFR+91]

In the following listing, each occurrence of V on the left-hand side is replaced by a unique
variable. The Variable V_1 is only reused on the left-hand side.

1 V = 1 => V_1 = 1
2 V = V + 1 => V_2 = V_1 + 1
3 V = 3 => V_3 = 3

Listing 3.1: SSA Assignment.

To extract variables from the branching context a � function is used: Each path in a
branching context results in a SSA variable; the � function encodes which assignments reach
the join point.[CFR+91]

1 if c => if c
2 then V = 1 => then V_1 = 1
3 else V = 2 => else V_2 = 2
4 => V_3 = phi(V_1 , V_2)
5 /* V is used */ /* V_3 is used */

Listing 3.2: SSA Branching.

Since in SSA form each assignment results in a unique variable, the else and the then path
result in distinct variables. They are joined in line four and the application of the � function
assigns the result of the branching.

8

3.3 Compiler Frameworks

3.3 Compiler Frameworks

Programming languages typically need either a compiler or an interpreter to enable program
execution. Here we focus on compiled languages. As we have seen in paragraph 3.1, the
implementation of a compiler is rather complex. On the other hand, we identified potential
for abstractions beyond a given source language. Compiler frameworks present users with
an infrastructure to write their compilers in. For example, they provide a specific IR that
users can target. Given an IR, the compiler framework can specify optimization passes
and backend passes to lower it to machine code. With this approach, the user only has to
implement a frontend pass.

3.4 LLVM

An example of a compiler framework that specifies one IR, optimization passes on it and
backend passes for di↵erent targets is LLVM [LA04, noa23r]. We briefly describe the LLVM
intermediate representation, and the LLVM compiler architecture and identify limitations of
the framework.

3.4.1 LLVM Program Representation

The code representation of LLVM (LLVM IR) is aimed to provide enough high-level infor-
mation to enable analyses and transformations. At the same time, it should be low-level
enough to represent arbitrary programs and permit far-reaching optimizations.[LA04]

It consists of an instruction set, primitive types (Boolean, integer (8 - 64 bit) and floating-
point (single and double precision)), derived types (pointer, arrays, structures and functions),
and an infinite set of typed virtual registers. The virtual registers are in SSA form. This
implies that each virtual register is written to only once [LA04].

The instruction set is based on key operations of processors while avoiding machine-
specific constraints (physical registers, pipelines, low-level calling conventions). It includes
arithmetic and logical instructions as well as instructions for memory allocation, memory
access (loading, storing) and casting. Additionally, branching instructions are used to model
control flow.[LA04]

Memory usage is explicit and typed in LLVM: memory allocation, reference and access
are modelled using typed pointers. Also, functions and global variables are referenced using
pointers.[LA04]

LLVM IR is organized into functions, blocks and instructions. Each block ends with a
terminator instruction that has an attached successor block. Branched blocks are merged
with the phi instruction to extract branching results.[LA04]

Listing 3.4.1 shows the implementation of the feedback loop example 2.4 in LLVM IR. Note
that, in analogy to the C implementation of Brainfuck, the implementation has explicit
representations of the Brainfuck memory, pointer and console (lines one to four). LLVM
memory reference and access are performed on the pointer (f.e. line 10) and the memory (f.e.
lines 11-12). The LLVM block and branching concept enables the representation of the loop:
while the block with label 5 implements the Brainfuck loop condition, the block with label
10 implements the loop workload. Block 10 terminates with a branching instruction that
specifies block 5 as successor. Block 5 terminates with a conditional branching instruction
depending on the result of the Brainfuck loop condition (calculated in line 19): if it is true

9

3 Theoretical Foundations

control flow is passed to block 10, else control flow is passed to block 20 and the loop
terminates.

1 @bf_ptr = private global i64 0
2 @bf_memory = private global [30000 x i8] undef
3 declare i32 @getchar ()
4 declare i32 @putchar(i32)
5 declare ptr @malloc(i64)
6 declare void @free(ptr)
7 define void @main () {
8 %1 = call i32 @getchar ()
9 %2 = trunc i32 %1 to i8

10 %3 = load i64 , ptr @bf_ptr , align 4
11 %4 = getelementptr i8, ptr @bf_memory , i64 %3
12 store i8 %2, ptr %4, align 1
13 br label %5
14
15 5: ; preds = %10, %0
16 %6 = load i64 , ptr @bf_ptr , align 4
17 %7 = getelementptr i8, ptr @bf_memory , i64 %6
18 %8 = load i8, ptr %7, align 1
19 %9 = icmp ne i8 %8, 0
20 br i1 %9, label %10, label %20
21
22 10: ; preds = %5
23 %11 = load i64 , ptr @bf_ptr , align 4
24 %12 = getelementptr i8 , ptr @bf_memory , i64 %11
25 %13 = load i8 , ptr %12, align 1
26 %14 = sext i8 %13 to i32
27 %15 = call i32 @putchar(i32 %14)
28 %16 = call i32 @getchar ()
29 %17 = trunc i32 %16 to i8
30 %18 = load i64 , ptr @bf_ptr , align 4
31 %19 = getelementptr i8 , ptr @bf_memory , i64 %18
32 store i8 %17, ptr %19, align 1
33 br label %5
34
35 20: ; preds = %5
36 call void @free(ptr inttoptr (i64 3735928559 to ptr))
37 ret void
38 }

Listing 3.3: Implementation of Example 2.4 in LLVM IR.

3.4.2 Compiler Architecture

In the following, we present the LLVM compiler architecture. The key point, from a user’s
perspective, is that the optimizing capabilities of LLVM are the consequence of targeting
the LLVM IR.

Frontend Compilers that target LLVM IR have to implement lexer, syntactical and seman-
tic analyzers specific to the source language resulting in a language-dependent intermediate
representation (LD IR). It is optional to perform language-specific optimizations on this

10

3.4 LLVM

representation. The mandatory task is to convert LD IR to LLVM IR while synthesizing as
much LLVM type information as possible to enable LLVM-based analysis and transforma-
tion. As a last, optional step, LLVM passes can be performed on the module-level of the
generated LLVM IR for global or inter-procedural optimizations.[LA04]

Linkage and Global Optimization From this point on, the LLVM infrastructure takes
over. At link time aggressive interprocedural optimizations across the entire program are
performed on the LLVM IR; see [LA04] for details on the various optimization passes included
in LLVM.

Native Code Generation Native code for the target platform is generated after linkage and
LLVM IR-specific optimizations. Here runtime optimizations are prepared by introducing
instrumentation to identify frequently executed code regions.[LA04]

Runtime Optimization During runtime frequently executed regions of code are identified
using the generated instrumentation. In this region, a runtime instrumentation library
analyses the executing native code to identify frequently executed paths. The original LLVM
IR associated with the path is duplicated, LLVM optimizations are performed on it and
native code is regenerated.[LA04]

3.4.3 Limitations

LLVM does not specify a universal compiler IR [LA04]. Rather, the LLVM compiler structure
outsources compiler implementation tasks five to seven but does this using a rather low-level
program representation as a starting point. The program representation is static in the sense
that users have to fit the language-dependent types and features into it [LA04] Therefore,
frontends have to provide language-dependent representation and optimization for features
that can not be represented in the LLVM IR or for representations that would otherwise
result in information loss preventing optimization. In summary, the core problem is the lack
of a notion of extensibility: the instruction set and types are fixed and the provided passes
are dependent on these components.

11

4 MLIR

MLIR is a compiler infrastructure with a focus on extensibility and modularity. It is a
reaction to fragmentation in the field of compiler design: while single-layered IR frameworks
like LLVM are still widely used, many compiler systems introduce specific higher-level IR
before targeting a single-layered IR framework. This leads to the reproduction of similar
but still rather complex code; varying quality can be a consequence.[LAB+21]

MLIR aims to solve this problem by making it easy to define custom constructs of dif-
ferent levels of abstraction. Its IR is fully extensible: users can add operations, types and
attributes under a common namespace to extend the IR to their needs; such a grouping of
constructs with common functionality is called a dialect. Dialects can target any level of
abstraction. Existing MLIR dialects range from frontend (linalg or tensor), middleware or
common purpose (memref, scf or arith) to backend (llvm or SPIR� V) dialects [noa23k].

Users can implement all seven compiler design steps in MLIR. There is infrastructure to
provide documentation and the needed parser and printing logic for the defined constructs.
These are tasks we associated with a compiler frontend. MLIR provides general transforma-
tion, conversion passes between dialects and dialect specific passes. Additionally, the pass
infrastructure can be extended with passes to operate on custom or already existing dialects.
Together with the existing and custom dialects, the pass framework enables MLIR to sup-
port multi-level middleware. The llvm dialect provides operations, types and attributes to
model the LLVM IR in terms of MLIR. Additionally, MLIR provides a way to translate IR
composed of constructs of the lllvm dialect to LLVM IR. This is an example of a backend
implemented in MLIR.

In the following, we give an overview of the IR design and the pass framework of MLIR
respectively. We focus on concepts that are applied by the MLIR Brainfuck project and
provide the reader with a perspective on further ways to use MLIR.

4.1 IR Design

1 MLIR depends on the textual representation of its concepts. Since MLIR is extensible it
needs a meta-definition for specifying the textual form of a newly defined construct. The
MLIR Language Reference describes such a grammar [noa23u]; we refer to this specification
as the generic textual representation.

The generic textual representation fully reflects the in-memory representation of the de-
fined constructs. Users can define custom syntax and reduce verbosity in cases where infor-
mation is empty or derivable.[LAB+21] During this section, we will use the generic textual
representation. In cases where constructs of the MLIR Brainfuck project defined in section
5 use custom syntax, this is stated explicitly.

1The concepts presented in the following rely on each other. Sometimes the name of a concept is used before
the concept is explained.

13

4 MLIR

1 // Operation associated with dialect d_1 with m arguments , one attribute , n
2 // results and an attached region
3 %res_1 ,.., res_n = "d_1.op_1" (%arg_1 ,.., arg_m) ({ // Region
4 ^entry_block (%arg: d_1.type_1): // Block
5 // Operation associated with dialect d_2 with one result and a region
6 %v = "d_2.op" ({ // Region
7 "d_2.op_2 "(): () -> ()
8 }) : () -> !d_2.type_3
9 "d_1.consume_value "(%v) : (d_2.type_3) -> ()

10 ^term_block: // Block
11 "d_1.terminator "() [^ block(arg: !d_1.type)] : () -> ()
12 }) <{ attr = "value ": !d_1.some_type}> : (!d_1.type_1 ,..! d_2.type_m) -> (!d.

type_1 ,..,!d.type_n)

Listing 4.1: MLIR Intermediate Representation.

4.1.1 Operations

In MLIR an operation (Op) is a first-class object. It forms the unit of semantics [LAB+21].
Ops capture constructs of di↵erent levels from ”modules” and ”functions” to ”control flow
statements” and ”instructions”. There is not a definite set of operations. Rather, MLIR
is operation extensible. Users define custom operations using a declarative syntax based
on TableGen [noa23a] called the Operation Definition Specification (ODS) [noa23w] or by
interacting directly with the Cpp API.

Internally, operations are represented by the following data: they are identified by a
unique name (the opcode), take optional operands, have optional results, have an optional
dictionary of attributes, specify optional successor blocks and have optional enclosed regions
[LAB+21, noa23u]. The operands and results of an operation are maintained in SSA form
[LAB+21]. The generic textual representation captures all this information; see 4.1. If an
operation is attached to a dialect, a custom assembly form can be defined [noa23u].

The data attached to an operation forms its invariants: after application of a pass to
an operation, the invariants (number of operands and their types, the types of the results)
should be the same. Additional invariants can be added by enriching the operation definition
with traits and interfaces [LAB+21, noa23w].

4.1.2 Regions and Blocks

MLIR uses regions to support nested structures. A region is attached to an operation and
contains a least one block (the entry block). A block again consists of operations.[LAB+21]
The semantics of a region are determined by the operands and results of the enclosing
operation [LAB+21, noa23u].

MLIR specifies two kinds of regions: SSACFG regions, which do require control flow
between blocks and Graph regions, which do not require control flow between blocks [noa23u].
Since MLIR Brainfuck does not rely on Graph regions, we assume all regions to be SSACFG.
The operations in a SSACFG region are executed sequentially. Therefore, before an operation
can execute, its operands must have well-defined values. After execution, the operands have
the same and the results also have well-defined values.[noa23t] In SSACFG regions, to enable
control flow [noa23u] blocks end with a terminator operation. The terminator operation can
specify a successor block. As required in a nested context, terminator operations can transfer

14

4.1 IR Design

control flow to blocks contained in the same region or return it to the operation that encloses
it [LAB+21].2

MLIR models data flow between blocks through block arguments. Block arguments are
lists of types that correspond to SSA values [LAB+21]. The arguments of entry blocks
are the arguments to a region which are the arguments to the enclosing operation. Block
arguments of a non-entry block b are determined by the terminator operations that specify
b as successor.[noa23u] This form of data flow is a functional form of SSA [App98] that does
not use � nodes explicitly [LAB+21].

4.1.3 Attributes and Types

Attributes provide information about operations at compile-time. Each operation has a key-
value dictionary mapping of strings to typed values. The generic textual representation of
attributes is a list of comma-separated key = value : type pairs enclosed in curly braces; see
4.1 line 12.[LAB+21]

Values in MLIR are typed. Type information is located in operation results or block
arguments. In the generic textual representation, n input and m output types form a n and
a m tuple separated by !; see for example 4.1 line four and 12.[LAB+21]

4.1.4 Dialects

Dialects enable MLIR to be extensible in a modular way. They provide a grouping mechanism
for operations, attributes and types under a common, unique namespace. The semantics
of a dialect result from the Ops, attributes and types it contains; but these constituents
need the dialect as a grouping mechanism to ensure their modularity. The generic textual
representation reflects this by using the name of the dialect as a dot-separated prefix to the
opcode of an operation; see 4.1.[LAB+21, noa23i]

4.1.5 Symbols and Symbol Tables

An operation can have an attached symbol name. This symbol name is stored in a symbol
table and refers to the operation that defines the symbol: the symbol table is a mapping
between names and IR. Symbols can be used to define and call functions, create named
modules and declare global variables.[LAB+21]

Operations that define a symbol must use the SymbolOpInterface to provide verification
and accessors [sym23].

Operations that expect symbols to be defined in their associated region must implement
the SymbolTable trait. Adding the trait provides the operation with a container to store
the mapping from symbol names to operations and adds verifying (f.e. unique names) and
managing behaviour (f.e. easy lookup).[sym23]

Operations that use symbols need to implement the SymbolUserOpInterface interface. This
adds verifying behaviour to the operation: they have to implement a check that the symbol
they reference exists. Symbols are referred to using a SymbolRefAttr attribute. This attribute
contains a named reference to the related operation that is stored in the symbol table.[sym23]

2Extra region control flow transfer is always defined: The enclosing operation must have a region attached
that contains at least one block since otherwise the terminator operation could not occur in a nested
context

15

4 MLIR

4.2 Passes and the Conversion Framework

Transformations target operations because they are the core unit of abstraction. Since
passes rarely need to know the details of an individual operation, MLIR provides traits and
interfaces as a mechanism to enable generic passes [LAB+21].

4.2.1 Traits and Interfaces

Traits are a mechanism to group attributes, operations and types by implementation details
and properties. They represent special properties or constraints and attach them to an
object.[tra23] This informs transforming passes what kind of transformations are allowed
on a given op; for example, the Commutative trait allows for swapping the operands of an
operation [LAB+21, tra23].

Interfaces allow a (partial) view into the behaviour of an IR object, without making as-
sumptions about implementation details. If an object implements an interface, it implements
the action that should be performed locally on it by a pass. As a result, passes know both
which objects are valid targets and how the general action should be performed on the spe-
cific object. The interfaces SymbolOpInterface and SymbolUserOpInterface [noa23p] are used
by verification passes and require the implementation of verification hooks.

4.2.2 Pass Infrastructure

The pass infrastructure of MLIR provides general transformation, conversion and dialect
specific optimization passes. A pass is created via inheritance of the OperationPass class
and implementation of the virtual void runOperation() method. Passes do have access to the
MLIRContext object. Before the application of a pass is possible all dialects that it depends
on must be loaded to this context.

4.2.3 Conversion Framework

The MLIR Brainfuck project relies heavily on conversion passes. Conversion passes con-
vert an operation into one or more operations within or between dialects. The conversion
framework [noa23j] is used to implement and run conversion passes. The framework relies on
conversion targets, rewrite patterns and optional type converters to run a conversion pass.

In the context of conversion, dialects and operations can be marked as legal or illegal. A
legal operation can be contained in the result of a conversion pass; an illegal operation must
not. If a dialect is marked as illegal (legal), we interpret all of the operations in a dialect
as illegal (legal). An operation attached to a dialect that has been can be marked as legal
(illegal), still may be marked as illegal (legal).

A conversion target specifies legal and illegal dialects and operations. The legal compo-
nents are the building blocks of the conversion, while for each illegal operation, one rewrite
pattern needs to be specified. However, a rewrite pattern can turn one illegal operation
into a composition of multiple legal operations. Furthermore, the conversion framework can
detect transitive relations between rewrite patterns allowing users to compose conversion of
operations automatically [noa23j]

Type converters are used to reconcile type di↵erences that can occur during conversion.
One use case is the direct conversion between types [noa23j]. Take, for example, an illegal

16

4.3 An Overview of Used Dialects

dialect defining a Boolean type and a legal dialect defining instead an Integer type that can
be parameterized by bit width. This would require a type conversion Boolean 7! Integer(1).

4.3 An Overview of Used Dialects

The MLIR Brainfuck project utilizes multiple dialects of the MLIR ecosystem. In the fol-
lowing, we describe each of them briefly.

builtin The builtin dialect is implicitly loaded to every MLIRContext and therefore directly
available to all MLIR users. It defines a set of operations, attributes, and types that is widely
applicable. For example, the IntegerType, MemRefType, IndexType and the builtin.module op-
eration are defined by builtin. The builtin.module operation implements the SymbolTable trait.
As a consequence symbol operations can be declared in the region attached to the opera-
tion. The IntegerType represent arbitrary precision integers with a fixed limit. Optionally an
integer type can have signedness semantics [noa23v]. As an example, i8 expresses an eight-
bit sign-less integer, while si32 denotes a signed 32-bit integer. The MemRefType models a
structured multi-index pointer into memory; the expression memref<30000xi8> denotes a 30000
dimensional array of sign-less 8-bit integers. The index type encodes an integer-like type with
a platform-dependent bit. This means that an index value has a symbolic width equal to
the machine word size [noa23v]; it is equivalent to intptr t in C [MCZZ21]. Furthermore, the
builtin dialect specifies integer and index attributes. They store values known at compile
time. The integer attributes reflect di↵erent bit widths.

func The func dialect provides operations to represent the declaration, definition and ap-
plication of functions. The func.func operation is a go-to construct to describe control-flow
dependent IR since it has an attached SSACFG region.[noa23m]

scf The scf dialect describes higher level control flow constructs. Instead of branching oper-
ations, it defines operations to model ”if-then-else”, ”for-loop” and ”while-loop” constructs.
The scf.while operation can be used to represent both ”while” and ”do-while” loops.[noa23y]

arith The arith dialect holds integer and floating point operations. This includes operations
to represent arithmetic, comparison, bit-wise and shift and casting ops.[noa23d]

index The index dialect represent operations on the index type. These include addition and
subtraction of (sign-less) indexes.[noa23n]

memref The memref dialect provides operations that target the builtin MemRefType. This
includes the declaration of global variables and load and store behaviour.[noa23t]

llvm The llvm dialect defines core LLVM constructs in terms of MLIR. Often this results
in one-to-one mappings between MLIR operations and LLVM instructions. Some bridge
operations are included that adapt pure MLIR constructs to LLVM. As an example, MLIR
uses block arguments instead of � notes; therefore terminator operations can define succes-
sor operands, which are forwarded as block arguments at control flow transfer and MLIR

17

4 MLIR

does not require an explicit � operation.[noa23s] Another example is di↵ering type systems.
Therefore, type conversion is necessary for conversion passes that target the llvm dialect; the
infrastructure provides the LLVMTypeConverter.

18

5 MLIR Brainfuck

MLIR Brainfuck is a provisional but functional Brainfuck compiler based on a MLIR front-
end (Bf dialect) and a LLVM back-end (LLVM IR). The compiler is functional since it can be
used to execute Brainfuck programs. It is provisional since it is composed of three tools and
does not integrate their functionality into one program. The tools are called bf-to-mlir bf,
Bf opt and Bf translate. Their usage is described in 5.5, but figure 5.1 provides an overview
of the MLIR Brainfuck compiler pipeline that they compose.

The process of transforming Bf to LLVM IR performs the lowering and the translation
phase. The lowering phase starts with the Bf dialect and ends with the llvm dialect; it consists
of three steps each of them resulting in valid MLIR IR; we call each result a lowering-product.
Each transformation between lowering products is performed by a conversion pass. The
translation phase expects valid MLIR IR composed of llvm dialect constructs and returns
LLVM IR.

We introduced the lowering products Optimizable Brainfuck (BfOpt), Explicit Brainfuck
(ExplicitBf) and llvm Brainfuck (llvmBf). While OptBf was introduced to enable language-
specific optimizations, ExplicitBf makes memory access explicit. It can be used to remove
unnecessary memory reads if the memory has not been written since the last read. The
final lowering product llvmBf is composed only of constructs of the llvm dialect and is,
therefore, input to the Bf-translate tool. To convert between the products, we have the
conversion passes --bf-to-optbf (to get from Bf IR to OptBf IR), --optbf-to-explicitbf (to get
from OptBf IR to ExplicitBf IR) and --explicitbf-to-llvm (to get from ExplicitBf IR to llvmBf
IR). As shown in 5.1 the conversion passes are combined to the pipeline --bf-to-llvm, which
is also an Bf-opt option. Figure 5.1 shows that the translation phase is performed by the
--mlir-to-llvm-ir option of the Bf-translate tool.

The lowering phase depends on more MLIR dialects than Bf and llvm. A total of 11
dialects are used in the process. We list the dialects in order of their abstraction: Bf, bf red,
builtin, func, scf, arith, index, bf pointer, memref, cf and llvm.1 Next to dialects existing in the
MLIR ecosystem, we defined and used the custom dialects Bf, bf red and bf pointer. In the
following, the custom dialects are presented in sections 5.1, 5.2 and 5.3 respectively. Section
5.4 describes the conversion targets and rewrite patterns the conversion passes depend on.

5.1 Bf Dialect

The front end is implemented as an MLIR dialect called Bf. The Bf dialect does not define
any types or attributes, since Brainfuck has no type system and the Brainfuck commands
can be modelled with operations that do not need custom static data to influence their
behaviour.

We defined operations associated to Bf. They can be grouped analogues to the Brainfuck
commands in operations with and operations without a region.

1Note that these dialects have been briefly described in 4.3.

19

5 MLIR Brainfuck

Figure 5.1: MLIR Brainfuck Pipeline. The dark blue arrows are performed by the Bf-opt
tool. The upper light blue arrow is performed by the bf-to-mlir bf tool. The
lower light blue arrow is performed by the Bf-translate tool.

5.1.1 Operations without a Region

Each primitive Brainfuck command maps to a MLIR operation without a region. These
primitive operations have no region, successor block, SSA operands, attributes or result
types; their semantics is only specified by their name and their one-to-one mapping to a
Brainfuck command.

The mapping from primitive Brainfuck commands to Bf operations without a region is
given in the following listing.

1 + => Bf.increment
2 - => Bf.decrement
3 > => Bf.shift_right
4 < => Bf.shift_left
5 . => Bf.output
6 , => Bf.input

Listing 5.1: Mapping from primitive Brainfuck commands to region less Bf operations.

We reduced the custom syntax of the operations to Bf.<opcode> since it is the only data
subscribing semantic to the operation.

5.1.2 Operations with a Region

A Brainfuck loop consists of the two Brainfuck commands ’[’ and ’]’ and the Brainfuck
commands wrapped by them. The Bf dialect models a Brainfuck loop as one operation with

20

5.2 bf red dialect

an associated constrained region called body.
The region is constrained to only contain one block. This reflects that Brainfuck has

no branching concept. Since a block can contain any (finite) number of operations and an
operation can have a region attached, the recursive nature of a Brainfuck loop is captured.

The region is furthermore constrained to be a SSACFG region. This reflects that the
Brainfuck commands ’+’, ’-’, ’.’, ’<’, ’>’ a↵ect the behaviour of subsequent commands, for
they change the values of the Brainfuck pointer or memory. As a consequence, the order
of the Brainfuck commands that create a Brainfuck program can, a priori, not be changed
without a↵ecting the result of the program: control flow matters in Brainfuck.

A Brainfuck program is defined by Brainfuck code contained in a file ending with ’.bf’.
One such file thus implicitly forms a Brainfuck module. The Bf dialect supports Brainfuck
modules explicitly via an operation (Bf.module) that has an associated region called body.
Analogous to and for the same reasons as the body of Bf.loop, it is SSACFG region and can
only contain one block.

The mapping from composed Brainfuck commands to Bf operations without a region is
given in the following listing; the .. notation refers to Brainfuck commands (Bf operations)
contained in a Brainfuck loop or module (region attached to a Bf operation with region).

1 [..] => Bf.loop { .. }
2 (.. , .bf) => Bf.module { .. }

Listing 5.2: Mapping from composed Brainfuck commands to Bf operations with region.

The custom syntax of both operations is reduced to the dialect name, opcode idiom and the
curly braces that indicate the attached region. The bf-to-mlir bf tool maps ’[’ to Bf.loop {
and ’]’ to }; the Bf-opt tool parses the result of bf-to-mlir bf and detects that a program is
not syntactically correct if the Bf dialect loop does not open or close.

5.1.3 Example

The following listing contains a mapping from the example 2.4 to an Bf representation of it.
In comparison to the LLVM representation of the feedback loop in 3.4.1, this implementation
leaves memory, pointer and console implicit.

1 Bf.module {
2 + => Bf.increment
3 [=> Bf.loop {
4 > => Bf.shift_right
5 , => Bf.input
6 . => Bf.output
7 < => Bf.shift_left
8] => }
9 }

Listing 5.3: Example 2.4 translated to Bf IR.

5.2 bf red dialect

Analogous to the Bf dialect, bf red does not define any types or attributes. It has two
associated region-less operations.

21

5 MLIR Brainfuck

5.2.1 Operations

The bf red.increment operation is an abstraction of Bf.increment and Bf.decrement. It expects
a signed eight-bit integer attribute as an argument to model the value to be added to the
current cell. The bf red.shift operations is an abstraction Bf.shift right and Bf.shift left. It
expects a signed 32-bit integer attribute as an argument to model the amount by which the
Brainfuck pointer should be shifted. The syntax of the bf red operations is reduced to the
dialect name, and opcode idiom followed by the attribute dictionary in generic textual form.

1 // add amount one to the current cell
2 bf_red.increment {amount = 1 : si8}
3
4 // add amount minus one to the current cell
5 bf_red.increment {amount = -1 : si8}
6
7 // shift the Brainfuck pointer by one
8 bf_red.shift {value = 1 : si32}
9

10 // shift the Brainfuck pointer by minus one
11 bf_red.shift {value = -1 : si32}

Listing 5.4: bf red Operations.

Note that the bf red.increment (bf red.shift) operation can be used to model the behaviour
of the Bf.increment and the Bf.decrement operation (Bf.shift right and the Bf.shift left oper-
ation) by passing the appropriate values as arguments as shown in the listing.

5.3 bf pointer dialect

The bf pointer dialect provides an implementation of the Brainfuck pointer. The pointer is
a globally accessible structure that stores the write and read position of the program. This
implies that the MLIR structure that models it, needs to be referenced in more than just
one place. It would be tedious to represent this behaviour using SSA variables. Each write
operation would need to store the new value in an unique SSA variable. This would require
logic to track the SSA variable that stores the pointers’ current value for successive read or
write operations to access it. Therefore, the implementation uses MLIR symbols.

In the lowering phase, the dialect will be applied to model memory access in tandem with
the memref dialect. Since the memref operations, that are used to access memory, rely on
values of type index [noa23t], the bf pointer dialect serves as a ’wrapper’ of the index type.

5.3.1 Operations

To declare the Brainfuck pointer, we define the bf pointer.ptr operation. It takes a
SymbolRefAttr called name and an optional index attribute called inital value with the de-
fault value zero as attributes. Furthermore, it implements the SymbolOpInterface interface.
This adds the symbol reference name to the symbol table of the enclosing builtin.module
operation. Now, the value of the Brainfuck pointer can be referenced by operations using
the name symbol.[sym23, noa21]

To write to and read from the pointer, we need to access the current value of the pointer
using the symbol reference name.

22

5.4 Lowerings

We define one operation per functionality. Both implement the SymbolUserOpInterface to
enable symbol verification and access. As a result, both operations must define verifying
behaviour, which is run before the symbol is accessed.

The bf pointer.write ptr operation writes a new value to the pointer. It expects a SymbolRefAttr
(called name) and the new pointer value of type index as arguments. The bf pointer.read ptr
operation reads the current value of the pointer. It takes a SymbolRefAttr (called name) as
an argument and returns the current value of type index.

1 // declare the Brainfuck pointer symbol @bf_ptr with initial value zero
of type index.

2 bf_pointer.ptr @bf_ptr = 0 : (index) -> ()
3
4 // read the current value of the Brainfuck pointer
5 %2 = bf_pointer.read_ptr {name = @bf_ptr} : () -> (index)
6
7 // write a new value to the Brainfuck pointer
8 bf_pointer.write_ptr %2 {name = @bf_ptr }: (index) -> ()

Listing 5.5: bf pointer Operations.

We implemented the verifying behaviour for both operations by checking whether a map-
ping of the form name 7! bf pointer.ptr exists in the symbol table of the enclosing builtin.module
operation.

The syntax of the read and write pointer operations is reduced to contain the dialect
name, opcode idiom, the attribute dictionary containing the symbol name and the function
type indicating input and output behaviour.

5.4 Lowerings

We present the three lowering-products OpfBf, ExplicitBf and llvmBf respectively. Each
lowering product is the result of a conversion pass. The passes are defined by conversion
targets composed of legal and illegal operations and rewrite patterns. Each illegal operation
requires the definition of a rewrite pattern.

5.4.1 Optimizable Brainfuck

OptBf is composed of operations of the Bf and bf red dialects. The front-end Bf is lowered
to OptBf by the conversion pass --bf-to-optbf. The pass is defined by the conversion target
and the rewrite patterns shown in 5.1; if a row contains an illegal op, then also a rewrite
pattern must be specified.

Rationale

The operations Bf.increment, Bf.decrement, Bf.shift right and Bf.shift left of the Bf dialect
can be folded. In the context of the Bf ! OptBf lowering, we call them the fold-able
operations. The fold-able operations implicitly increment or decrement the current cell
(Brainfuck pointer) by one. This can be abstracted to an operation that expects the signed
value to be added to the current cell (Brainfuck pointer) as an argument. Then only one
operation is needed for both increment and decrement (or shift right, shift left). Furthermore,
this allows for optimization passes that fold n successive occurrences of the same Bf operation

23

5 MLIR Brainfuck

Illegal Ops Legal Ops Rewrite Pattern

Bf.increment bf red.increment BfIncrementToBfRedLowering

Bf.decrement bf red.increment BfDecrementToBfRedLowering

Bf.shift right bf red.shift BfShiftRightToShiftLowering

Bf.shift left bf red.shift BfShiftLeftToShiftLowering

- Bf.module -

- Bf.loop -

- Bf.input -

- Bf.output -

Table 5.1: Definition of the Bf ! OptBf lowering.

to an occurrence of the associated bf red operation with argument n (or �n if the semantics
of the Bf operation involves decreasing).

--bf-to-optbf

The Bf ! OptBf lowering consists of the four conversion patterns. Each pattern translates
one of the fold-able operations to a bf red operation.

The task of the BfIncrementToBfRedLowering pattern is to translate the Bf.increment op-
eration to the bf red.increment operation with the value 1 wrapped in an eight-bit signed
integer attribute as argument. Analogous, the Bf.decrement operation is translated to
bf red.decrement, but with the value �1 wrapped in an eight-bit signed integer attribute
as argument, which is implemented by the BfDecrementToBfRedLowering pattern.

The BfShiftRightToShiftLowering translates the Bf.shift right operation to the bf red.shift
operation with the value 1 wrapped in a 32-bit signed integer attribute as argument. We need
a 32-bit integer, since we assumed our memory size to be 30000 cells which requires a storage
size � 30000. The Bf.shift left operation is translated to bf red.shift, but with the value �1
wrapped in a 32-bit signed integer attribute as argument by the BfShiftRightToShiftLowering
conversion pattern. Each pattern wraps the incrementing/shifting value in an attribute since
it is known at compile time.

5.4.2 Explicit Brainfuck

The second lowering product is ExplicitBf. It is composed of the dialects bf pointer, arith,
index, func, scf, builtin, memref and llvm. OptBf is lowered to ExplicitBf by the conversion
pass --optbf-to-explicitbf. Table 5.2 shows the definition of the pass.

Rationale

Since the core abstraction of the Brainfuck language is the invisibility of memory, pointer and
console it implicitly requires read and write operations on the (global) structures memory,
pointer and console. For example, the operation bf red.shift (bf red.increment) (Bf.input)

24

5.4 Lowerings

Illegal Ops Legal Ops Rewrite Pattern

Bf.module
builtin.module, func.func, func.return,
memref.global, memref.get global,
memref.dealloc, bf pointer.ptr

BfModuleLowering

Bf.loop

scf.while, scf.condition, scf.yield
memref.get global, memref.load,

bf pointer.read ptr,
arith.constant, arith.cmpi

LoopOpLowering

bf red.increment
memref.get global, bf pointer.read ptr,
arith.contant, arith.addi, memref.store

BfRedIncrementLowering

bf red.shift
bf pointer.read ptr,

index.contant, index.add, bf pointer.write ptr
BfRedShiftLowering

Bf.input
func.call, llvm.trunc, memref.get global,

bf pointer.read ptr, memref.store
BfInputLowering

Bf.output
func.call, llvm.sext, memref.get global,

bf pointer.read ptr, memref.load
BfOutputLowering

Table 5.2: Definition of the OptBf ! ExplicitBf lowering.

depend on the pointer (pointer and memory) (pointer, memory and console). In ExplicitBf
memory, pointer and console are represented with adequate MLIR constructs.

The Brainfuck memory needs to be referenced in more than one place. As with the pointer,
it would be tedious to represent this using SSA values. Therefore, to represent the Brainfuck
memory and operations on it, we use the memref dialect. It contains operations to declare a
symbol for a memory reference and to read from and write to it using the declared symbol
[noa23t].

We utilize the custom bf pointer dialect to declare the Brainfuck pointer and read and
write from it.

The console is modelled by the application of the C language functions getchar and putchar.
We use the func dialect to declare and call them. Since we lower to LLVM IR and LLVM
can call C functions once they are declared in an LLVM module [noa23b], we do not have
to define custom MLIR operations for their behaviour.

The implementation of read-and-write access to the Brainfuck memory follows a common
structure; see listing 5.4.2.

First, we retrieve the current values of Brainfuck memory and pointer in SSA form (lines
one to two). These can be used by successive operations. This part is mandatory for any
usage of the memory.

The second part consists of two options A and B. Option A expresses read and option B
expresses write access. All rewrite patterns either use option A or option B exclusively or
utilize both constructs.

In line three, the current cell is accessed using the memref.load operation on the SSA
values %0 and %1. This expresses option A of the second part. Line four expresses option
B of the second part. A value is stored to the current cell using the memref.store operation
on the memory reference, the index and the value stored in variable %2.

In the example, we restore the value read from the memory. If both options are used in

25

5 MLIR Brainfuck

1 // First part: access the current values of Brainfuck memory and pointer.
2 %0 = memref.get_global @bf_memory : memref <30000xi8 >
3 %1 = bf_pointer.read_ptr {name = @bf_ptr} : () -> index
4
5 // Second part: some lowerings use A some B and some both
6 // A (optionally): read the current cell.
7 %2 = memref.load %0[%1] : memref <30000xi8 >
8
9 // B (optionally): write a new value to the memory. Here we just reuse

the read value.
10 memref.store %2, %0[%1] : memref <30000xi8 >

Listing 5.6: ExplicitBf Memory Access Idiom.

a lowering of operation O, the value to be stored in the current cell is calculated from the
value of the current cell and operations related to the semantic of O.

BfModuleLowering

The conversion of the Bf.module operation is represented by the conversion pattern
BfModuleLowering. Its tasks are to open a builtin.module, declare the symbols related to
the Brainfuck memory, pointer and console, define a SSACFG region to be populated with
the operations of Bf.module’s body region and clean the global structure that models the
memory. The following code listing shows the resulting MLIR IR.

1 module {
2 bf_pointer.ptr @bf_ptr = 0 : () -> ()
3 memref.global "private" @bf_memory : memref <30000xi8 >
4 func.func private @getchar () -> i32
5 func.func private @putchar(i32) -> i32
6 func.func @main () {
7
8 // content of Bf.module body region.
9

10 %0 = memref.get_global @bf_memory : memref <30000xi8 >
11 memref.dealloc %0 : memref <30000xi8 >
12 return
13 }
14 }

Listing 5.7: bf.module ! ExplicitBf.

The Brainfuck pointer is declared using the bf pointer.ptr operation with the initial value
zero. We implement the Brainfuck memory in terms of a memory reference of rank 30000 and
a sign-less 8-bit integer shape. The operation memref.global adds the symbol @bf memory

to the symbol table of module since builtin.module implements the Symbol interface. It
furthermore allocates the requested memory space statically.[noa23t]

The C language functions getchar and the putchar are declared by passing their names as
symbols to the func.func operation. Since it implements the Symbol interface, the names of
both functions are added to the symbol table of the module [noa23m]. Note that getchar
expects and putchar returns a sign-less 32-bit integer. This will lead to casting operations
in the conversion of Bf.input and Bf.output.

26

5.4 Lowerings

In line six, the func.func operation is used to declare and define the function that drives
the execution of the Brainfuck program. Since in the last lowering step to the llvm dialect,
the occurrence func.func @main will be transformed to an LLVM function, we declare the
function with the @main symbol attached, because a LLVM module must contain a main
function. We populate the region of func.func operation with the contents of the Bf.module’s
body region.

In lines 10 to 11 the allocated memory is cleaned.

LoopOpLowering

The conversion of the Bf.loop operation to ExplicitBf is represented by the conversion pattern
LoopOpLowering. Its task is to define a scf.while operation and populate its before region
with the Brainfuck loop condition and its after region with the operations contained in the
body region of Bf.loop. The following code listing shows the resulting MLIR IR.

1 scf.while : () -> () {
2 %0 = memref.get_global @bf_memory : memref <30000xi8 >
3 %1 = bf_pointer.read_ptr {name = @bf_ptr} : () -> index
4 %2 = memref.load %0[%1] : memref <30000xi8 >
5 %c0_i8 = arith.constant 0 : i8
6 %3 = arith.cmpi ne, %2, %c0_i8 : i8
7 scf.condition (%3)
8 } do {
9

10 // content of Bf.loop body region.
11
12 scf.yield
13 }

Listing 5.8: bf.loop ! ExplicitBf.

We populate the before region with the Brainfuck loop condition. The Brainfuck loop
condition checks if the current cell is unequal to zero. Therefore, the value of the current cell
is read using the first part and the A option of the ExplicitBf memory access idiom (lines two
to three). Then, the value is compared against zero employing the arith.cmpi operation. We
apply this operation with the ne predicate as argument. This predicate ensures that the two
operands are not equal [noa23d]. The scf.condition operation (line seven) is the terminator of
the before region. It expects a signless one-bit integer 2 called condition as the first operand;
condition indicates whether to execute the after region or to terminate the loop.[noa23y]

The after region is populated with the content of the Bf.loop body region. As terminator
the scf.yield operation is applied; this terminates the after region and transfers control flow
to the before region [noa23y].

This construction expresses that the Brainfuck loop is essentially a while, not a do-while
loop: the loop body is executed only if the Brainfuck loop condition is true.

The recursive application of the LoopOpLowering rewrite pattern, in cases, where the body
of a Brainfuck loop again contains a loop, requires implementation of the initialize hook to set
setHasBoundedRewriteRecursion, which signalizes that recursion is safely handled [pat23].

2i.o.w. a Boolean value, but MLIR does define a Boolean type explicitly.

27

5 MLIR Brainfuck

BfRedIncrementLowering

The conversion of the Bf red.increment operation to ExplicitBf is represented by the conver-
sion pattern BfRedIncrementLowering. Its tasks are to

1. read the current values of the Brainfuck pointer and memory,

2. read the current cell using the values of Bainfuck pointer and memory,

3. calculate the incremented value,

4. store the incremented value using the values of the Bainfuck pointer and memory.

The following code listing shows the target operation and the resulting MLIR IR.

1 // Conversion listing for pass --bf_red -to-arith -bf_pointer
2
3 // Operation to be lowered
4 bf_red.increment {amount = 1 : si8}
5
6 // Resulting MLIR IR
7 %0 = memref.get_global @bf_memory : memref <30000xi8 >
8 %1 = bf_pointer.read_ptr {name = @bf_ptr} : () -> index
9 %2 = memref.load %0[%1] : memref <30000xi8 >

10 %c1_i8 = arith.constant 1 : i8
11 %3 = arith.addi %2, %c1_i8 : i8
12 memref.store %3, %0[%1] : memref <30000xi8 >

Listing 5.9: bf red.increment ! ExplicitBf.

The current cell is read using the first part and option A of the ExplicitBf memory access
idiom (lines seven to nine). The amount to be added to the cell is created by applying
the arith.constant operation to the amount attribute of bf red.increment (line 10). Then,
the incremented value is calculated with arith.addi used on the value of the current cell
and %c1 i8. Finally, option B of the ExplicitBf memory access idiom is applied to %3 to
accomplish task four.

BfRedShiftLowering

The conversion of the Bf red.shift operation to ExplicitBf is represented by the conversion
pattern BfRedShiftLowering. Its task is to

1. read the current value of the Brainfuck pointer,

2. calculate the shifted value using the current value and Bf red.shift.value,

3. store the shifted value.

The following code listing shows the target operation and the resulting MLIR IR.

1 // Conversion listing for pass --bf_red_shift -to-index -and -bf_pointer
2
3 // Operation to be lowered
4 bf_red.shift {value = -1 : si8}
5
6 // Resulting MLIR IR
7 %0 = bf_pointer.read_ptr {name = @bf_ptr} : () -> index

28

5.4 Lowerings

8 %idx1 = index.constant 1 // 1 is the absolute amount the attribute value
9 %1 = index.sub %0, %idx1 // or index.add if -value < 0

10 bf_pointer.write_ptr %1 {name = @bf_ptr} : (index) -> ()

Listing 5.10: bf red.shift ! ExplicitBf.

The conversion pass depends on read and write operations on the Brainfuck pointer. There-
fore, we use bf pointer.read ptr and bf pointer.write ptr in lines seven and teen. In between,
the value to be added to or subtracted from the current value of the pointer stored in %0 is
calculated. Since the index.add and index.sub operations treat their operands as sign-less, a
value of type index passed to them can not be meaningfully negative [noa23n]. So, we only
create an index constant on the absolute amount of the value attribute of bf red.shift. In line
three, we either use index.sub or index.add depending on the sign of value. In the current
example, since value < 0 the index.sub operation is used.

BfInputLowering

The conversion of Bf.input is represented by the conversion pattern BfInputLowering. The
task of BfInputLowering is to

1. get a value from the console,

2. get the current values of Brainfuck pointer and memory,

3. store the retrieved value using these values in the current cell.

The following code listing shows the resulting MLIR IR of the BfInputLowering.

1 %0 = func.call @getchar () : () -> i32
2 %1 = llvm.trunc %0 : i32 to i8
3 %2 = memref.get_global @bf_memory : memref <30000xi8 >
4 %3 = bf_pointer.read_ptr {name = @bf_ptr} : () -> index
5 memref.store %1, %2[%3] : memref <30000xi8 >

Listing 5.11: Bf.input ! ExplicitBf.

Task one is implemented by applying the func.call operation to the @getchar symbol.
The operation implements the SymbolUserOpInterface. Therefore, it can map the symbol to
the declaration of getchar. The function call returns a sign-less 32-bit integer that is stored
in %0. Since the memory reference that implements the Brainfuck memory has shape i8, we
need to cast the input value before we can store it. In line two, this is done by passing the
target type i8 and the operand %0 to llvm.trunc. Finally, the casted value is stored in the
Brainfuck memory using the ExplicitBf memory access idiom with option B.

BfOutputLowering

The conversion of Bf.output is represented by the conversion pattern BfoutputLowering. The
task of BfOutputLowering is to

1. get the current values of Brainfuck pointer and memory,

2. get the current cell using these values,

3. write the current cell to the console.

29

5 MLIR Brainfuck

The following code listing shows the resulting MLIR IR of the BfOutputLowering.

1 %4 = memref.get_global @bf_memory : memref <30000xi8 >
2 %5 = bf_pointer.read_ptr {name = @bf_ptr} : () -> index
3 %6 = memref.load %4[%5] : memref <30000xi8 >
4 %7 = llvm.sext %6 : i8 to i32
5 %8 = func.call @putchar (%7) : (i32) -> i32

Listing 5.12: Bf.output ! ExplicitBf.

We read the current cell using the ExplicitBf memory access idiom with option A. The
type of the SSA value %6 is i8. Since the putchar function takes a 32-bit integer as argument,
we need to cast. The llvm.sext operation is applied to %6 and the i32 type to accomplish
this. At last, func.call is used on the @putchar symbol and the casted value to accomplish
step three.

5.4.3 llvm Brainfuck

The fourth lowering product is llvmBf. The conversion pass --bf-to-llvm translates ExplicitBf
to the constructs of the llvm dialect. Since ExplicitBf mostly consists of project-independent
components, we can utilize existing conversion patterns with only llvm operations as legal
operations. This is done for the dialects arith, index, func, scf, builtin, and memref. Note
that the lowering of scf to llvm requires conversion to the cf dialect.

As a consequence, we only had to write custom rewrite patterns for the bf pointer opera-
tions. See table 5.3 for an overview of the defined patterns.

Illegal Ops Legal Ops Rewrite Pattern

bf pointer.ptr llvm.mlir.global PtrLowering

bf pointer.read ptr llvm.mlir.adressof, llvm.load ReadPtrLowering

bf pointer.write ptr llvm.mlir.adressof, llvm.store WritePtrLowering

Table 5.3: Definition of the Explicit ! llvmBf lowering.

Rationale

This conversion expresses the bf pointer operations in llvm constructs. We utilize the llvm.mlir.global
and the llvm.mlir.addressof operation. Both operations contain an additional .mlir prefix, to
signalize that the operations relate to concepts not known by the LLVM IR. This results
in the additional transformation from MLIR logic to LLVM IR representation, which is
implemented in the --mlir-to-llvmir option of the Bf-translate tool.

Since the llvm dialect does not have access to the index type, type conversion is needed.
The LLVMTypeConverter is already part of the conversion framework. It provides a function
to map the index type to a 64-bit integer; this integer is part of the builtin dialect and is
compatible with LLVM’s integer type.

30

5.5 Project Structure, Tools and Usage

PtrLowering

The PtrLowering pattern translates the bf pointer.ptr operation directly to the llvm.mlir.global
operation.

1 llvm.mlir.global private @bf_ptr (0 : index) {addr_space = 0 : i32} : i64

Listing 5.13: bf red.ptr ! llvmBf.

Since the Brainfuck pointer should not be visible outside of the current module, we specify
the symbol as private. The value operand of llvm.mlir.global accepts the value 0 wrapped in
an index attribute. However note, that the operation returns the i64 type; this is the result
of the applied type conversion.

ReadPtrLowering

The task ReadPtrLowering pattern is to get the address of the Brainfuck pointer using the
@bf_ptr symbol and load the current value of the pointer.

1 %0 = llvm.mlir.addressof @bf_ptr : !llvm.ptr <i64 >
2 %1 = llvm.load %0 : !llvm.ptr <i64 >

Listing 5.14: bf red.read ptr ! llvmBf.

The llvm.mlir.adressof operation returns a typed LLVM pointer as required for LLVM
memory access. In this case, the signless 64-bit integer type is used, which reflects the type
conversion of the index type. The llvm.load Op is applied to the returned address and returns
the current value of the pointer as a sign-less 64-bit integer. The custom syntax leaves the
return type implicit since it can be deduced from the type !llvm.ptr < i64 > of the operand.

WritePtrLowering

The task WritePtrLowering pattern is to get the address of the Brainfuck pointer using the
@bf_ptr symbol and store the new value to the pointer.

1 // This is the converted form of the index.constant 1 operation ,
2 // which was synthesized in the ExplicitBf conversion
3 %2 = llvm.mlir.constant (1 : i64) : i64
4
5
6 %1 = llvm.mlir.addressof @bf_ptr : !llvm.ptr <i64 >
7 llvm.store %2, %1 : !llvm.ptr <i64 >

Listing 5.15: bf red.write ptr ! llvmBf.

5.5 Project Structure, Tools and Usage

MLIR Brainfuck3 is implemented as a CMake based standalone, out-of-tree project. In this
context, out-of-tree means that the project is not included in the LLVM monorepo. The
CMakeLists.txt root file verifies existing MLIR and LLVM installations on the computer
and uses the path to the installations during the build process.

3https://github.com/jacobschw/MLIR-Brainfuck

31

5 MLIR Brainfuck

The project is standalone since it contains an opt-like tool to operate on the IR and does
not depend on mlir-opt : the modular optimization driver, which is contained in a MLIR
installation. This tool is intended to test passes: it can parse arbitrary MLIR IR following
the rules of the dialects registered in its context4 and apply registered passes on it.

Project Strucuture The project structure is similar to the structure of the mlir subfolder
in the LLVM monorepo: header files are stored in the include folder and the related imple-
mentations/definitions are stored in the lib folder; the substructure of both folders is equal.
In our context, the main components of the project, which are dialects and conversions, form
the substructure.

The custom dialects and passes are implemented using the TableGen framework of the
MLIR infrastructure [noa23w, noa23x]. The dialects and passes are declared and partially
defined in an associated .td file. Since code generation is controlled by CMake constructs
provided by MLIR, CMake targets for code generation have to be declared. The code
generation targets generate the needed .h.inc and .cpp.inc files from user-defined .td files.
The generated files are stored in the build folder of the project, which resembles the project
structure. They include class declarations, printer and parser logic, getter methods and
standard verification logic. Components of the constructs that are not generated (f.e. the
concrete implementation of a conversion pass or specific verification code) must be added to
the associated .h, .cpp files.

Additionally, three tools are included in the project. These are the Cpp-based tools Bf-
opt, Bf-translate and the python-based tool bf-to-mlir bf, which translates Brainfuck code
to Bf dialect-based front-end.

Bf-opt The tool Bf-opt expects valid MLIR IR and (optional) options as input and returns
MLIR IR that results from applying the options to the input IR; it is implemented in close
analogy to the mlir-opt tool, but has only access to the dialects used by the project. We use
Bf-opt to parse MLIR Brainfuck IR (of arbitrary conversion stages) and apply conversion
passes to it.

Bf-translate The tool Bf-translate operates at the boundaries of MLIR; it translates dif-
ferent IR to MLIR or MLIR to di↵erent IR [noa22]; with ”di↵erent IR”, we mean IR dis-
tinct from MLIR IR. We use the tool to translate llvmBf to LLVM IR by applying the
--mlir-to-llvmir option.

Usage To execute a Brainfuck program one has to

1. apply bf-to-mlir bf to the program,

2. execute Bf-opt --bf-to-llvm on the result of 1,

3. use Bf-translate --mlir-to-llvmir on the result of 2,

4. generate an executable from the LLVM IR using an appropriate compiler (f.e. clang).

The Bf-opt tool can be used on any MLIR IR that is associated with the project (Bf front-
end, OptBf, ExplicitBf, llvmBf) by using the appropriate passes; see figure 5.1.
4In fact, it can parse any IR constructs that match the generic textual representation, but unkown IR
constructs can not be verified against their invariants [noa23f].

32

6 Evaluation

6.1 Results

We present the results of the thesis using the feedback loop example 5.1.3. The following
listings shows the result of applying --bf-to-optbf to 5.1.3. OptBf prepares language-specific
folding optimizations while leaving memory, pointer and console implicit.

1 Bf.module { Bf.module {
2 Bf.increment => bf_red.increment {amount = 1 : si8}
3 Bf.loop { Bf.loop {
4 Bf.shift_right => bf_red.shift {value = 1 : si32}
5 Bf.input Bf.input
6 Bf.output Bf.output
7 Bf.shift_left => bf_red.shift {value = -1 : si32}
8 } }
9 } }

Listing 6.1: Example 2.4 translated to OptBf.

Listing 6.1 gives an implementation of the feedback loop example 2.4 in ExplicitBf IR. It
is the result of applying the --optbf-to-explicitbf pass to 6.1. Memory, pointer and console
are explicit as they would be in a C implementation, see 2.3.4, and are in the LLVM-based
implementation in listing 3.4.1. But the ExplicitBf representation preserves the higher-level
control flow of the Brainfuck loop thanks to the scf dialect.

6.2 Dialect and Pass Design

We defend our design choices regarding the implemented dialects and passes.
We wanted to implement a Brainfuck compiler that performed steps one to seven of the

classical compiler pipeline based on only one compiler framework. This required the im-
plementation of a dialect that models Brainfuck at the highest possible level. The tool
bf-to-mlir bf confirms this property since it just maps each Brainfuck command to the re-
sulting Bf representation.

The bf red dialect is required to enable folding optimizations and to simplify conversion;
only one conversion pattern is needed for bf red.shift (bf red.increment) instead of two for
bf.increment and bf.decrement (bf.shift right and bf.shift left). The folding optimization is not
possible in the context of Bf, since the fold-able operations do not specify any arguments.

The bf pointer dialect enables the implementation of the Brainfuck pointer as a global
variable. This is done by a combination of symbol declaration, symbol-to-SSA materializa-
tion [sym23] and symbol write access: the bf pointer.ptr operation declares the pointer, the
bf pointer.read ptr turns the current value of the pointer into an index typed SSA value that
can be used by successive operations and the bf pointer.write ptr operation modularizes the

33

6 Evaluation

1 module {
2 bf_pointer.ptr @bf_ptr = 0 : () -> ()
3 memref.global "private" @bf_memory : memref <30000xi8 >
4 func.func private @getchar () -> i32
5 func.func private @putchar(i32) -> i32
6 func.func @main () {
7 %0 = call @getchar () : () -> i32
8 %1 = llvm.trunc %0 : i32 to i8
9 %2 = memref.get_global @bf_memory : memref <30000xi8 >

10 %3 = bf_pointer.read_ptr {name = @bf_ptr} : () -> index
11 memref.store %1, %2[%3] : memref <30000xi8 >
12 scf.while : () -> () {
13 %5 = memref.get_global @bf_memory : memref <30000xi8 >
14 %6 = bf_pointer.read_ptr {name = @bf_ptr} : () -> index
15 %7 = memref.load %5[%6] : memref <30000xi8 >
16 %c0_i8 = arith.constant 0 : i8
17 %8 = arith.cmpi ne, %7, %c0_i8 : i8
18 scf.condition (%8)
19 } do {
20 %5 = memref.get_global @bf_memory : memref <30000xi8 >
21 %6 = bf_pointer.read_ptr {name = @bf_ptr} : () -> index
22 %7 = memref.load %5[%6] : memref <30000xi8 >
23 %8 = llvm.sext %7 : i8 to i32
24 %9 = func.call @putchar (%8) : (i32) -> i32
25 %10 = func.call @getchar () : () -> i32
26 %11 = llvm.trunc %10 : i32 to i8
27 %12 = memref.get_global @bf_memory : memref <30000xi8 >
28 %13 = bf_pointer.read_ptr {name = @bf_ptr} : () -> index
29 memref.store %11, %12[%13] : memref <30000xi8 >
30 scf.yield
31 }
32 %4 = memref.get_global @bf_memory : memref <30000xi8 >
33 memref.dealloc %4 : memref <30000xi8 >
34 return
35 }
36 }

Listing 6.2: Example 2.4 translated to ExplicitBf.

write-access to the pointer. The memref dialect implements a similar approach to model
global memory references. As we have seen in the llvmBf conversion section, the bf pointer

operations are implemented using constructs of the llvm dialect. We could have used this
implementation already in the ExplicitBf representation but choose against it, because we
wanted ExplicitBf to be as clean from llvm constructs as possible.

In accordance with the three abstraction levels, we implemented three conversion passes.
Instead of writing a fourth pass to enable transforming the front-end directly to the llvm
dialect, we implemented a pipeline called --bf-to-llvm that performs the conversion passes
successively and is an option of Bf-opt.

Since the project is implemented in MLIR and we took optimization open design choices,
MLIR Brainfuck can be easily supplemented by optimization passes on all three levels
(OptBf, ExplicitBf, llvmBf). These passes can be integrated to the --bf-to-llvm pipeline
at the boundaries of the conversion passes.

34

6.3 Semantic and Regressions Tests

6.3 Semantic and Regressions Tests

We added regression tests to the project to gain control over the correctness of the compi-
lation pipeline in the context of possible future changes. The tests depend on a semantic
testing approach.

6.3.1 Regression Tests with Lit and Filecheck

We added regression tests using lit [noa23q] and FileCheck [noa23l]. While lit is a LLVM
integrated test runner, FileCheck lyou check the outputs of some string-based transformation
against a specified expected textual form.

1 // RUN: Bf -opt --<some -option > | FileCheck %s
2 // CHECK: Check some string

Listing 6.3: Example lit/FileCheck Test File.

The tool lit searches for test files and executes the command that follows // RUN:. In
our case, we use it to execute Bf-opt with some option. The string-based result is passed
to FileCheck, which compares it against the expected textual form. The combination of
lit and Filecheck helps to verify that the framework recognizes custom constructs (dialects,
operations, pass names) and performs passes as expected.

The expected textual form resembles the idea behind the implementation of a pass. If
the idea is fraud or the implementation contains an error, so does the expected form. The
consequence is that a pass has to be tested against runtime behaviour. We assume the
correctness of Bf-translate’s --mlir � to� llvmir option. The results of the three conversion
steps have to be validated; our approach to semantic testing is given in 6.3.2

After successful end-to-end testing, we assumed the correctness of each conversion pass.
From this point on, the test suite truly serves for regression test since malicious changes in
the code base can be easily tracked.

6.3.2 Semantic Test

The approach is to run the MLIR Brainfuck compiler on simple programs and execute the
result using the clang compiler. We exploit that Brainfuck supports console output. Our
first step is to verify the Brainfuck program ’,.’: we require the output for tests of the other
Brainfuck commands and we need something di↵erent from the null bit to ensure that the
output is working. After ensuring that the output works, we can test increment, decrement,
shift left and shift right commands using appropriate programs. An example is the following
program in Bf notation to test the increment command.

1 Bf.module {
2 Bf.output
3 Bf.increment
4 Bf.output
5 }

Listing 6.4: Semantic Increment Test in Bf Notation.

The first output command does nothing because the cells are initialized with zero. We
expect the second output to result in the sign related to the ASCII code 1: a transparent
smiling smiley.

35

6 Evaluation

Using the correctness of the increment command allows us to test the loop commands and
the cell wrapping mechanism.

1 Bf.module {
2 Bf.increment
3 Bf.output
4
5 Bf.loop {
6 Bf.increment
7 Bf.output
8 }
9

10 Bf.increment
11 Bf.output
12 }

Listing 6.5: Semantic Loop/Cell Wrap Test in Bf Notation.

Since we verified the increment command, we expect the first output to result in a trans-
parent smiling smiley. Accordingly, the current cell is unequal to zero and the loop should
execute until the current cell equals zero. Since the loop body first increments and then
outputs the result, we expect every sign related to an ASCII code to be printed. Then the
cell should wrap, or in other words, the current cell should become zero. Therefore, the third
output should show the transparent smiling smiley again.

Tests for the shifting commands are yet missing. Since the Brainfuck pointer is initial-
ized with zero and MLIR Brainfuck does not support tape wrapping, testing the shift left
command depends on the correctness of the shift right command.

The shift right command is tested using the results of the output and the input operation.

1 Bf.module {
2 Bf.increment
3 Bf.output
4 Bf.shift_right
5 Bf.increment
6 Bf.output
7 }

Listing 6.6: Semantic Shift Right Test in Bf Notation.

As always, we expect the first output to show a transparent smiling smiley. Then, we
apply the shift right command, so the current cell celli should fulfil celli 6= cell0. This is
true if the second output results in a transparent smiling smiley: since celli was initialized
to zero, any di↵erent result would be an error.

Currently, we only verified that the shift operation moves the pointer to some cell di↵erent
from cell0. We use this knowledge to test the shift left command.

1 Bf.module {
2 Bf.shift_right
3 Bf.increment
4 Bf.shift_right
5 Bf.increment
6
7 Bf.loop {
8 Bf.output
9 Bf.shift_left

10 }

36

6.3 Semantic and Regressions Tests

11 }

Listing 6.7: Semantic Shift Left Test in Bf Notation.

The program starts with shifting the pointer to the right. The celli is marked using an
increment command. Therefore, the following loop executes and we expect the first output
to be the transparent smiling smiley. We expect the following shift left command to move
the pointer to cell0. Since cell0 was initialized to zero and stayed untouched since then, it
should be zero and the loop terminates.

After we gained confidence that the single Brainfuck commands were converted correctly,
we tested the MLIR Brainfuck pipeline with larger Brainfuck programs. The programs, we
tested can be found in the bf scripts subfolder of our git repository. Starting with a hello
world program (hello world.bf) [noa23e], we continued with a list of programs competing for
the shortest possible hello world Brainfuck program (hw i.bf, i 2 1, .., 4) [noa23g]; these pro-
grams use rather advanced techniques and require loops to be executed often. We included a
non-terminating factorials calculator (factorials.bf) [26223a]; during the development of our
LLVM-based Brainfuck compiler, we found that the storage size of our Brainfuck pointer
was not large enough because the program terminated after printing the first ten factorials.
We finished the test stack with a Brainfuck program that outputs a mandelbrot set (man-
delbrot.bf) [noa23o]. The listed programs form our test stack, which is to be executed after
changes are introduced. Additionally, we tested all programs included in bf scripts.

37

7 Related Work

We give a brief overview of related work focusing on thematic and methodical similarity as
well as prospects and inspirations for future work.

7.1 MLIR ONNX Compiler

Jin et al. [JBL+20] implemented a compiler for ONNX Neural Network Models in MLIR.
Open Neural Network Exchange (ONNX) is an open-source framework to assist portability
of machine learning models between di↵erent environments. The compiler takes a machine
learning model specified in ONNX as input and rewrites the model to native code for target
hardware. This compiler is implemented using MLIR.[JBL+20]

MLIR Brainfuck is not related thematically to the work of Jin et al. but methodically:
their compiler lowers a MLIR dialect used to represent ONNX models down to LLVM IR
in three steps. They implemented the onnx dialect to represent ONNX models, the krnl
dialect that provides a common lowering point for operations of the onnx dialect and con-
version passes from onnx ! krnl, krnl ! llvm; the second conversion pass is composed of
the passes krnl ! a�ne, std and a�ne, std ! llvm. Di↵erent to MLIR Brainfuck they imple-
mented optimization passes on all three intermediate representations (onnx, krnl and a�ne,
std).[JBL+20]

Their presentation of the project focuses on dialect and optimization pass design, while our
presentation of MLIR Brainfuck focuses on dialect and conversion pass design. In particular,
Jin et al. describe how to express optimization passes using MLIR’s Declarative Rewriting
Rules (DRR) [noa23z]. Therefore, both projects taken together could be of methodical use
for future MLIR-based projects. A further inspiration we can take from Jin et. al. is their
integration of the tasks performed by our three tools into one compiler program.

7.2 Polygeist

Polygeist is a compilation flow that enables C and Cpp compilation using polyhedral MLIR
implemented by Moses et. al [MCZZ21]. The project consists of a C/Cpp front-end that
translates the clang AST to MLIR’s scf dialect to preserve higher-level control flow, a raising
of this representation to an a�ne representation, a bi-directional conversion to and from an
exchange format to apply polyhedral tools to the a�ne based MLIR IR and a back-end to
run post-processing MLIR optimizations before converting to an executable.

The a�ne dialect [noa23c] models constructs of a program in a way that is representable in
the polyhedral model. The polyhedral model is based on a linear algebraic representation of
programs constructs [Bas04]. An example is for-loops since they have bounds and induction
variables expressible by a�ne-linear mappings.

MLIR Brainfuck is related to Polygeist thematically and methodically: first, as Polygeist,
MLIR Brainfuck maps constructs of a programming language to MLIR representation, and

39

7 Related Work

second, as Polygeist, MLIR Brainfuck exploits multiple MLIR dialects to lower the initial
representation to an executable; in particular, the scf and the memref dialect are used
to model control flow and, respectively, memory access. Further note that any Brainfuck
program is a possible input to Polygeist since Brainfuck is expressible in C 2.3.4.

MLIR Brainfuck di↵ers from Polygeist in that it does not exploit the MLIR representation
to optimize programs. Since we expressed control flow using the scf dialect and every Brain-
fuck command requires some memory access, we expect we could exploit the a�ne dialect
in a way similar to Polygeist.

40

8 Discussion

8.1 Limitations

We did not integrate the tools bf-to-mlir bf, Bf-opt and Bf-translate into one compiler. This
is because our focus lies on experimenting with MLIR and the Bf-opt tool provides out-
of-the-box possibilities to play around with your custom and the existing IR. Additionally,
the compiler pipeline does not support custom Brainfuck memory size or Brainfuck pointer
initialization. Finally, we did not investigate applying the DRR framework to conversion
passes. It would be interesting to see if our rewrite patterns can be specified declaratively
using this framework.

8.2 Opportunities and Future Work

8.2.1 Optimizations

Currently, optimizations are still missing. We neither applied existing MLIR optimization
passes, nor implemented custom ones. Since we added the abstraction layers OptBf and Ex-
plicitBf optimization passes on both levels can be integrated. On the OptBf level sequences
of bf red.increment (bf red.shift) operations can be folded. On the ExplicitBf level, unnec-
essary memref.get global operations can be removed. We can use Jin et. al. [JBL+20] as a
starting point since they provided optimization passes using the DDR rewriting rules and
the Cpp API. To make existing MLIR passes applicable, a starting point could be to add
traits (or interfaces) to the definition of the operations of Bf or bf red. Furthermore, since
we lower to LLVM IR, after integrating the project into a compiler program, module-level
optimization passes of LLVM can be applied.

8.2.2 Raise MLIR Brainfuck to a�ne

As described in section 7.2 Moses et. al. implemented a C/Cpp compiler in MLIR. The com-
piler optimizes C/Cpp code using polyhedral models. Their approach depends on translating
specific constructs C/Cpp constructs to the a�ne dialect.

It is an interesting question what Brainfuck constructs can be translated into a�ne con-
structs. Since Brainfuck is Turing-complete, any loop is computable in Brainfuck. In par-
ticular, for-loops should be expressible.

The task is to identify the loop bounds and the induction variable of a Brainfuck loop
in order to represent it as a a�ne for-loop. Many Brainfuck programs use a fixed cell to
decrement a loop counter down to zero; it could be a start to identify such patterns and
represent them as (loop start ! initial value of the cell, loop end ! the cell takes on zero,
loop step ! the decreasing amount of the cell per loop execution).

Since every Brainfuck command requires memory access, in the context of a for-loop
presentation of a Brainfuck loop also the specific values of the Brainfuck pointer should be

41

8 Discussion

in the image of an a�ne-linear mapping of an induction variable [noa23c]. An approach
could be to add an induction variable for each cell that is accessed in the loop body, identify
access rules for the cells (possible similarities in the values of the Brainfuck pointer whenever
a specific cell is accessed) and represent them as a�ne-linear mappings of the according
induction variable.

The overall approach could be to define a�ne patterns in Brainfuck, create a dialect for
them (A�neBf), lower the Bf dialect (or OpfBf or ExplicitBf or something in between) to
A�neBf, lower the A�neBf dialect to a�ne.

8.3 Takeaways on working with MLIR

We give a brief discussion on takeaways from working with MLIR.

MLIR Standalone The standalone example project in llvm/mlir/examples is a good start-
ing point. It contains a CMakeLists.txt root file for standalone out-of-tree projects and the
structure for the typical project components dialects, types and transformations. Addition-
ally, it contains the tools Bf-opt and Bf-translate to operate on the IR and translate the IR
to MLIR extern IR.

The mlir folder structure If you want to introduce components like attributes or conversion
passes study the structure of the MLIR subfolder in the LLVM monorepo. The distinction
between Dialect, Transforms and Conversion is important. Since the dialects stored in
Dialect are extensions of the MLIR IR, therefore the structure is comparable to the structure
of out-of-tree projects.

The build folder The build folder contains an include subfolder. This folder contains the
CMake targets to generate documentation and code and stores the generated code in .inc
files. Read the generated files if you are not sure what extra definitions are to be manually
added. Another approach is to build the project and determine the missing pieces from the
error messages.

Defining Conversion Passes The toy tutorial gives a brief introduction to define conversion
passes. For more information the Conversion subfolder of the mlir folder contains many
examples of existing conversions.

42

9 Conclusion

We implemented a provisional Brainfuck compiler based on MLIR. Import, MLIR inher-
ent lowering and translation to LLVM IR require using distinct tools. The MLIR inherent
lowering starts from a high-level representation of the Brainfuck language, introduces two
additional levels of abstraction called OptBf and ExplicitBf and targets the MLIR repre-
sentation of LLVM. We found that the Brainfuck language despite being minimalist, re-
quires the implementation to use existing dialects next to three custom dialects Bf, bf red,
bf pointer. The dialects were implemented with the TableGen-based code generation infras-
tructure ODS [noa23w]. This enabled us to focus on the semantics of the constructs and
ignore implementation details. Although we declared the conversion passes with the code
generation infrastructure, which implemented the embedding of the new passes in the MLIR
pass infrastructure, the core conversion logic was defined using the Cpp API; we did not
investigate in using the Declarative Rewrite Rule (DRR) framework [noa23z].

Interesting perspectives for future work are the implementation of language-specific opti-
mizations on our abstraction levels, the formulation of our rewrite patterns in DRR where
possible and raising MLIR Brainfuck to the a�ne dialect.

While MLIR is a heavy framework that requires a deep dive into its concepts and extension
architecture, investing in it pays o↵ by enabling users to focus on the special characteristics
of their project.

43

Listings

2.1 C Language Representation of Brainfuck. 5

3.1 SSA Assignment. 8
3.2 SSA Branching. 8
3.3 Implementation of Example 2.4 in LLVM IR. 10

4.1 MLIR Intermediate Representation. 14

5.1 Mapping from primitive Brainfuck commands to region less Bf operations. . . 20
5.2 Mapping from composed Brainfuck commands to Bf operations with region. . 21
5.3 Example 2.4 translated to Bf IR. 21
5.4 bf red Operations. 22
5.5 bf pointer Operations. 23
5.6 ExplicitBf Memory Access Idiom. 26
5.7 bf.module ! ExplicitBf. 26
5.8 bf.loop ! ExplicitBf. 27
5.9 bf red.increment ! ExplicitBf. 28
5.10 bf red.shift ! ExplicitBf. 28
5.11 Bf.input ! ExplicitBf. 29
5.12 Bf.output ! ExplicitBf. 30
5.13 bf red.ptr ! llvmBf. 31
5.14 bf red.read ptr ! llvmBf. 31
5.15 bf red.write ptr ! llvmBf. 31

6.1 Example 2.4 translated to OptBf. 33
6.2 Example 2.4 translated to ExplicitBf. 34
6.3 Example lit/FileCheck Test File. 35
6.4 Semantic Increment Test in Bf Notation. 35
6.5 Semantic Loop/Cell Wrap Test in Bf Notation. 36
6.6 Semantic Shift Right Test in Bf Notation. 36
6.7 Semantic Shift Left Test in Bf Notation. 36

45

List of Figures

5.1 MLIR Brainfuck Pipeline. The dark blue arrows are performed by the Bf-opt
tool. The upper light blue arrow is performed by the bf-to-mlir bf tool. The
lower light blue arrow is performed by the Bf-translate tool. 20

47

List of Tables

5.1 Definition of the Bf ! OptBf lowering. 24
5.2 Definition of the OptBf ! ExplicitBf lowering. 25
5.3 Definition of the Explicit ! llvmBf lowering. 30

49

Bibliography

[26223a] 262588213843476: Brainfuck interpreter. https://gist.github.com/mosra/

993799. Version:November 2023

[26223b] 262588213843476: Original brainfuck distribution by Urban Müller. https://

gist.github.com/rdebath/0ca09ec0fdcf3f82478f. Version:November 2023

[App98] Appel, Andrew W.: SSA is functional programming. In: ACM SIGPLAN
Notices 33 (1998), April, Nr. 4, 17–20. http://dx.doi.org/10.1145/278283.

278285. – DOI 10.1145/278283.278285. – ISSN 0362–1340, 1558–1160

[Bas04] Bastoul, Cédric: Code Generation in the Polyhedral Model Is Easier Than You
Think, IEEE Computer Society, 2004 (29 September - 3 October 2004, Antibes
Juan-les-Pins, France), 7–16

[CFR+91] Cytron, Ron ; Ferrante, Jeanne ; Rosen, Barry K. ; Wegman, Mark N.
; Zadeck, F. K.: E�ciently computing static single assignment form and the
control dependence graph. In: ACM Transactions on Programming Languages
and Systems 13 (1991), Oktober, Nr. 4, 451–490. http://dx.doi.org/10.1145/
115372.115320. – DOI 10.1145/115372.115320. – ISSN 0164–0925, 1558–4593

[Cri23] Cristofani, Daniel B.: A universal Turing machine in Brainfuck. http://

brainfuck.org/utm.b. Version: September 2023

[JBL+20] Jin, Tian ; Bercea, Gheorghe-Teodor ; Le, Tung D. ; Chen, Tong ; Su, Gong
; Imai, Haruki ; Negishi, Yasushi ; Leu, Anh ; O’Brien, Kevin ; Kawachiya,
Kiyokuni ; Eichenberger, Alexandre E.: Compiling ONNX Neural Network
Models Using MLIR. http://arxiv.org/abs/2008.08272. Version: September
2020. – arXiv:2008.08272 [cs]

[LA04] Lattner, C. ; Adve, V.: LLVM: A compilation framework for lifelong program
analysis & transformation. In: International Symposium on Code Generation
and Optimization, 2004. CGO 2004. San Jose, CA, USA : IEEE, 2004. – ISBN
978–0–7695–2102–2, 75–86

[LAB+21] Lattner, Chris ; Amini, Mehdi ; Bondhugula, Uday ; Cohen, Albert ; Davis,
Andy ; Pienaar, Jacques ; Riddle, River ; Shpeisman, Tatiana ; Vasilache,
Nicolas ; Zinenko, Oleksandr: MLIR: Scaling Compiler Infrastructure for Do-
main Specific Computation. In: 2021 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO). Seoul, Korea (South) : IEEE, Februar
2021. – ISBN 978–1–72818–613–9, 2–14

[MCZZ21] Moses, William S. ; Chelini, Lorenzo ; Zhao, Ruizhe ; Zinenko, Oleksandr:
Polygeist: Raising C to Polyhedral MLIR. In: 2021 30th International Conference

51

Bibliography

on Parallel Architectures and Compilation Techniques (PACT). Atlanta, GA,
USA : IEEE, September 2021. – ISBN 978–1–66544–278–7, 45–59

[MN21] McCaskey, Alexander ; Nguyen, Thien: A MLIR Dialect for Quantum As-
sembly Languages. http://arxiv.org/abs/2101.11365. Version: Januar 2021.
– arXiv:2101.11365 [quant-ph]

[Mor15] Morr, Sebastian: Esoteric Programming Languages. (2015)

[noa21] Globals in MLIR - MLIR. https://discourse.llvm.org/t/globals-in-mlir/
4187. Version:August 2021. – Section: MLIR

[noa22] [doc] mlir-translate / mlir-opt - MLIR. https://discourse.llvm.org/t/

doc-mlir-translate-mlir-opt/60751. Version:März 2022. – Section: MLIR

[noa23a] 1 TableGen Programmer’s Reference — LLVM 18.0.0git documentation. https:
//llvm.org/docs/TableGen/ProgRef.html. Version:November 2023

[noa23b] 4. Kaleidoscope: Adding JIT and Optimizer Support — LLVM 18.0.0git doc-
umentation. https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/

LangImpl04.html. Version:Oktober 2023

[noa23c] ’a�ne’ Dialect - MLIR. https://mlir.llvm.org/docs/Dialects/Affine/

#polyhedral-structures. Version:November 2023

[noa23d] ’arith’ Dialect - MLIR. https://mlir.llvm.org/docs/Dialects/ArithOps/

#arithsubi-arithsubiop. Version:Oktober 2023

[noa23e] brainfuck - Esolang. https://esolangs.org/wiki/Brainfuck.
Version: September 2023

[noa23f] Chapter 2: Emitting Basic MLIR - MLIR. https://mlir.llvm.org/docs/

Tutorials/Toy/Ch-2/. Version:Oktober 2023

[noa23g] code golf - ”Hello, World!” - Code Golf Stack Exchange. https://

codegolf.stackexchange.com/questions/55422/hello-world/68494#68494.
Version:November 2023

[noa23h] Computational class - Esolang. https://esolangs.org/wiki/Computational_

class#Simulation. Version:November 2023

[noa23i] Defining Dialects - MLIR. https://mlir.llvm.org/docs/DefiningDialects/.
Version:November 2023

[noa23j] Dialect Conversion - MLIR. https://mlir.llvm.org/docs/

DialectConversion/#rewrite-pattern-specification. Version:Oktober
2023

[noa23k] Dialects - MLIR. https://mlir.llvm.org/docs/Dialects/.
Version:November 2023

52

Bibliography

[noa23l] FileCheck - Flexible pattern matching file verifier — LLVM 18.0.0git
documentation. https://llvm.org/docs/CommandGuide/FileCheck.html.
Version:November 2023

[noa23m] ’func’ Dialect - MLIR. https://mlir.llvm.org/docs/Dialects/Func/.
Version:Oktober 2023

[noa23n] ’index’ Dialect - MLIR. https://mlir.llvm.org/docs/Dialects/IndexOps/

#indexconstant-indexconstantop. Version:Oktober 2023

[noa23o] Index of /brainfuck/bf-source/prog. http://esoteric.sange.fi/brainfuck/

bf-source/prog/. Version:November 2023

[noa23p] Interfaces - MLIR. https://mlir.llvm.org/docs/Interfaces/

#regionkindinterfaces. Version:Oktober 2023

[noa23q] lit - LLVM Integrated Tester — LLVM 18.0.0git documentation. https://llvm.
org/docs/CommandGuide/lit.html. Version:November 2023

[noa23r] The LLVM Compiler Infrastructure Project. https://llvm.org/.
Version:November 2023

[noa23s] ’llvm’ Dialect - MLIR. https://mlir.llvm.org/docs/Dialects/LLVM/

#llvmload-llvmloadop. Version:Oktober 2023

[noa23t] ’memref’ Dialect - MLIR. https://mlir.llvm.org/docs/Dialects/MemRef/

#memrefglobal-memrefglobalop. Version:Oktober 2023

[noa23u] MLIR Language Reference - MLIR. https://mlir.llvm.org/docs/LangRef/

#builtin-operations. Version:Oktober 2023

[noa23v] MLIR Rationale - MLIR. https://mlir.llvm.org/docs/Rationale/

Rationale/#integer-signedness-semantics. Version:November 2023

[noa23w] Operation Definition Specification (ODS) - MLIR. https://mlir.llvm.

org/docs/DefiningDialects/Operations/#declarative-assembly-format.
Version: September 2023

[noa23x] Pass Infrastructure - MLIR. https://mlir.llvm.org/docs/PassManagement/

#pass-manager. Version:November 2023

[noa23y] ’scf ’ Dialect - MLIR. https://mlir.llvm.org/docs/Dialects/SCFDialect/

#scfyield-scfyieldop. Version:Oktober 2023

[noa23z] Table-driven Declarative Rewrite Rule (DRR) - MLIR. https://mlir.llvm.

org/docs/DeclarativeRewrites/. Version:November 2023

[pat23] Pattern Rewriting : Generic DAG-to-DAG Rewriting - MLIR. https://mlir.

llvm.org/docs/PatternRewriter/#initialization. Version:November 2023

[sym23] Symbols and Symbol Tables - MLIR. https://mlir.llvm.org/docs/

SymbolsAndSymbolTables/. Version:Oktober 2023

53

Bibliography

[tra23] Traits - MLIR. https://mlir.llvm.org/docs/Traits/. Version:November
2023

[ULSA08] Ullman, Je↵rey D. ; Lam, Monica S. ; Sethi, Ravi ; Aho, Alfred V.: Com-
piler. https://elibrary-pearson-de.emedien.ub.uni-muenchen.de/book/

99.150005/9783863265748. Version: Januar 2008. – ISBN: 9783863265748 Pub-
lisher: Pearson Deutschland

[WG84] Waite, W. M. ; Goos, Gerhard: Compiler construction. New York : Springer-
Verlag, 1984 (Texts and monographs in computer science). – ISBN 978–0–387–
90821–2

54

