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Abstract
Context-aware services adapt to ever-changing environments and therefore face the chal-
lenge to acquire context information in a priori unknown situations. They rely on other
services (e.g. for context acquisition) and failures of these services may occur. In this pa-
per we introduce concepts for the CoCo Infrastructure in order to deal with services that
fail to deliver requested context information. The abbreviationCoCostands for ”Context
Composition” and is a service-oriented infrastructure supporting context-aware services
that is currently developed by the MNM-Team. This composition of context information
services often has to be carried out dynamically at run-time as it depends on the user’s
context which services can be used. We show how static instructions and dynamic meth-
ods can be combined to find a tradeoff between the level of sophistication and necessary
resources, such as e.g. computing time.
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1. Introduction

In a world with a rapidly increasing number of networked computing devices, increas-
ing complexity of software and available digital information there are two important re-
quirements arising. First the imperative to make sensible use of these new resource that
allow highly customized services. Second the necessity to enable the user to deal with the
steadily increasing complexity of services around him. Both requirements imply the need
for a wide automation of context-aware services.

Context-aware Services support the user, because they adapt their behaviour and re-
sults according to automatically acquired information about the user’s context. Context
information can be any information that characterises the situation of the user, for exam-
ple the user’s location, her current activity and the technical capabilities of the mobile
device used [9]. The user herself does not have to give a lot of input explicitly anymore.
She does not even need to know the information. Furthermore, the service can use this
information to derive additional, more significant information automatically. For exam-
ple, the user can be provided with a reminder to head for the airport when information



from her calendar is compared with the flight schedule, its current distance to the airport
and information about the local traffic. This saves time and reduces the complexity of
the interaction between user and service. It also improves the service result as it becomes
highly customized.

Because nearly all information imaginable can become context information for a spe-
cific task there is a vast amount of potential context sources that naturally are very het-
erogeneous. There is a wide variety of context types (e.g. location, activity, etc) kinds
of sources (physical sensors, databases, etc.) and besides that the cooperation between
different actors (service providers, network operators, etc.) is assumed. It usually cannot
be specified during development of a context-aware service to which context information
services it shall be bound, because this decision is contextual itself. For example the deci-
sion about which service can deliver weather data depends on the users current location.
This is one reason why context-aware computing especially has to cope with the problem
of interoperability betweencontext-aware services (CASs)and services that offer context
information which we callcontext information services (CISs). The incorporation of con-
text in the service provisioning process requires supporting infrastructure. Mechanisms
for sensing, refinement and administration of context information have to be in place so
that programmers and service providers can use them in a transparent way.

Compared to other concepts this one especially has to deal with the high risk of failures
within the process of context provisioning. Because of the highly dynamic environment
in which a CAS might be forced to use different CISs everytime new context information
is needed. There might be no appropriate service discoverable, a discovered service might
not answer or deliver only incorrect information. The risk of failure is eminent because
the service binding can only happen at run-time and the respective services are unknown
beforehand. In this paper we propose strategies to improve the chance of success for con-
text provisioning infrastructure services. For this purpose we rely on semantic knowledge
about the context in order to find workarounds.

The paper is structured as follows: In the next section, we discuss existing technologies
for service composition. In section 3, the CoCo Infrastructure and CoCoGraphs as the
underlying concepts for context composition in our approach are explained. Based on
this, we present our work done on strategies for dynamically composing CISs in section
4 and discuss them. We conclude in section 5 with our main findings and give an outlook
on future work.

2. Related Work

Composing Context Information Services can be looked at as service composition in gen-
eral. Further challenges arise through the necessity of adhering to sufficient quality of
context in the end and the difficulties in expressing semantics. With the termquality of
context (QoC)we refer to quality information of context such as e.g. precision, proba-
bility of correctness, trust-worthiness, resolution, and up-to-dateness (cp. [3]). QoC can
be critical for the provision of a service as the context information influences the output
and/or the execution of the service. For example, outdated weather information can guide
a user to a beergarden though it started raining. As context information can basically be



any information it is hard to find a common understanding about it, which is necessary
for service interoperybility and service composition [14]. We will first look into existing
technologies for service composition and evaluate whether they meet our requirements.

As the major objective of Web Services technology is interoperability between ser-
vices developed in different programming languages on heterogenous platforms, service
composition is a key feature and interfaces to the services are highly standardized [11].
TheSimple Object Access Protocol (SOAP)is used to transmit standardized XML docu-
ments and thus enables the exchange of information between different platforms. TheWeb
Service Description Language (WSDL)describes the interface of Web Services. Input and
output parameters, the structure of the function, the signature, and protocols are specified
in WSDL. Universal Description, Discovery, and Integration (UDDI), the third technol-
ogy used for Web Services, offers world-wide directories for Web Services where WSDL
documents of existing Web Services are stored and can be retrieved for service compo-
sition. In [15] van der Aalst evaluates some of the different standards for Web Service
composition such as BPEL4WS, XLANG, WSFL, XPDL, Staffware, MQ Series Work-
flow, Panagon eProcess, and FLOWer. Some of those approaches have been combined or
vanished in the meantime. Currently, the most important language for Web Services com-
position is theBusiness Process Execution Language for Web Services (BPEL4WS). It is
very well able to model business processes and thereby combine different Web Services.
Unfortunately, BPEL is not designed for dynamic changes, BPEL documents cannot be
changed during run-time, and it is thus unsuitable for our purposes. Other Web Services
orchestration languages (cp. [12]) like theBusiness Process Modeling Language (BPML),
theWeb Service Choreography Interface (WSCI)and theebXML Business Process Spec-
ification Schema (BPSS)are comparable in this point, they do not support dynamic reor-
ganisation likewise.

Independent of Web Services, there exists a variety of other approaches for service
composition which are not considered further here, for more information see [10], [13]
and [4]. In the following, we will briefly look at Ninja, Solar, and iQL, three approaches
focused on the composition of pervasive data respectively context information. Service
composition inNinja is done with Ninja Paths (cp. [6]). Services have to register them-
selves with their capabilities in terms of structural and semantic information about their
inputs and outputs with aService Directory System (SDS). From the description, it can be
deduced whether services can be combined or not. The Ninja path is an ordered sequence
of services that results in the desired complex service, it is created using a shortest path
search over the registered services. Chadrasekan et al. state that it is not possible to chain
services without semantic knowledge and in their approach rely on a simpletype sys-
tembased on a XML grammar. The semantic information used in Ninja is not sufficient
to express the complex semantics for CASs. Solar is an infrastructure for context-aware
applications that delivers context information [7]. It provides a composition language, al-
lowing applications to construct a graph of operators to compute desired context from ap-
propriate sources. Graphs model the collection, aggregation and dissemination of context
information and information sources produce events to which applications may subscribe.
However, Solar distributes the context processing within one administrative domain and
thus restricts its use heavily. A declarative language namediQL was developed by Cohen



et al. ([8]) to assist context-aware applications in the acquisition and processing of con-
text information. iQL expresses requirements on the data source rather than the source
itself and a runtime system discovers and binds the sources. This concept facilitates the
dynamic binding of sources at run-time. Nonetheless, the language uses a proprietary,
non-XML syntax and it can only bind context types that were specified during the design
phase as it does not use a strong typed system like Ninja nor ontologies (cp. [6] and [14]).

3. The CoCo Infrastructure

The CoCo Infrastructure, depicted in figure 1, acts as middleware between services re-
questing and services offering context information. It therefore handles tasks like discov-
ery, accounting, security or bundling and dissemination of context information. Amongst
others this infrastructure offers the service of providing context information. This service
is a compound service, made up of several basic infrastructure services working together.
In charge of the flow control of this compound service is the CoCoGraph Controller that
also features the according service access point. A CAS can access the context infor-
mation provisioning service by sending a CoCo document that contains its requests for
context information in form of the XML representation of a CoCoGraph.
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Figure 1: CoCo infrastructure

The concept and syntax of
CoCoGraphs is described in greater
detail in [2], we only describe the
most important ideas here. Basically
a CoCoGraph is made out of two
main types of nodes: FactoryNodes
that describe the wanted context in-
formation and OperatorNodes that
describe how the context information
items are to be processed to achieve
high-level context information (see
figure 2). CoCoGraphs are processed
in the CoCo Infrastructure, see figure
1. The CoCoGraph Controller parses
these nodes. Whenever it parses a
FactoryNode, it requests this single
information item from the Context
Retriever, and whenever the Controller
parses a OperatorNode it requests
the CoCo Processor to execute the
described operation. Furthermore the
Controller observes the costs of the

overall information retrieval, the quality of each information item and by doing so
enforces the guidelines given in the CoCoGraph.
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Figure 2: Example CoCoGraph of a restaurant finder
service.

Figure 2 shows the CoCo-
Graph for an example service.
A restaurant finder services
needs information about user-
specific restaurant preferenes,
his location and the weather
there. For each request for con-
text information, the Contex-
tRetriever seeks for appropri-
ate services offering context in-
formation. It selects one, ac-
cesses this service and returns
the received information to the
CoCoGraph Controller. Both
the description of all discovered
services and the information it-
self are cached for later reuse.

The CoCo Processor exe-
cutes explicit operations that
are needed to derive a specific

piece of context information from one or several other pieces of context information.
For example it can use the information about the position of two entities to compute the
distance between them. For this and similar operations the CoCo Processor relies on se-
mantic knowledge about the information. Amongst other, this allows for executing basic
operations like ordering, selection or aggregation. We call operations prescribed in Oper-
atorNodes explicit. On the other hand there are conversion operations that are necessary
everytime when a piece of information is available but in the wrong format. For example
if you want to get weather information about a location that is described in longitude and
latitude, but only weather information services are available that deliver information for
locations that are described in address-format. The necessary conversion is also done by
the CoCo processor on behalf of the CoCoGraph Controller and is called implicit, because
there is no according OperatorNode present.

As mentioned above, the CoCo Infrastructure relies on the existence of a semantic-
aware information model. The discovery of CISs is done by comparing service descrip-
tions that do not only contain name of service and signatures of available methods, but
also semantics of the service functionality. Only by this the discovery and composition of
services can be done automatically. This knowledge about the semantics of information
and service functionality is also the key for the ability to deal with failures automatically
(cp. outlook in section 5).

So far we presented the basic ideas and the functionality of CoCo, the components of
the infrastructure and their interactions. As discussed in the introduction, in dynamic envi-
ronments it can happen that some context information services are not available and CoCo
has to find equivalent ones. Therefore we need strategies for the on-the-fly composition of
CISs. We follow Chakraborty and Joshi [5] who identified six key issues that are important



for dynamic service composition. First and most important of all,service discoveryhas
to take place, CISs offering a particular piece of context information have to be found. In
our approach CoCo, the ContextRetriever is responsible for searching appropriate CISs.
Coordination of the different involved services is namedservice coordination and man-
agement, it becomes difficult when the the entities are distributed across the network. As
we assume multi-provider environments where multiple organisations work together in
providing a CAS, we have a highly distributed environment. Service coordination and
management in CoCo is carried out by the CoCoGraph Controller. Service composition
also relies on auniform information exchange infrastructuremeaning that services have to
interoperate independently of their information exchange mechanism (e.g. remote method
invocation, message-passing and the like). In CoCo, the ContextRetriever has the ability
to access CISs with different methods, e.g. Web Services. As outlined in the Introduc-
tion, fault tolerance and scalabilityare crucial in context provisioning as it is very likely
that CISs are not available all the time and they depend on the user’s context themselves.
In this paper, we present our strategies for fault tolerance for dynamic CIS discovery in
section 4. Scalability is addressed in CoCo through proactive caching of both the descrip-
tion of discovered services and the information itself. Thus, at a later point in time, the
information can potentially be used again or at least the service description is available.
Also, the use of CoCoGraphs and parts of CoCoGraphs enhances the system as similar
services can reuse the descriptions. Last but not least,adaptivenessis a key success factor
to service composition. It is closely related to fault tolerance as adaptiveness here refers to
the changing availability of services. Service come up and go down frequently, especially
in a mobile environment. In CoCo, the discovery of context information is related to the
context of the user, the system is thus inherently adapting to the environment.

4. Adapting the Graph

Often a certain piece of context information cannot be retrieved directly and has to be
deduced from other context information. For example: If there is no appropriate sensor
that is able to sense the distance between two specific objects, then this information must
be deduced from the information about the two locations. Instead of only providing single
pieces of context to the CAS, the idea of CoCo is to relieve the CAS from the whole pro-
cess of context refinement including the deduction or composition of context information.
Therefore the CAS delivers a CoCoGraph that describes the necessary composition to the
CoCo infrastructure.

This is the key for further benefits: With semantic knowledge about the necessary
piece of context information and its construction plan, the CoCo infrastructure is able to
fulfil the whole process even if single steps fail. The idea is to replace bad nodes with other
nodes (or with complete graphs that are inserted into the original graph where the bad node
has been) without changing the result of the process. Or, if this is not entirely possible,
with the best available approximation of the aimed result. Although it is possible that the
processing of operations on context information fails (OperatorNodes), we assume that
the bad nodes are FactoryNodes and therefore represent requests each for a specific piece
of context information.



Here it is important to state the main difference between a CoCoGraph and other ser-
vice composition instructions, for example those that could be expressed with the Busi-
ness Process Execution Language BPEL (cp. [1]). The CoCoGraph does not describe
the composition of specificservicesitself (means: the dependencies and the parallel and
sequential execution of specific services) but the dependencies of specific context infor-
mation items. With the CoCoGraph, the appropriate service is not selected until run-time,
and perhaps for a specific information request there might be no service available at all.
Compound services that involve other services need to adapt composition and selection
of services when there are significant changes in the environment, whereas the mapping
of services onto the composition instruction of a CoCoGraph is adapted with every run.
This mapping is not possible even right before the processing of a CoCoGraph, because
the selection which service is able to provide a specific information cannot be done before
the preceding information items are available. For example: You can not select a weather
service before you know the location it shall provide weather information for.

This is why the adaptation of a CoCoGraph in case one or several requests for context
information could not be fulfilled is time-critical and must be done at run-time. There are
two main tasks to be carried out:

Task 1: Decide which part of the graph is to be replaced
To achieve results that are as much alike the intended results of the unadapted graph

it is an obvious policy to leave as much of the graph unchanged. Therefore at first we try
to replace just the single node for which no working service could be found (see figure
3). Only if these replacement attempts fail, we increase the scope to the next-higher level:
the smallest subset of the graph that has been explicitly defined (could be done with the
InnergraphNode, see [2]) that contains the bad node. If the replacement attempts of one
after another of these subsets fail, (or if no subsets are defined at all), the last replacement
attempt is done for the whole graph.

?

...

? ?
part of graph whole graphsingle node

Figure 3: Selection of replacement target.

Task 2: Decide which nodes are to be inserted into the now empty place
There are three possibilities for the CoCoGraph Controller to receive the knowledge

with which nodes the bad nodes could be equally or approximately replaced. Due to the



requirements for this procedure - time-critical, best possible results for the client service
- we choose those knowledge base first that promises to meet these requirements best.

input
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Figure 4: CoCoGraph and replacement instructions
inside the CoCo document.

The developers of the CAS
who designed the service and
the CoCoGraph could have stated
the fallback-solutions for single
nodes or parts of the graph them-
selves. Then these solutions have
to be expressedinside the CoCo-
Graph (see figure 4). If such
solutions are available they are
the first choice. On the one hand
no additional computing is nec-
essary and on the other hand
CAS-developers know best with
which results their CAS can deal
best. For example, if no current
weather data about the user’s lo-

cation could be retrieved, then the restaurant finder could assume that the weather is good
enough for beer gardens if it is June, July or August, and assume bad weather otherwise.
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Figure 5: Replacement instructions as part of the
standard graph repository.

Besides this, the CoCoGraph
controller can use arepository of
standard CoCoGraphs each of it
with references to the context infor-
mation classes (CI-classes, for ex-
ample ”temperature”) it can replace
or approximate. This repository is
an enhancement of the Info Model
Lib and can be accessed via the
CoCo processor (see figure 5). For

example an information about a certain location (like weather information) can be ap-
proximated with the equivalent information about locations nearby. The repository of
standard graphs is also useful for CAS developers that can often simply reference such a
standard graph instead of creating own CoCoGraphs, which also reduces network traffic.

Finally (if the solutions stated above did not work or are not available) the CoCo
controller can use the semantic knowledge of the CoCo Infrastructure stated in theInfo
Model Lib to compute replacement nodes or graphs for the current problem on-the-fly.
Like this, solutions can be found even for unusual problems. But it is obvious that this
reasoning is the most time-consuming strategy and therefore only could be ultima ratio.
How promising this strategy could be at all is depending on power and definition of the
appropriate information model - this is out of scope of this paper (see section 5). It is
possible that this reasoning is joined with repeating scans of the context retriever to learn



which context information on which entities is available at all in order to implement a kind
of breadth-first-search-algorithm to find a semantically correct and as short as possible
way around the bad node. This would improve the result of this strategy in time, traffic
and discovery costs.

Each of these strategies, ”CoCoGraph fallback”, ”standard-graph” and ”reasoning”,
can possibly provide several solutions that might fail as well as the original, unadapted
CoCoGraph. After a failure, the next solution of the current strategy is tried. If they all
fail, then recursively this adaptation algorithm is done for the first one (if it consists of
more than one node), if it has no success, it is done for the next solution and so on. If no
solution of the current strategy succeeds then the controller switches to the next one (in
the order stated above), until all strategies have failed, the allowed time has run out (could
be defined inside the CoCoGraph), or the adaptation algorithm has found a successful
way around the bad node.

As presented, we propose different strategies for the on-the-fly composition of CISs
which can be combined to obtain optimal results regarding performance and fault toler-
ance. In case a necessary piece of information is not available firsthand from a context
information service, we use this algorithm to replace the missing parts by similar ones.
There are different criteria to classify those algorithms such as e.g. directory-based vs.
dynamic service discovery, expressiveness vs. performance, quality vs. costs, and others.
As context retrieval is very time critical, fast work-arounds are to be preferred over time-
consuming, perhaps better fitting ones. Therefore we use a substitution in the CoCoGraph
itself whenever possible. This ensures the correct semantics of the replacement and is the
fastest way around bad nodes. The ”standard-graph” strategy is a good trade-off between
performance and expressiveness as it is available for the CoCo controller from the Info
Model Lib directly. Problems with different understanding about the output can be solved
using an appropriate context information model. This standard library of CoCoGraphs
will be very helpful to CAS developers and could even be exchanged between different
operators. Last, fitting CISs could be found out using reasoning on the available informa-
tion. This strategy is prone to errors and time consuming, but it is highly flexible as it does
not need any information at first hand.

5. Conclusion and Future Work

In this paper, we introduced a concept for adapting composition instruction (CoCoGraphs)
for context information in case a necessary piece of information is not available first-
hand from a context information service. Therefore we proposed a multi-level algorithm
to replace the missing parts by similar or equivalent ones. This algorithm builds upon
a semantic-aware information model as it includes dynamic reasoning methods besides
static solutions. So this concept enhances the automation capabilities of the context re-
trieving process for context-aware services. As a result it strengthens CASs in their effort
to support the user in her tasks in a proactive way.

Up to now we already implemented the basic functionalities of the CoCoGraph Con-
troller and deployed a restaurant finder service onto the CoCo infrastructure as proof
of concept. We are currently developing a meta model for context information that can



specify context information with respect to their semantics. In parallel we are going to
implement the adaptation algorithm proposed in this paper with regard to this seman-
tic knowledge. As the meta model becomes more apparent we will gradually develop the
components of the infrastructure and their interaction, like the service discovering context
retriever that shall work with service descriptions that include semantic information. The
next step then will be to combine the CoCo concept with policies to enhance flexibility
and automation in the whole system.
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