
Managing the Management: CORBA-based
Instrumentation of Management Systems

A. Keller
Munich Network Management Team
Department of Computer Science, TU München
Arcisstr. 21, D-80333 Munich, Germany
akeller@ieee.org

Proceedings of theSixth IFIP/IEEE International Symposium on Integrated
Network Management (IM’99), Boston, MA, USA, May 1999

Abstract
In liberalized (tele)communication markets, the goal of integrated management has be-
come particularly demanding because now an arbitrary number of service providers
needs to dynamically exchange customer- and technology-related data. In this context,
management systems are crucial for the seamless interworking because they contain the
management information that has to be shared between service providers: On the one
hand, different service providers have chosen different management systems that are
bound to specific, standardized management architectures and, due to the heterogeneity
of the underlying frameworks, do not interoperate easily. Solutions for achieving inter-
operability between heterogeneous frameworks are one key factor towards integrated
enterprise management and have been studied in the past. On the other hand, the pro-
visioning of management instrumentation for the management systems themselves (i.e.
the problem “how to manage the management”) is still an open research question.

The paper presents a novel approach to this problem by defining a MIB for manage-
ment systems. It can be regarded as a step towards integrated enterprise management
and is based on the viewpoint languages and concepts of RM-ODP; generic manage-
ment models for distributed applications can then be refined to handle the specifics of
management systems. A CORBA-based prototype implementation for managing man-
agement systems illustrates the applicability of our concepts.

Keywords
Enterprise Management, Architecture Interoperability, Information Modeling, CORBA

1. Introduction and Motivation

Integrated management solutions based on standardized management architectures aim
to support the network and service providers’ efforts in maintaining a high degree of
quality and availability of their services while decreasing the cost of running the in-
formation technology infrastructure. Although providers can choose their management
solution from a large number of implementations, the increasing complexity and het-
erogeneity of distributed systems still represents a major challenge for the Operation,
Administration, Maintenance and Provisioning (OAM&P) of large-scale public and cor-
porate networks.

From a management point of view, the situation has become more complicated due
to the implications of telecom deregulation: Nowadays, an enterprise is not only free to



ATM-Service

System/Appl. Services

IP-Service

IP Provider

End User

Architecture

E-Mail
DNS

WWW

Internet

ServiceRole

Service Provider

Network Provider OSI/TMN

CORBA

"Java/WWW"

Tivoli TME10

IBM TMN Products

HP OpenView NNM

WWW Browser

Management Software Management

Figure 1: Service provider hierarchies require cooperation of management systems

choose between numerous IT service providers and network carriers but also needs to
verify the QoS of the subscribed services. Furthermore, the role of the Internet Protocol
(IP) as “lingua franca” for worldwide data communication and the layering of its stan-
dardized services and protocols (e.g., EMail (SMTP), Domain Name Service (DNS),
World Wide Web (HTTP)) present opportunities of outsourcing IT activities for cost
savings. This leads to layered service provider hierarchies as depicted in the left part of
Figure 1 where a service provider is at the same time the customer of another provider:
The provisioning of end-user services like electronic mail, WWW and DNS therefore
depends on the availability of the IP service which, in turn, depends on, e.g., an ATM
service. The problem domain dealing with the fulfillment of service-level agreements
(SLA) between service providers and their users is usually known asCustomer Service
Managementand is currently a subject of ongoing research (see e.g. [14]).

In this paper, we will concentrate on the right part of Figure 1, i.e., the question how
theManagement Systems (MSs)of the service providers and their customers can co-
operate effectively. Today, it is very likely that these systems cannot interoperate seam-
lessly because different service providers usually deploy MSs that differ not only by
their vendor (IBM/Tivoli, HP, CA), but also by the underlying management framework
(OSI/TMN, Internet, CORBA, Java/WWW, proprietary). Furthermore, when these sys-
tems were initially purchased, there was often no need to exchange management infor-
mation with peer MSs operated by another authority. This situation has changed: End
users now check the quality of their subscribed services by retrieving data with WWW
browsers from SNMP-based MSs and SNMP-based MSs that initially controlled the
local area networks of an enterprise need to exchange management information with
TMN-compliant MSs surveying long-haul telephony links etc. As MSs are the point
of control for services and networks, management policies have to be enforced and
surveyed by them. All this makes MSs crucial for successful enterprise management.
It is therefore not only necessary to (re-)configure MSs at runtime but also to control
whether they are working properly. We refer to these duties as “Managing the Manage-
ment”. This paper presents a CORBA-based approach to tackle this problem.

2



The above discussion shows that two questions must be answered to ensure the suc-
cessful deployment of MSs in an service markets:

1. How can theInteroperability between MSs be achieved, i.e., which mechanisms are
needed so that they can exchange information with each other even if they are based
upon different management architectures? The integration of management architec-
tures, i.e., establishing a so-called “Umbrella Management” is currently a large field
of investigation [4]; section 2 gives an overview on promising approaches.

2. What management information and which services are needed for Managing the
Management? What are the management requirements and how does an appropriate
model of MSs look like? Section 3 focuses on the aspects ofInterworking between
MSs.

Questions relating to the design of a Management Information Base (MIB) for MSs
are: How is the management model structured? Can we reuse object classes specified
by standardized reference models as base Managed Object Classes (MOCs) for our
model? Section 4 describes the principles that guided us in designing our management
model and how we made use of RM-ODP concepts. We also describe the impact of
CASE technology for the design of the MIB. Section 5 deals with our implementation
and analyses how the prototype uses general-purpose distributed object technologies
like CORBA and Java. Section 6 concludes the paper and presents issues for further
research.

2. Umbrella Management: Achieving Interoperability

A major objective ofEnterprise Managementconsists in presenting a unified, all-
encompassing view on networks, systems, services and applications. It is oriented to-
wards the providers’ goals and gives them the ability to control any kind of managed
resource according to their management requirements, policies and organizational con-
ditions. Enterprise Management follows a top-down approach and should therefore not
be constrained by technical specifics. On the other hand, the amount of management
frameworks providers have to deal with is already determined by the nature of the man-
aged resources: LAN components usually have SNMP agents while telecommunication
components are managed according to the OSI/TMN framework; distributed applica-
tions and services might provide a CORBA-based management instrumentation.Um-
brella Management has to cope with the heterogeneity of Management and focuses
on the technology-related aspects of cooperation between entities involved in the man-
agement process. Its objective is to abstract from the heterogeneity of the underlying
management architectures by defining means of interoperability. It is therefore funda-
mental for integrated Enterprise Management (see Figure 2).

There are basically three strategies for achieving interoperability between systems
located in different architectural domains (see also [10]):

The first approach consists in the integration at the resource level, i.e., the managed
systems support more than one management protocol; they are equipped withMultiar-
chitectural Agents. This is usually unfeasible for the following reasons: Often, agents
are used to perform monitoring of simple network devices like hubs or bridges. They

3



Enterprise Management

Organizational

Technology-oriented

B
ot

to
m

-U
p

T
op

-D
ow

n

View

Abstraction from Heterogeneity

Internet (SNMP)

Agent Agent

Ethernet-SwitchRouter CICS
Client

DNS
Server

WWW
Server

CORBA

Object Request Broker

Umbrella Management

Evaluation Criteria Policies

Goal-oriented View

MF

NEF

MF

NEF

OSI/TMN

Telco Switch

Conditions Requirements
Management

Figure 2: Umbrella Management as a basis for Enterprise Management

should not consume a large amount of resources and are usually built into the firmware
of the device; the implications are that these agents can neither be enhanced to support
another management protocol nor should they introduce additional overhead.

An alternative is to place the burden of integrating the different architectures on
the MS. Such aMultiarchitectural Manager supports a set of management protocols
which are implemented onto the platforms’ communication stack. Thus, conversions
between different management protocols are not necessary. The transformation of the
management information descriptions is often handled by tools bundled with an MS
like MIB compilers and therefore need not be handled by the developer. In addition, the
service APIs of MSs can easily be accessed thus yielding the opportunity of reusing the
large amount of platform services (see also section 5). On the other hand, these APIs
are specific to a concrete MS product: the portability of interoperability solutions based
on this integration paradigm is often restricted.

The third solution is theManagement Gateway (MG)approach. It is then possi-
ble to manage services, systems and networks in different management architectures
from a single point of control as demonstrated in [15] and [21]. It is even possible to
apply the power of a management architecture with rich functionality to any resource
in different architectural domains. In management architectures having no notion of a
management functional model such as the Internet (SNMP) framework, the application
of management functionality “borrowed” from other architectures is particularly use-
ful. Standardized mappings between the OSI, Internet and CORBA information models
have been developed by theJoint Inter-Domain Working Groupof Opengroup and NM-
Forum [9]; the appropriate interworking architecture has been recently submitted to the

4



OMG in response to theCORBA/TMN Interworking RFP. Our experiences with build-
ing MGs [12] have shown that they represent powerful instruments for bridging the
gaps between different management architectures as neither the managing nor the man-
aged systems need to be modified. This is a crucial feature w.r.t. the service provider
scenario described in section 1. While design principles of MGs are today reasonably
well understood, our experiences have also shown that they are complex systems and –
due to their high relevance for enterprise management – need to be managed as well; in
the next sections, we will describe why we consider MGs as a special case of MSs and
show what their management instrumentation may look like.

3. Managing Management Systems

This section analyses the properties of MSs and the requirements concerning the nec-
essary management information and the management services, respectively. It provides
the conceptual background and helps to identify important features needed for the defi-
nition of the object model for MSs described in section 4.

3.1 Characteristics of Management Systems

The way how MSs are deployed today is by establishing well-defined, central points
of control, termedmanagement platforms. As outlined in several publications (e.g.
[3], [22]), platforms tend to become bottlenecks in large networks and a solution to
this problem is to distribute their functionality (e.g., topology functions, event filter-
ing mechanisms, logging facilities) in order to reduce the load on the central MS. This
can be done by introducing MSs acting in the role ofMid-Level Managers (MLMs)
that are located closer to the managed resources and execute management functions on
behalf of other MSs. Their main purpose is to condense raw data stemming from the re-
sources into meaningful management information that can then be used by another MS.
This may also include caching of frequently accessed information like topology data of
the underlying systems. These properties obviously reduce the amount of overall traf-
fic that is sent through the network for management purposes. MLMs are an effective
mechanism for structuring networks into domains and can be used for establishing man-
agement hierarchies. An extension of this concept is to delegate (and withdraw) man-
agement functionality to MLMs at runtime. This delegation may either be initiated by
the MLM itself (pull model) or by another MS (push model). The interworking between
MSs of different service providers as described in section 1 can be seen as a special case
of interactions between different MLMs. Consequently, the above mentioned principles
apply also to independent MSs operated by different authorities.

As motivated in section 2, further complexity is introduced by the heterogeneity of
the deployed management architectures. MGs are a convenient mechanism for achiev-
ing interoperability between heterogeneous MSs. They are obviously located on the
boundaries of different (architectural) management domains and act in the role of an
MLM w.r.t. other MSs. As MGs are aware of the architectural specifics of the under-
lying resources, it therefore makes sense to provide them with the same management
functionality as MLMs. Such an enhanced MG could e.g., condense several SNMP-
traps into one CORBA-event instead of translating every trap into one event and leaving

5



the filtering of these events to the MS one level above in the service provider hierarchy.
This implies that providers need an instrumentation for these systems in order to present
a unified view on their management data to customers; the amount of accessible infor-
mation may be specified in a service contract.

3.2 Requirements Analysis

Although the different management frameworks provide mechanisms of inter-manager-
communication (OSI/TMN: x reference point, SNMP: inform-pdu), it is currently not
clear what the shared management knowledge between MSs should look like and what
actions may be initiated by an MS on behalf of another one. We will now first de-
scribe what kind of management information ought to be present in an object model
for managing MSs and will then move on to the required management services, i.e.,
the functionality that MSs may provide for interacting with peers. The identification of
management information and management functionality was based on a use case anal-
ysis [7] applied to typical management scenarios. For the sake of brevity, we can only
describe a small part of the amount of management instrumentation identified in our
analysis. The complete set is described in [11].
Management Information
As with any other kind of managed resource, generic configuration management infor-
mation (manufacturer, product name and version, installation date, etc.) and properties
relevant for fault management (support contact, time since last restart and its usage, op-
erational and administrative states) are relevant for managing MSs. If an MS supports
delegation, information about the supported scripting languages or the version of the
execution engines should be available. From the inventory perspective, it is also nec-
essary to provide an overview about the installed components, their versions and their
states (e.g., the installed system modules, the database and the management applica-
tions, the type of available delegated management functionality) and the corresponding
process names.

The gathering of licensing data relevant for accounting management like the kind
of product license (nodelocked, domain-bound, floating), the maximum and the actual
amount of MS users is necessary because many commercial MS products are equipped
with license servers. A high amount of rejected requests due to an insufficient number
of licenses indicates that additional licenses should be purchased. This may concern
either the number of concurrent users of the MS or the number of managed nodes.
Appropriate counters need to be provided.

Security is a major concern in distributed environments where several MSs are acting
as peers: there is a need to provide information about the management domains an MS
is involved in and the agents, MLMs and MGs it is responsible for. If an MS is able to
configure another one, every involved system needs to maintain on the one hand view-
related access control mechanisms for protecting itself against unauthorized access and
on the other hand information about its own capability set, i.e., what kind of interactions
with peer MSs are permitted.

Performance-related information includes parameters for configuring MLM caching
properties like the cache size or the maximum aging time for the cached data. Counters

6



for the time an MS takes for serving a request and the number of requests per interval
(minutes, hours) may indicate performance bottlenecks requiring additional MLMs.

Additional information needed to control MGs encompasses the architectures the
MG translates, the names and versions of the management information models and pro-
tocols supported. Of equal importance are counters for (successful, erroneous) trans-
lated PDUs and information related to the mapping of managed object references.

Management Services
This section will sketch a subset of the overall management functionality that is needed
for MSs in order to interwork properly.

Configuration management services provide the ease of introducing new MSs into
distributed environments by dynamically assigning them configuration profiles covering
domain affiliation and polling intervals. A MS therefore needs to provide functionality
for downloading initial configuration profiles to other MSs. If delegation is supported,
the usual operations that apply to delegated management functionality (start, stop, sus-
pend, resume etc.) should be present.

Of major importance for fault management are basic operations like verifying
whether all the components of an MS are running and services for (re-)starting or stop-
ping either the complete MS or single components should be available. Checking the
consistency of the MS database and the execution of maintenance (e.g., backup and
restore) and error detection tasks need also to be done at regular intervals that may
require scheduling mechanisms. In case of errors, the event and error logs maintained
by an MS provide a rich source of information for determining the probable cause of
failures; consequently, facilities for searching these logs according to different criteria
should be available.

The configuration of event forwarding mechanisms, the initiation of management
operations on peer MSs and the registration of an MS for specific events require security
services to ensure that no security policy is violated.

Services related to performance and accounting management include the generation
of reports about resources administered by a specific MS (statistics, system parameters
filtered according to different criteria like throughput, delay, load and usage) and should
therefore be made available to network administrators.

3.3 Relationships of MSs to the System and Network Infrastructure

MSs usually run on general-purpose operating systems like UNIX or WindowsNT and
are therefore sensitive to errors that occur in the underlying operation system and the
communication infrastructure provided by networked services (e.g., the Domain Name
System (DNS), the Network File System (NFS) and the Network Information System
(NIS)) and protocols. Consequently, commercial MS implementations like the one de-
scribed in [5] dedicate a high degree of their management instrumentation to the moni-
toring of the underlying system. While this may be necessary, in our opinion it is not the
primary concern of a MIB for MSs to control not only the MS itself but also the under-
lying environment. Thus, we restrict ourselves to the instrumentation of the MS itself
and consider the instrumentation of operating systems (CPU usage count, user quota,
disk and paging space etc.), networks (connectivity checks, timeout errors, network

7



buffer size, packet and frame errors) and underlying networked services like DNS, NFS
and NIS as out of scope for this paper. Nevertheless, we have designed object models
and implemented the corresponding agents for UNIX systems and networked services.
Readers interested in these agents are referred to [16]. The development of these agents
has been done according to the approach described in section 4, too. On the other hand,
operating system configuration tools like IBM AIX SMIT provide a vast amount of
static management information pertaining to MSs such as the names and versions of
the software modules, their installation paths, their prerequisites and dependencies. As
these tools are accessible through APIs we were able to retrieve this management infor-
mation.

We consider management itself as a distributed application; the consequence that the
distributed application “management” itself needs to be managed has already been mo-
tivated in section 1. Another implication is that we can apply already defined and stan-
dardized models for (general-purpose) distributed applications like theReference Model
of Open Distributed Processing (RM-ODP)to the management of MSs. We will show
in the following section how we used concepts from RM-ODP to obtain generic man-
agement object classes for application management; we will use these as base classes
for building the inheritance hierarchy of our object model.

4. An Object Model for Managing Management Systems

Seamless interworking between different MSs requires that the management informa-
tion and the appropriate management services identified in the previous section are
defined in a way that they can be accessed by peer MSs. Consequently, this section will
focus on establishing an object model (a MIB) for MSs. In section 4.1, we show how we
achieved a unified representation of management information common to all different
kinds of entities involved in the management process. We then describe in section 4.2
how this management information can be refined w.r.t. the needs of specific MSs and
how this process is eased by CASE tools.

4.1 Defining the Base Classes of the Inheritance Hierarchy

The inheritance hierarchies of today’s object-oriented management frameworks are usu-
ally not very deep and the degree of reuse is limited because the predominant part of
relevant management information is often specified in resource-specific classes. Con-
sequently, the base classes do not contain a large amount of information. On the other
hand, one must recognize that – in general – different distributed applications share a
lot of common properties: e.g., they are delivered as packages that consist of modules
implementing a service which is instantiated as a process. What we need is a framework
that allows us to describe the relevant aspects of any kind of distributed application (in
our case: management systems) in a way that it is suitable for management purposes.
As described in [13], RM-ODP [6] provides a standardized framework that covers the
different aspects of distributed applications and therefore has been taken as the basis for
deriving generic application management instrumentation.

For the purpose of technical management, thecomputationalandengineering view-
point languagesfit best because they standardize descriptions of the resources that we

8



are interested in; the reasons for the restriction on two out of five viewpoints are de-
tailed in [17]. However, the viewpoint language concepts only make assertions about
object classes and do not provide information about the class properties or its opera-
tions. Thus, parts of the management information and services described in section 3
become attributes and methods of these enhanced base MOCs. Some of these abstract
base MOCs are depicted on the highest level of Figure 3 and reflect the characteristics
of distributed applications w.r.t. configuration and fault management. For the ease of
understanding, we now describe the amount of management information covered by
these generic MOCs by applying them to the components of a specific network man-
agement platform, namelyIBM NetView for AIX(the appropriate component names are
given in parentheses):

A Computational Object stands for a running service (e.g., a platform topology
service) that is instantiated as a process or – in RM-ODP terminology –Capsule(e.g.,
“gtmd”). The static configuration information about this service, i.e., information about
the software module is described in theComputational Object Template (e.g., “Gen-
eralized Topology Manager”). In order to reflect the structure of large software pack-
ages, we have defined an additional abstract classPackage(e.g., “IBM NetView for
AIX”) that serves as a container for the different software modules.

Although the base MOCs are abstract classes that must be further refined, one
has to recognize that these MOCs based on RM-ODP concepts make that many re-
quired attributes and methods are already defined at the top of the inheritance hierar-
chy: Important characteristics relevant to software packages are present; in addition,
instrumentation for installing and updating them is specified. Descriptions of services
and their technical realization (as processes) are available. Services and applications
can be started, stopped, suspended and resumed. This covers a large amount of MIB-
instrumentation that is usually defined only on lower, i.e., resource-specific levels (e.g.
every SNMP group or table containsName andDescriptionattributes). Consequently,
we can then guarantee a minimum amount of instrumentation commonly applicable to
all kinds of distributed applications.

4.2 Representation of MOCs for Managing Management Systems

The abstract base MOCs described in section 4.1 do not contain application specifics.
In order to support the management of specific applications (here: MSs), they have to
be refined to more application-specific MOCs. These can then serve as a starting point
for the design and implementation of appropriate management agents.

For the sake of clarity, the following kinds of management information and services
are not present in the figure: Object classes for the maintenance and control of event and
alarm logs, instrumentation for traces and definitions of value constraints like thresh-
olds. The definitions of the attributes (data types, default value, hints whether they are
read-only) and methods (arguments, return type) have also been suppressed.

It can be seen that MOCs for generic clients and servers are derived from the abstract
base MOCs; as MSs act in a client and managed systems act in a server role, we can
derive them from the generic MOCs, respectively. The model also reflects the fact that
MLMs are dual role entities and consequently inherit properties and operations from

9



Managed_System
Domain

Name

listServers()

MapPath

Managing_System

Server

Server Client

Request
Accept
Delay

start()
stop()

Computational_Object

DefaultDomain

Request
Accept
Depart
Bad
Error
Reject
NotAuthorized
Delay
Utilization

start()
stop()

UsageState
OperationalState
AdminState
Uptime

lock()
unlock()

Generic_Gateway

Management_Gateway

Mid_Level_Manager

TargetArchitecture
SourceArchitecture

Request

Arrival
Source
Owner
State

Computational_Object_Template

Manufacturer
ProductName
Version
DeliveryDate
InstallationDate
SerialNumber
HardwareDependencies
InstallationLog
SupportContact
State

Capsule

ID
CPUTime
ElapsedTime
State
Memory
Owner
OpenFiles

resume()

start()
terminate()
signal()

suspend()

Package

Name
Version
InstalledSize
Path
TargetOS

install()
deinstall()
applyUpdate()
rejectUpdate()
commitUpdate()

PollingFrequency

SourceMIM
TargetMIM
VersionSourceMIM
VersionTargetMIM

TargetProtocol
SourceProtocol
TargetProtocolVersion
SourceProtocolVersion

CacheSize
MaxAgingTime

Capabilities

Access_Controlcancel()

Capsule_Template

InstantProcedure
RequiredObjects
RuntimeParameters
Size
Type

Process

Name
GID
PPID
Priority

changePriority()

Criteria

addServer()
removeServer()

PolicyRegion

Runtime_Environment

LanguageDescription
LanguageVersion

Agent

ServiceInfo BindingInfo

is_bound_to
1+

provides_service_for

processes sent_by

1+1+

1+

manages

Figure 3: Object model of management systems (partial view)

both of the above MOCs. MGs, finally, are – as described in section 3.1 – a special case
of MLMs that additionally perform transformation activities.

The design of the management object model is usually done with object-oriented de-
sign methodologies such as theObject Modeling Technique (OMT)[20] or theUnified
Modeling Language (UML)[18] that not only allow the specification of MOCs, their
properties and operations but also of the relationships between different MOCs. Fur-
thermore, it should be possible to transform the resulting MOCs straightforward into
the description languages of standardized management frameworks (e.g., OSI GDMO,
OMG IDL). For our modeling, we have used an OMT-compliant CASE tool [1] that
fulfills the above requirements; the object model can be transformed either into C++
or Java classes or OMG IDL. By introducing the OMT interface descriptions into the
CASE tool repository we are able to follow a rapid-prototyping approach for imple-
menting appropriate agents.

5. Prototype Implementation

For demonstration purposes, we have instrumented a commercial network management
platform (IBM NetView for AIX 4.1with TMN Support Facility) and a CMIP/SNMP
MG developed by us [12] with CORBA-based management agents implemented in
Java. The left part of Figure 4 depicts a CORBA/Java-based management environment:

10



Topology

Events

Policy

CORBA-enabled
WWW Browser

In
te

r-O
RB

 P
ro

to
co

l

Information Component

Databases

Multiarchitectural Manager

MIB BrowserState MonitorEvent Dispatcher

Performance MonitorTopology Manager

Manager GUI

Object Request Broker

MF

NEF

MF

NEF

OSI/TMN

Telco
Switch

CMIP

AIX
SMIT

DNS
Server

WWW
Server

CORBA

Protocol Modules

Communication Component

Object Request Broker

Internet (SNMP)

Agent Agent

Ethernet SwitchRouter

Gateway
Mgmt-CMIP

SNMP

Managed Sets

Figure 4: CORBA-based instrumentation of management systems and gateways

CORBA agents (here: for DNS and WWW servers and AIX SMIT) are remotely ad-
ministered by means of a CORBA-enabled WWW browser. CORBAservices such as
Events, Notification, Topology, Managed Sets and Policy (see e.g. [23]) provide the re-
quired management functionality in a location-independent way. However, only a small
part of these important management services have been implemented until now. Fortu-
nately, current management platforms (right part of Figure 4) contain components that
have a very similar functionality to the CORBAservices mentioned above. We therefore
decided to make the main platform components (Event Dispatcher, Topology Manager,
State and Performance Monitors) accessible from CORBA and use them as atempo-
rary replacementfor currently specified, but not yet available CORBAservices. We
have encapsulated the APIs of the MS with IDL wrappers (dark grey shaded arcs with
black dots in Figure 4) which gives us the opportunity of reusing a large part of the
MS functionality (e.g., event filtering, topology). By doing so, we create a conceptually
integrated management information base on the platform where management-related
information is collected and evaluated independent of the originating base architecture.
This multiarchitectural manager is able to access managed objects in OSI/TMN, SNMP
and CORBA environments.

On the other hand, the IDL wrappers also provide us with the management instru-
mentation of the MS and the MG via CORBA. Furthermore, the representation of AIX
SMIT as CORBA objects gives us access to the static management information de-
scribed in section 3.3. Together, they represent the managed objects identified in the
previous sections. Our approach is in accordance with the TINA (Universal Service
Component Model (USCM)[2]. The core of the MS and MG access layers are accessi-
ble either through the usage sector or through the server interfaces of the management

11



sector; the latter has been provided by us. We are then able to manage the MS and MG
via CORBA.

As we wanted to manage these systems from a web-based interface, we implemented
the management application prototype as Java applets and used a commercial Java-
ORB, VisiBroker for Java v. 3.0(by Visigenic/Inprise). VisiBroker is also contained in
theNetscape Communicator v. 4.5web browser; we therefore expected that the appli-
cation would load reasonably fast due to its modular design and the small size of the
resulting Java classes (less than 10 kbyte per class). Unfortunately, Netscape Commu-
nicator contains only an earlier version of the Java-ORB we used, namely VisiBroker
2.5. Consequently, the Java classes for the ORB itself and its bundled CORBAservices
(in total: a Java archive of 2.5 MB code size) always have to be loaded once per session
into the browser firstbeforeany applet can be started.

On the other hand, the access to IBM NetView is only possible through C Appli-
cation Programming Interfaces. We therefore had to build wrappers based on theJava
Native Interface (JNI)around the C APIs in order to access them from Java. JNI has
been developed for that purpose, thus enabling programs running under the control of
the Java Virtual Machine to access other programs or libraries that have been written in
C. The reason for choosing Java instead of C++ stems from the fact that we intend to
copy parts of the management instrumentation between different MS at runtime.

6. Conclusions and Areas of further Research

In this paper, a CORBA-based approach for instrumenting management systems has
been presented. The need for managing management systems arises because manage-
ment systems of different authorities have to seamlessly interoperate with each other,
even if they are based upon different management architectures. We have analyzed and
evaluated three mechanisms for achieving interoperability. On the other hand, manage-
ment systems are also very complex; it is thus essential to provide appropriate man-
agement information and services. Our aim was to define such an open, common set
of management information that should be applicable to a wide range of management
systems and management gateways. We have developed management models for these
entities by analyzing which kinds of management information and services are needed
to enable an integrated management of these systems.

Key to our approach is the perception of management as a distributed application
that itself needs to be managed. We are then able to apply standardized frameworks for
distributed applications (such as the RM-ODP) for the definition of generic MOCs that
already contain a large set of management instrumentation at the top of the inheritance
hierarchy. This management model was refined into more specific object classes that
reflect the structure and functionality of management platforms available on the mar-
ketplace. We have implemented the object model described in this paper for instrument-
ing the commercial network management platformNetView for AIXby Java/CORBA-
based management agents so that it can be managed from a web-based interface. We
experienced that, apart from determining dependency relationships between instanti-
ated components, almost the complete set of required management information can be

12



provided by this management system. However, this information is scattered across
different sources such as platform APIs, configuration files and configuration tools of
the underlying operating system. A large part of our implementation work consisted in
encapsulating all this information under a single type of interface.

With CORBAservices and CORBAfacilities, CORBA provides a very promising
technology for integrated enterprise management since more and more services useful
for management purposes are being standardized. The approach described in this pa-
per has also been successfully applied to several cooperation projects with industrial
partners for the management of networked services like NFS and NIS and for the re-
engineering of agents for open CORBA-based management of ATM switches.

However, the mechanisms for transferring management services between manage-
ment systems are yet unsatisfactory. We are now working on the following issues:

� The deployment of the OMGMobile Agent System Interoperability Facility (MASIF)
[19] to provide facilities for CORBA-based mobile management agents.

� The evaluation of theJava Dynamic Management Kit (JDMK)[8] to support the
delegation of management functionality at runtime in Java/CORBA-based environ-
ments.

ACKNOWLEDGMENT
The author wishes to thank the members of the Munich Network Management (MNM)
Team for helpful discussions and valuable comments on previous versions of the paper.
The MNM Team directed by Prof. Dr. Heinz-Gerd Hegering is a group of researchers of
the University of Munich, the TU M¨unchen, and the Leibniz Supercomputing Center.
Its webserver is located at http://wwwmnmteam.informatik.uni-muenchen.de.

References
[1] Aonix. Software through Pictures/Object Modeling Technique: Creating OMT Models.

Aonix, Inc., 1997. Release 3.4.
[2] M. Chapman and S. Montesi. Overall Concepts and Principles of TINA. TINA Baseline

TB-MDC.018 1.0 94, TINA Consortium, February 1995.
[3] G. Goldszmidt and Y. Yemini. Delegated agents for network management.IEEE Commu-

nications Magazine, 36(3):66–70, March 1998.
[4] H.-G. Hegering, S. Abeck, and B. Neumair.Integrated Management of Networked Systems

— Concepts, Architectures and their Operational Application. Morgan Kaufmann, 1999.
[5] IBM Corporation, International Technical Support Organization, Research Triangle Park,

NC 27709-2195.IBM Systems Monitor: Anatomy of a Smart Agent, December 1994. Order
Number: GG24-4398-00.

[6] Open Distributed Processing – Reference Model. IS 10746, ISO/IEC, 1995.
[7] I. Jacobson, M. Christerson, P. Jonsson, and G.Övergaard.Object-Oriented Software En-

gineering: A Use Case Driven Approach. ACM Press / Addison-Wesley, 1993.
[8] JDMK. Java Dynamic Management Kit 3.0 (beta) Programming Guide. Sun Microsys-

tems, Inc., August 1998. Part No. 805-4620-05.
[9] JIDM. Inter-Domain Management: Specification Translation. Open Group Preliminary

Specification P509, Open Group, March 1997.

13



[10] P. Kalyanasundaram and A. Sethi. Interoperability Issues in Heterogeneous Network Man-
agement. In Manu Malek, editor,Journal of Network and Systems Management, volume 2,
pages 169 – 193. Plenum Publishing Corporation, June 1994.

[11] A. Keller. CORBA-basiertes Enterprise Management: Interoperabilit¨at und Manage-
mentinstrumentierung verteilter kooperativer Managementsysteme in heterogener Umge-
bung. PhD thesis, Technische Universit¨at München, December 1998.

[12] A. Keller. Tool-based Implementation of a Q-Adapter Function for the seamless Integration
of SNMP-managed Devices in TMN. InProceedings of the IEEE/IFIP Network Operations
and Management Symposium (NOMS 98), pages 400–411, New Orleans, USA, February
1998. IEEE Press.

[13] A. Keller and B. Neumair. Using ODP as a Framework for CORBA-based Distributed Ap-
plications Management. In J. Rolia, J. Slonim, and J. Botsford, editors,Proceedings of the
Joint International Conference on Open Distributed Processing (ICODP) and Distributed
Platforms (ICDP), pages 110–121, Toronto, Canada, May 1997. Chapman & Hall.

[14] M. Langer, S. Loidl, and M. Nerb. Customer Service Management: A more transparent
view to your subscribed services. InProceedings of the 8th IFIP/IEEE International Work-
shop on Distributed Systems: Operations & Management (DSOM 98), Newark, DE, USA,
October 1998.

[15] S. Mazumdar. Inter-Domain Management between CORBA and SNMP. InProceedings of
the IFIP/IEEE International Workshop on Distributed Systems: Operations & Management,
L’Aquila, Italy, October 1996.

[16] T. Müller. CORBA-basiertes Management von UNIX-Workstations mit Hilfe von ODP-
Konzepten. Master’s thesis, Technische Universit¨at München, February 1998.

[17] B. Neumair. Distributed Applications Management based on ODP Viewpoint Concepts and
CORBA. InProceedings of the IEEE/IFIP Network Operations and Management Sympo-
sium (NOMS 98), pages 559–569, New Orleans, USA, February 1998. IEEE Press.

[18] Unified Modeling Language Summary version 1.1. OMG Specification ad/97-08-03, Ob-
ject Management Group, September 1997.

[19] Mobile Agent System Interoperability Facilities Specification. OMG TC Document
orbos/97-10-05, Object Management Group, November 1997.

[20] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.Object-Oriented Mod-
eling and Design. Prentice-Hall International, Inc., 1991.

[21] N. Soukouti and U. Hollberg. Joint Inter-Domain Management: CORBA, CMIP and
SNMP. In A. A. Lazar and R. Saracco, editors,Proceedings of the 5th International
IFIP/IEEE Symposium on Integrated Management (IM), pages 153–164, San Diego, USA,
May 1997.

[22] C. Wellens and K. Auerbach. Towards Useful Management.The Simple Times, 4(3):1–6,
July 1996.

[23] Systems Management: Common Management Facilities Volume 1. Preliminary Specifica-
tion P421, X/Open Ltd., June 1995.

Biography

Alexander Keller received his Diploma and a Ph.D. in Computer Science from Tech-
nische Universit¨at München, Germany, in 1994 and 1998, respectively. He does re-
search on distributed systems and application management, emphasizing on manage-
ment system instrumentation and aspects of interoperability between management ar-
chitectures. He is a member of GI and IEEE.

14


