
INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Masterarbeit

A quantum-safe Signature Scheme

for IKEv2 based on Isogenies

Markus Jürgens

INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Masterarbeit

A quantum-safe Signature Scheme

for IKEv2 based on Isogenies

Markus Jürgens

Aufgabensteller: Prof. Dr. Dieter Kranzlmüller

Betreuer: Sophia Grundner-Culemann
Dr. Tobias Guggemos

Abgabetermin: 18. Januar 2021

Hiermit versichere ich, dass ich die vorliegende Masterarbeit selbständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Altomünster, den 18. Januar 2021

. .
(Unterschrift des Kandidaten)

Abstract

With the field of quantum computing emerging fast and as a result of technology enhancements,
it only seems to be a matter of time, until quantum computers will be able to break a
large number of cryptographic algorithms that secure the internet of today. Although
quantum computers are currently not powerful enough to actually execute attacks on those
cryptographic algorithms, now is the right time to think about how to prevent this potential
future threat. Post-quantum cryptography is the field of research which deals with that kind
of threat.

The IPSec protocol-suite is one of the protocols securing the internet and it is prone to
be broken with the rise of sufficiently powerful quantum computers. Ongoing work exists
to secure the initial key exchange of IPSec done by the Internet Key Exchange Protocol
version 2 (IKEv2), from which all keys for further encrypted communication are derived.
This prevents attackers to capture IPSec-packets in transit and use a quantum computer
to decrypt those packages later. The authentication mechanism of IKEv2 nevertheless can
be attacked by exploiting the incorporated non-quantum-resistant signature scheme. This
enables an attacker to to claim a false identity when establishing an IPSec-connection.

This work aims to provide a version of IKEv2 extended by a signature scheme that is resistant
to attacks driven by quantum computers. This signature scheme relies on the problem of
finding isogenies between supersingular elliptic curves and is assumed to be quantum-resistant.

We give an introduction to isogeny based cryptography, including a brief explanation of the
mathematical foundations it is based on. Further we discuss signature schemes based on
isogenies which evolve from Unruh’s transformation of non-interactive zero knowledge proofs.

The work contributes a detailed analysis of requirements for PQ-Signature IKEv2, to comply
with constraints that exist within the IKEv2-protocol and also to ensure interoperability
and backwards compatibility. The resulting protocol specification reflects the elaborated
requirements and allows two peers that try to communicate via IPSec to authenticate in
a quantum-safe manner. A proof-of-concept implementation based on the aforementioned
protocol is proposed. Finally an extensive evaluation of the protocol design as well as of the
implementation is given, discussing the advantages and limitations of the new approach.

vii

Contents

1 Introduction 1

2 Background and Related Work 5
2.1 Background . 5

2.1.1 Diffie-Hellman Key Exchange . 5
2.1.2 Digital Signature . 6
2.1.3 Internet Key Exchange Protocol version 2 (IKEv2) 7
2.1.4 Elliptic Curve Cryptography . 14
2.1.5 Isogeny-Based Cryptography . 17
2.1.6 Isogenies . 18
2.1.7 Isogeny Graphs . 20

2.2 Related Work . 20
2.2.1 Supersingular Isogeny Diffie-Hellman 20
2.2.2 Towards a quantum-safe key exchange in IKEv2 22

3 Towards a Signature Scheme for IKEv2 25
3.1 Requirements analysis . 25

3.1.1 Classic IKEv2 Authentication . 25
3.1.2 RFC 7427 - Digital Signature . 25
3.1.3 IKEv2 Size Constraints . 26
3.1.4 Hybrid Authentication . 27

3.2 A Digital Signature Scheme based on supersingular Isogenies 28
3.2.1 Zero-knowledge proof of identity . 28
3.2.2 Sigma protocol . 30
3.2.3 Unruhs Transformation towards a non-interactive Proof System 31
3.2.4 Signature Scheme . 33

3.3 Requirements . 33

4 IKEv2 Protocol Design for quantum-resistant Authentication 39
4.1 Integration of quantum-resistant Signature Schemes in IKEv2 39

4.1.1 Registering a new Authentication Method 39
4.1.2 Digital Signature (RFC 7427) . 41

4.2 Multiple Authentication Exchanges (RFC 4739) 46
4.3 Support for Payloads bigger than 64kiB . 47

4.3.1 Hash and URL . 48
4.3.2 Payload Fragmentation . 49
4.3.3 Leveraging Payload Fragmentation to IKE AUTH exchange 50

4.4 Final Protocol Design . 52
4.4.1 Design Decisions . 52
4.4.2 Procedure of the Protocol . 54

ix

Contents

4.4.3 Integration with Quantum-safe Key Exchange in IKEv2 54
4.4.4 Compliance with Requirements . 57

5 Proof of Concept 59
5.1 Digital Signature Scheme based on Supersingular Isogenies 59

5.1.1 Drawbacks and issues of the implementation of Yoo et al. 59
5.1.2 Porting to OpenBSD . 61
5.1.3 Improving Memory Management . 62
5.1.4 Applying Unruhs Transformation . 62
5.1.5 Message Integration . 63
5.1.6 Providing an API to the Isogenysignature scheme 64

5.2 Integration in OpenBSDs iked . 65
5.2.1 OpenBSD iked . 65
5.2.2 Integration of a new Signature Method 67
5.2.3 Dealing with imsgs bigger 16384 bytes 67
5.2.4 Incorporating multiple IKE AUTH Messages 68
5.2.5 Dealing with Payloads bigger 64kiB 68
5.2.6 Adapting the Configuration and the Configuration-Parser 69

6 Evaluation 71
6.1 Performance Analysis of the isogeny-based Signature Scheme 71
6.2 Security Considerations of the isogeny-based Signature Scheme 74

6.2.1 Theoretical Foundation . 74
6.2.2 Security of the Implementation . 74

6.3 Security Considerations of the IKEv2 Protocol Extension 76

7 Conclusion and Future Work 79

Glossary 83

List of Figures 85

Bibliography 87

x

1 Introduction

Ongoing research in the field of quantum computing tries to build a computer based on
quantum physics, a so-called quantum computer. If these machines are powerful enough, they
are able to solve some problems significantly faster than classic computers we have available
today. We refer to this as achieving quantum supremacy. It is not yet possible to build a
quantum computer as several problems still exist which need to be mitigated. A quantum
computer operates on qbits which is the equivalent of a bit of a classic computer with the
difference that qbits can be in a superposition state. This means they are not 0 or 1 but
“somewhere inbetween”. Researchers laid out seven stages in the process of building a powerful
enough to reach quantum supremacy quantum computer in [DS13] as shown in Figure 1.1
(QND in the third step is the abbreviation of “quantum non-demolition”). The arrow directing
from the third to the fourth stage indicates the current state of research towards a quantum
computer. It is currently possible to build quantum computers reaching the third stage and
development is done towards reaching the further stages ([CMS+15], [RPH+15], [KBF+15]).
Although nobody can tell when the first large-scale quantum computer will be available, it
seems to be a matter of time until we get there.

While we expect quantum computers to bring advances in a variety of research fields such as
Artificial Intelligence, it does pose a threat to the field of cryptography. In 1994 Peter Shor
developed an algorithm that is capable of solving the Integer-Factorization Problem as well
as the Discrete Logarithm Problem (DLP) in polynomial time, given a sufficiently powerful
quantum computer [Sho94]. It poses a serious threat to cryptographic systems relying on
either the Integer-Factorization Problem or the DLP, which is a majority of the Public Key
Cryptographic Systems (PKCSs), including RSA, DSA/ECDSA and DH/ECDH.

Post-Quantum Cryptography is the field of research dealing with the threat to classic
cryptography by quantum computers. It utilizes algorithms that run on classic computers

Operations on single physical qbits

Algorithms on multiple physical qbits

QND measurements for error correction and control

Logical memory with longer lifetime than physical qbits

Operation on single logical qbits

Algorithms on multiple logical qbits

Fault tolerant quantum computation

time

co
m

p
le

x
it

y

Figure 1.1: Seven stages in the development of quantum information processing according to
[DS13]

1

1 Introduction

Today

y: Migration Time x: Security Shelf-Life

z: Collapse Time

t

Figure 1.2: Evaluation of Necessity of Action

but rely on problems that are assumed to be hard to solve for quantum computers

Since we cannot say when the first sufficiently powerful quantum computer will be available,
we need to evaluate the risk we are exposed to by using classic cryptography. Michele
Mosca developed a framework that helps to decide, when it is time to take action and use
post-quantum algorithms [Mos18], which is shown in Figure 1.2. The Migration Time y is
the time we need to fully replace classic cryptosystems with quantum-safe cryptosystems.
The Security Shelf-Life x is the time, we want the cryptosystem to hold out against attacks.
In the context of encryption this means that the encrypted data can not be decrypted by an
attacker for the next x years. The third parameter Collapse Time z is the time until our
cryptosystems collapse due to the availability of a sufficiently powerful quantum computer.
The question we need to answer to estimate the risk is if x+ y < z. If this expression is true,
there is no need for action right now. Otherwise, as indicated in the figure, where z < x+ y,
the point in time to start migrating to more secure cryptographic systems has already passed
and the risk of the cryptographic system being broken during the timespan described by x
increases. This risk framework of Mosca does of course not provide any guarantees as we
need to estimate the collapse time z and the migration time y depends on the complexity of
the operational environment. However the framework can guide in the process of figuring out
when migration to quantum-safe cryptographic systems should be started.

One of the security protocols that is broken by the arrival of a sufficient powerful quantum
computer is the IPSec protocol suite, as the initial key exchange heavily relies on PKCS and
is prone to being broken by Shor’s algorithm. Ongoing work exists to negotiate quantum-safe
keys within IKEv2 ([Hei19] [TTB+20]). This ensures confidentiality of IPSec communication
by encrypting the payload with the quantum-resistant keys negotiated by IKEv2. Establishing
quantum-resistant authenticity by incorporating a quantum-safe signature scheme in IKEv2 is
not considered. This seems to be less critical because exploiting the authentication mechanism
would require a quantum computer breaking authenticity in real-time. Nevertheless, as soon
as quantum computers are available, the threat of exploiting the authentication mechanism
of IKEv2 is clearly realistic. It would enable an attacker in possession of a quantum computer
to execute a man-in-the-middle attack. When Alice wants to talk to Bob, the attacker can
prove to Alice to own the identity of Bob and the other way round, by breaking the signature
schemes used by the two peers. This work aims to secure the authentication mechanism of
IKEv2 against an attacker utilizing a quantum computer.

To achieve this goal a closer look at a specific signature scheme was taken that relies
on the problem of finding isogenies between supersingular elliptic curves. Isogeny-based
cryptosystems generally incorporate short public keys, compared to other post-quantum
cryptographic systems. And the problem of finding isogenies between supersingular elliptic
curves is assumed to be hard for quantum computers to solve because of the mathematical
complexity it is based on. Furthermore, isogeny-based cryptography offers a key-exchange

2

as well as an encryption and a signing mechanism, making it a potential candidate to fully
replace RSA.

Contribution

This work gives an introduction to isogeny-based cryptography including mathematical
foundation. We provide an analysis of the requirements to integrate quantum-resistant
authentication in IKEv2. Further we design an IKEv2 protocol extension that integrates
quantum-safe authentication. We implement the isogeny-based signature scheme as proof-
of-concept and evaluate the implementation. Finally we also evaluate the IKEv2 protocol
incoporating quantum-resistant authentication.

Structure of this Work

The work is structured as follows: Chapter 2 will discuss the background and foundations,
necessary for the integration of a quantum-safe authentication into IKEv2 as well as show
some related work with regards to this topic. Afterwards, Chapter 3 analyses and states
requirements for a successful integration. Further it shows how to evolve from an isogeny-based
zero-knowledge proof towards a signature scheme. Chapter 4 develops the IKEv2 protocol
extension by discussing possible approaches to comply with the previously stated requirements
and choosing from those approaches to form the final protocol. Chapter 5 describes the
implemented isogeny-based signature scheme and provides insight to an integration of the
developed protocol into OpenBSD’s iked. Chapter 6 evaluates the isogeny-based signature
scheme with regards to performance and security as well as the security of the IKEv2 protocol
extension. Finally Chapter 7 gives an outlook on future work and a conclusion of the work.

3

2 Background and Related Work

Before discussing how to integrate a isogeny-based signature scheme into IKEv2 to achieve a
quantum-safe authentication method, we take a look at the beckground of this work and any
other related works. In Section 2.1 the background is presented to provide an understanding
of the technologies this work is based on. Section 2.2 shows other work which is related to
the topic of integrating a quantum-safe signature scheme in IKEv2.

2.1 Background

This Section first describes the cryptographic basics of a Diffie-Hellman key exchange and
of signature schemes in Sections 2.1.1 and 2.1.2. Then it discusses the IKEv2 protocol in
Section 2.1.3 and finally isogeny-based cryptography in the following Sections 2.1.5 - 2.1.7.

2.1.1 Diffie-Hellman Key Exchange

The Diffie-Hellman key exchange is a widespread key exchange mechanism on which large
parts of the internet rely on. It was originally proposed by Whitfield Diffie and Martin
Hellman in [DH76].

Figure 2.1 shows the classic Diffie-Hellman key exchange. The communication partners (Alice
and Bob) wish to generate a secret key that is negotiated over an unsecure communication
channel. Therefore Alice and Bob need to agree on a prime p and a generator g. In the next
step Alice chooses a secret number a and calculates A = ga mod p. Bob does the same with
his own secret number b calculating B = gb mod p. Now they send those calculated values
A and B over the unsecure communication channel. In the last step, Alice takes the B it
received from Bob and calculates K = Ba mod p. Bob does the same with the value A he
received from Alice, ending up at the same K as Alice.

The security of the key exchange relies on the problem of finding K, knowing the prime p,
the generator g as well as A and B. This problem is called the Diffie-Hellman problem. The
fastest known way to solve this problem is to solve the discrete logarithm problem, which
means finding a (b), knowing g and A = ga (B = gb) [KK10, §9.1]. As problems relying
on the discrete logarithm problem can be solved with Shor’s algorithm [Sho94], those key
exchanges do not hold up against attacks in which a quantum computer is involved.

Multiple variants of the Diffie-Hellman key exchange exist, one of them being Elliptic-curve
Diffie-Hellman which is described in Section 2.1.4.

5

2 Background and Related Work

Alice Bob

agree on Prime p, Generator g

generate secret
number a

generate secret
number b

A = ga mod p B = gb mod pA

B

K = Ba mod p K = Ab mod p

Figure 2.1: Classic Diffie-Hellman key exchange

2.1.2 Digital Signature

The purpose of digital signatures is to provide a method of signing digital data similar to a
person signing a document in the non-digital world. By signing a message, the signing party
(prover) proves to be the author of the message and the receiving party (verifier) can verify if
the prover is the person he claims to be, and also if the message has been changed after the
prover signed the data.

Schneier derives properties of digital signatures from the following properties of handwritten
signatures as per the below [Sch07, §2.6]:

1. The signature is authentic. The signature convinces the document’s recipient that the
signer deliberately signed the document.

2. The signature is unforgeable. The signature is proof that the signer, and no one else,
deliberately signed the document.

3. The signature is not reusable. The signature is part of the document; an unscrupulous
person cannot move the signature to a different document.

4. The signed document is unalterable. After the document is signed, it cannot be altered.

5. The signature cannot be repudiated. The signature and the document are physical
things. The signer cannot later claim that he or she didn’t sign it.

These properties can be summed up in the below security goals with explanations from
[Sch07, §1.1]. The first two points are covered by the goal Authenticity, point three and
four are summed up in Integrity, while the fifth point ties in with the last goal which is
Non-Repudiation.

Authenticity. It should be possible for the receiver of a message to ascertain its origin; an
intruder should not be able to masquerade as someone else.

Integrity. It should be possible for the receiver of a message to verify that is has not been
modified in transit; an intruder should not be able to substitute a false message for a
legitimate one.

Non-Repudiation. A sender should not be able to falsely deny later that he sent a message.

6

2.1 Background

Although signature schemes based on symmetric encryption exist, we focus on the more
common signature schemes engaging asymmetric cryptography.

Signature schemes generally include three algorithms, the key generation, the signing and
the verifying algorithm. Figure 2.2 shows the signing and the verification procedure, it does
not depict the key generation algorithm. Following description explains all three algorithms
involved in detail.

Key generation algorithm In the first step the peer that wishes to prove authorship of a
message (prover) needs to generate a key pair, consisting of the signing key and a public
key. It is essential, that the signing key is kept secret by the prover, whereas the public
key has to be made publicly available. As long as the signing key is not compromised,
the prover can reuse the key pair for signing digital data.

Signature generation algorithm In the second step, the prover uses his secret key to sign the
message he wants to send to the verifier. Depending on the signature scheme, usually
the message gets hashed before applying the secret key to the digest of the message.
This increases the efficiency of calculating the signature and also ensures integrity of
the message. The prover sends the computed signature together with the message.

Signature validation algorithm In the third step, the verifier computes the hash of the
message he received. Then he uses the public key of the prover to verify the signature.
If the public key applied to the signature matches the hash of the message, the verifier
can be sure that the received message has been sent by the prover and has not been
changed in transit.

The National Institute of Standards and Technology (NIST) standardized digital signatures
in the Digital Signature Standard (DSS)[Bar13]. The NIST proposes three algorithms for
signing messages, namely the DSA, RSA digital signature algorithm and the ECDSA. The
DSA was published with the first version of DSS in 1994, whereas the NIST added the RSA
digital signature algorithm and ECDSA in later publications of DSS. The latest final version
dates to 2013, a new version from 2019 is currently available as draft. This draft version drops
support for the DSA and adds support for the Edward-curves Digital Signature Algorithm
(EdDSA). For detailed information on the specific signature algorithms, see [Bar13] for DSA
and ECDSA and [MKJR16] for RSA.

2.1.3 Internet Key Exchange Protocol version 2 (IKEv2)

IKEv2 is a key exchange protocol enabling two peers to establish an IPSec connection
[KS05] by dynamically negotiating cryptographic suits to ensure confidentiality, authenticity
and integrity. IKEv2 is specified in [KHN+14] and is the successor of IKEv1 [HC98]. The
IPSec protocol suite ensures confidentiality, integrity, and authenticity of the transmitted
data, and furthermore provides access control. An IPSec connection generally implements
Security Associations (SAs) to establishing a secure channel for communication. A SA is a
simplex logical connection between two peers, that protects the data to be transferred by the
cryptographic suite it incorporates. It is the task of IKEv2 to negotiate the cryptographic
suite and establish the SAs used for the IPSec communication.

IKEv2 is strictly based on request/response message pairs, meaning every request from the
initiator expects a response from the responder. It is the requester’s responsibility to ensure

7

2 Background and Related Work

Alice

Bob

Hi Bob!
. . .

6548
6c6c
...

Hash
Function 101101

101101
001010

Signature
Generation

privkey

Hi Bob!
. . . 101101

101101
001010

Hi Bob!
. . .

6548
6c6c
...

Hash
Function

101101
101101
001010

6548
6c6c
...

Signature
Validation

pubkey

compare and
accept/reject

Figure 2.2: Digital Signature

8

2.1 Background

Initiator Responder

HDR, SAi1, KEi, Ni -->

<-- HDR, SAr1, KEr, Nr, [CERTREQ]

Figure 2.3: IKE SA INIT

reliability of the exchanged messages, i.e. if he does not receive a response to his request, he
has to retransmit his request or abandon the connection.

IKE SA INIT

The first message pair in the IKEv2 protocol is the IKE SA INIT exchange, shown in
Figure 2.3. The HDR field is the header of the message. Figure 2.4 shows the structure of
the Header field. It contains the Security Parameter Index (SPI) of the initiator, allowing
a clear assignment of the message to a SA. Further it contains information of the used
version of IKE as well as the Exchange Type (IKE SA INIT), a message ID and some other
information. Note that the responder’s SPI is zero at this point in the protocol, as the
initiator does not have any information of the SPI identifying a SA on the responder’s side.
SAi1 contains the cryptographic algorithms which the initiator supports for establishing
a SA. It consists of one or more proposals, each containing so called transforms. In the
IKE SA INIT exchange these transforms are generally the Diffie-Hellman group, an integrity
check algorithm, a Pseudo Random Function (PRF) algorithm and an encryption algorithm.
KEi sends the Diffie-Hellman public value of the initiator and Ni contains its nonce. The
nonce is a randomly generated bit string that is used later for the generation of SKEYSEED
(described in the IKE AUTH exchange). The responder answers again with the header HDR

which now additionally contains the SPI of the responder. The responder chooses one of
the proposals of cryptographic algorithms the initiator suggested and returns it in the SAr1

payload. Further the responder sends his Diffie-Hellman public value in KEr and its nonce
in Nr. The responder can optionally send the CERTREQ payload, providing the initiator with
Certificate Authorities (CAs) he trusts.

IKE AUTH

As a result of the IKE SA INIT exchange, the two parties have negotiated cryptographic
parameters, exchanged nonces and did a DH key exchange. Both parties generate the
SKEYSEED by applying the negotiated PRF to the concatenation of the nonces {Ni|Nr}

and the shared secret from the Diffie-Hellman key exchange from the IKE SA INIT exchange.
SKEYSEED is the starting point from which all other keys incorporated in IKEv2 are derived.
From this point on, the communication partners can communicate over an encrypted channel,
but authenticity is not yet ensured.

The next message exchange, namely the IKE AUTH exchange ensures authenticity of the
newly initialized SAs and is shown in Figure 2.5.

Again the HDR field is the generic header shown in Figure 2.4. The SK {...} payload
encapsulates data that is encrypted by the sending SA with a key derived from the SKEYSEED

9

2 Background and Related Work

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| IKE SA Initiator’s SPI |
| |
+-+
| IKE SA Responder’s SPI |
| |
+-+
| Next Payload | MjVer | MnVer | Exchange Type | Flags |
+-+
| Message ID |
+-+
| Length |
+-+

Figure 2.4: IKE Header format

Initiator Responder

HDR, SK {IDi, [CERT,] [CERTREQ,]

[IDr,] AUTH, SAi2,
TSi, TSr} -->

<-- HDR, SK {IDr, [CERT,] AUTH,
SAr2, TSi, TSr}

Figure 2.5: IKE AUTH exchange

10

2.1 Background

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Next Payload |C| RESERVED | Payload Length |
+-+
| Auth Method | RESERVED |
+-+
| |
˜ Authentication Data ˜
| |
+-+

Figure 2.6: Authentication Payload format

Table 2.1: IKEv2 Authentication Method

Value Authentication Method Reference

0 Reserved [KHN+14]

1 RSA Digital Signature [KHN+14]

2 Shared Key Message Integrity Code [KHN+14]

3 DSS Digital Signature [KHN+14]

4-8 Unassigned [KHN+14]

9 ECDSA with SHA-256 on the P-256 curve [FS07]

10 ECDSA with SHA-384 on the P-384 curve [FS07]

11 ECDSA with SHA-512 on the P-521 curve [FS07]

12 Generic Secure Password Authentication Method [Kiv11]

13 NULL Authentication [SW15]

14 Digital Signature [KS15]

15-200 Unassigned

201-255 Private use [KHN+14]

from the IKE SA INIT exchange. IDi is the identity the initiator claims. If the responder
requested a certificate, the initiator adds one or more certificates in the CERT payload and
eventually also requests certificates from the responder by adding the CERTREQ payload. The
IDr payload is optional and specifies the responder’s identity which the initiator wants to
communicate with in case, the responding peer has more than one identity. Further the
initiator proves his claimed IDi with the AUTH field. The AUTH payload is shown in Figure 2.6,
where the Auth Method field specifies the method that is used for authentication and the
Authentication Data is the actual signed data, that is sent to the other peer.

The Auth Method is one of the following values from Table 2.1, taken from [IAN].

The Authentication Data field is data that is computed according to the Auth Method. The
input data on which the signature scheme computes the signature is the own IKE SA INIT
message (if more than one IKE SA INIT has been exchanged its the last IKE SA INIT

11

2 Background and Related Work

Initiator Responder

HDR, SK {SA, Ni, [KEi,]

TSi, TSr} -->
<-- HDR, SK {SA, Nr, [KEr,]

TSi, TSr}

Figure 2.7: Creation of new Child SA with the CREATE CHILD SA exchange

message) concatenated with the other peers nonce N_r/N_i and prf(SK_pi, IDi’) for the
initiator and prf(SK_pr, IDr’) for the responder. SK_pi/SK_pr is a key derived from the
negotiated SKEYSEED by the initiator/responder. IDi’/IDr’ is the entire IDi/IDr payload
without the generic payload header. The SAi2 payload is for negotiating the cryptographic
algorithms just like the SAi payload in the IKE SA INIT request but this time for the first
child SA that is established right after successful authentication. The child SAs are finally
the SAs that transmit the user data in contrast to the previous established SA that has been
established as a secure configuration channel for negotiating the child SAs. The TSi/TSr

(Traffic Selector initiator/Traffic Selector responder) payload enables the communication
partners to exchange information of their IPSec policy to the other peer. For more information,
see RFC 7296 [KHN+14, §2.9].

The response from the responder again sends the HDR field and some encrypted data encap-
sulated in the SK payload. IDr is the identity the responder claims. CERT contains one or
more certificates if the initiator requested so. AUTH is the Authentication payload already
described above. The SAr2 payload is the accepted offer of the algorithms received in the
SAi2 payload. If the responder agrees on the Traffic Selectors he received from the initiator,
he sends identical values of TSi and TSr back to the initiator.

From this point on, the two peers have established a SA, created a Child SA and can
communicate encrypted, ensuring confidentiality, integrity and authenticity.

The two exchanges IKE SA INIT and IKE AUTH are often referred to as the “IKE Phase 1”
or as the initial exchanges.

There are two more exchange types, namely the CREATE CHILD SA and the INFORMA-
TIONAL exchange.

CREATE CHILD SA

The purpose of the CREATE CHILD SA exchange is to create new Child SAs or to rekey
an already existing pair of SAs or Child SAs. Rekeying means creating a new pair of SAs
and then deleting the old SAs. The exchange consists of one request initiated by one of the
communication partners and one response sent by the responder.

Figure 2.7 shows the exchange for the creation of a new child SA. The HDR field is the generic
IKEv2 header as shown in Figure 2.4. The SK payload again encapsulates the encrypted
content. This consists of the cryptographic algorithms offer SA, a Nonce Ni, optional a Diffie-
Hellman value in KEi and the Traffic Selectors for the new Child SA. The responder’s message
contains the HDR payload and the encrypted data, encapsulated in the SK payload. This

12

2.1 Background

Initiator Responder

HDR, SK {SA, Ni, KEi} -->

<-- HDR, SK {SA, Nr, KEr}

Figure 2.8: Rekeying SAs with the CREATE CHILD SA exchange

Initiator Responder

HDR, SK {N(REKEY_SA), SA, Ni, [KEi,]

TSi, TSr} -->
<-- HDR, SK {SA, Nr, [KEr,]

TSi, TSr}

Figure 2.9: Rekeying of a Child SA with the CREATE CHILD SA exchange

contains the accepted offer of cryptographic algorithms in SA, a Nonce Nr, a Diffie-Hellman
value KEr and the Traffic Selectors. The KEr is only included, if the initiator included the KEi

payload.

In case of the rekeying of SAs, the exchanged messages look slightly different as shown in
Figure 2.8. The SA payload proposes cryptographic algorithms, and the Ni again contains a
nonce. The KEi payload is now mandatory. Additionally the initiator provides a SPI in the
SA payload. The responder accepts a cryptographic algorithm in SA, sends its nonce Nr and
also sends a Diffie-Hellman value in KEr. In the SA payload the responder provides his new
SPI.

The rekeying of Child SAs as shown in Figure 2.9 is identical to the creation of Child SAs,
except the initiator has to include a NOTIFY payload N(REKEY_SA) indicating that an existing
Child SAs should be rekeyed. The Child SA to be rekeyed is identified by the SPI in the SA

payload.

INFORMATIONAL

The last exchange in IKEv2 is the INFORMATIONAL exchange allows to send NOTIFY,

DELETE or CONFIGURATION payloads. It is also possible to send an INFORMATIONAL message
without any payload. The receiver of an INFORMATIONAL message has to respond to the
message, otherwise the initiator will consider the message to be lost in transit and resend
it. This also enables one party to check if the other end is still alive by sending an empty
INFORMATIONAL request expecting an empty INFORMATIONAL response. Note that
the INFORMATIONAL exchange must happen after the initial exchanges, so the exchange
can happen encrypted and with authenticity ensured. Figure 2.10 shows the exchange in
detail.

13

2 Background and Related Work

Initiator Responder

HDR, SK {[N,] [D,]

[CP,]...} -->
<-- HDR, SK {[N,] [D,]

[CP,]...}

Figure 2.10: INFORMATIONAL exchange

2.1.4 Elliptic Curve Cryptography

The idea to use elliptic curves in cryptographic systems has its origin in the independent work
by Miller [Mil85] and Kobliz [Kob87]. Cryptographic suits exist that allow key-establishment
(i.e. ECDH), signing (i.e. ECDSA) and encryption of messages incorporating elliptic curves.
To obtain an understanding of ECC, we first take a look at the mathematical foundation.
Afterwards we discuss the security and show the ECDH key-establishment as example of a
crypto system based on elliptic curves. At the end we show the advantages of ECC over the
earlier public-key cryptosystems like RSA and DSA.

Mathematical Foundation

Definition 2.1 (Elliptic Curve over a Finite Field). An elliptic curve E over the finite field
Fp (with characteristic 6= 2, 3) is defined by the set of points fulfilling the equation

y2 = x3 + ax+ b, where a, b ∈ Fp and − (4a3 + 27b2) 6= 0

The statement −(4a3 + 27b2) is the discriminant of the curve E and if the expression is
not equal to zero, we ensure that the curve is non-singular (for further details see [Sil09,
Proposition 1.4 (a), §III.1]). In addition to the set of points fulfilling the above mentioned
equation, we add the so-called point-at-infinity, denoted O.

Definition 2.1 allows us to define an operation + on an elliptic curve E. This operation
enables us to add two points P,Q ∈ E on the curve E as follows:

Definition 2.2 (Composition Law [Sil09, §III.2]). Let P,Q ∈ E, let L be the line through
P and Q (if P = Q, let L be the tangent line to E at P), and let R be the third point of
intersection of L with E. Let L′ be the line through R and O. Then L′ intersects E at R,O,
and a third point. We denote that third point by P +Q.

Figure 2.11 illustrates the addition of the points P and Q on the left half and the addition of
the point P to itself on the right half.

Following are properties of the composition law showing that the Group (E,+) is an abelian
group.

Proposition 2.3 (Properties of the composition law [Sil09, Proposition 2.2. §III.2]).

(a) If a line L intersects E at the (not necessarily distinct) points P,Q,R, then

(P +Q) +R = O

14

2.1 Background

−4 −2 2 4

−4

−2

2

4

x

y

P

Q

R

−R = P +Q

−4 −2 2 4

−4

−2

2

4

x

y

P

R

−R = 2P

Figure 2.11: Addition of Points and Point-Doubling on an Elliptic Curve

(b) Identity Element: P +O = P for all P ∈ E.

(c) Commutativity: P +Q = Q+ P for all P,Q ∈ E.

(d) Inverse Element: Let P ∈ E. There is a point of E, denoted by −P , satisfying

P + (−P) = O

.

(e) Associativity: Let P,Q,R ∈ E. Then

(P +Q) +R = P + (Q+R)

.

The proof for the proposition above can be found in [Sil09, §III.2] as it exceeds the scope of
this work. The ability to add points on an elliptic curve E and the fact that (E,+) is an
abelian group enables us to also multiplicate a point on the curve by a constant value n by
adding the point n-times to itself.

nP = P + ...+ P︸ ︷︷ ︸
n-times

Security Considerations

The security of elliptic curve cryptography is based on the Elliptic Curve Discrete Logarithm
Problem (ECDLP) stating that it is hard to find n, knowing two points on the elliptic
curve P and nP . The NIST provides ECC parameter sets for ECDSA in [Bar13] and for
key-establishment schemes in [BCR+18] to ensure the security of the used elliptic curves.

15

2 Background and Related Work

Alice Bob

agree on Elliptic Curve
E and point P on E

generate secret a generate secret b

Pa = aP Pb = bPPa
Pb

PAB = aPb PAB = bPA

Figure 2.12: Elliptic-curve Diffie-Hellman key exchange

Example: ECDH

Figure 2.12 shows a Diffie-Hellman key-establishment mechanism as shown in Section 2.1.1
incorporating elliptic curves. Alice and Bob agree on an elliptic curve E and on a point P on
E. The process of key generation remains the same as with the classic Diffie-Hellman, but
instead of exponentiating the generator, both parties multiply the point P with their secret
value a respectively b. The intermediate value (Pa/Pb) is again transferred to the other party,
which again multiplies the received value with its own secret (a/b).

The security of ECDH relies on the problem to find a (b) from knowing E, P and Pa (Pb),
which is the ECDLP as shown above. This problem can again be reduced to the discrete
logarithm problem, meaning solving the discrete logarithm problem would reveal the secret
factor a (b) and enable an attacker to compute PAB. This is why ECDH does not provide
additional security over the DH key exchange.

Advantages of ECC

Generally ECC does not add security to a crypto system by introducing a more complex
problem. ECC relies on the hardness of the DLP, which can be broken by a quantum
computer using Shor’s algorithm in polynomial time. Nevertheless ECC does have several
advantages over the early public-key cryptographic systems like RSA and DSA which are
shown in the following description.

Key Size: The key sizes of ECC suits are not only significantly smaller than the keys of
other public-key cryptographic systems but also scale linear with their security level in
contrast to the superlinear growth of other cryptographic systems. NIST provides a
table in [Bar20, §5.6] allowing a comparison of key lengths of early cryptographic suits
and ECC cryptography at the same security level. They claim that a 256-bit key of
ECC provides the same security level (128 bit) as a 3072-bit key of an early public-key
system like DSA. This gap gets even bigger with higher security levels, where at a
security level of 256 bit, ECC requires an 512-bit key whereas DSA would require a
15360-bit key. This makes ECC particularly suitable in environments with memory
constraints. Additionally small key sizes reduce data sent over the network making

16

2.1 Background

Table 2.2: comparison of public key sizes (in bytes) of NIST submissions

Security category 1 3 5

SIKE 330 462 564

BIKE-1 2541 4964 8188

BIKE-2 1270 2482 4094

BIKE-3 2757 5421 9033

McEliece 261120 524160 1044992

NewHope 928 1824

ECC suitable in environments with low bandwidth or lossy networks.

Efficiency: The efficiency of the computation is increased when using ECC systems. Although
the metric of computational complexity per security bit is slightly higher for ECC
suits, the smaller keys overcompensate this complexity resulting in an overall faster
computation [cas]. This enables devices with weak computational capabilities to also
use the scheme with acceptable time requirements.

In summary therefore, it can be said that ECC minimizes memory requirements as well as
network traffic and computation time, all without weakening the cryptographic strength of
the used system. This makes ECC suitable for a wide range of devices, especially for low-level
devices as smart cards or IOT edge devices.

2.1.5 Isogeny-Based Cryptography

Isogeny-based cryptography is an approach to achieve quantum resistant cryptography
using elliptic curve cryptography. Its cryptographic strength is a result of the difficulty
to find an isogeny between two supersingular isogenous elliptic curves. The widest known
implementation of isogeny-based cryptography is SIKE[sik], which is a candidate of the
Post-Quantum Cryptography Standardization of NIST.

Isogeny-based cryptography was first introduced by Jao and De Feo [JDF11] in 2011, which
makes it a very young approach compared to other cryptographic systems. As the past has
shown, the maturity of a cryptographic system can only be proven by using it over a long
period of time without it being broken by attackers. At the moment there is no known
algorithm that can solve the problem of finding an explicit isogeny between two elliptic curves
in sub-exponential time. Therefore isogeny-based cryptography is a promising candidate to
hold up against classical and quantum computer attacks and thus, to establish quantum
resistant cryptography.

Isogeny-based cryptography differentiates from other cryptographic systems by having sig-
nificantly smaller public key sizes at the same level of security. Table 2.2 shows the public
key sizes of some of the more popular NIST-submissions. The security category has been
specified in the “Call for Proposals” published by NIST in 2016. If an approach aims for
the security category one, the expense to break the system should be comparable to that
one, breaking a block cipher with a 128-bit key. The expense to break a category three

17

2 Background and Related Work

cryptographic system should be comparable to the computational resources needed for a
key search on a block chipher with a 192-bit key. Finally to break a category five system,
one should need at least the effort it takes for a key search on a block cipher with a 256-bit
key[NIS16]. Comparing public key sizes shows that key sizes of BIKE are between four to
16 times bigger than SIKE public keys, McEliece keys are even bigger (factor ∼1800). The
public key sizes of the NewHope system are closer to the ones of SIKE but still factor three to
four bigger. Those large key sizes can lead to problems, transmitting them over the network.
For example the maximal UDP packet size is 65535 bytes, which leaves 65507 bytes for the
payload after subtracting 20 bytes for the IP header and 8 bytes for the UDP header [Pos80].
If the data to be sent exceeds the UDP packet size, it gets fragmented, which potentially
leads to problems with network middleware. Furthermore, UDP makes no guarantees if and
in what order packets reach their destination, so it is hard for the receiver to reassemble
data it received in more than one UDP packet. The situation gets even worse if we look
at IKEv2, where the maximum packet size IKEv2 implementations have to support is only
1280 bytes long[KHN+14, p. 24]. Isogeny-based cryptography enables the user to maintain
key sizes that do hardly differ from the key sizes used in classical cryptography. Further IP
fragmentation and problems arising from its use can be avoided.

2.1.6 Isogenies

To understand isogeny-based cryptography we need to have a look at the mathematical
foundations it is based on. First we take a look at isogenies.

Definition 2.4 ([Sil09, III.4]). Let E1 and E2 be elliptic curves defined over Fq. An isogeny
from E1 to E2 is a homomorphism

φ : E1 → E2 satisfying φ(O) = O.

Two elliptic curves E1 and E2 are isogenous if and only if there is an isogeny from E1 to E2

with φ(E1) 6= {O}.

Following is the definition of the `-torsion-subgroup.

Definition 2.5 ([Sil09, III.4]). Let E be an elliptic curve and let ` ∈ Z with ` ≥ 1. The
`-torsion-subgroup of E, denoted by E[`], is the set of points of E of order `,

E[`] = {P ∈ E : [`]P = O}

This means, there is a set of points on E that, multiplied with `, result in the identity O of
the elliptic curve. This set of points is called the `-torsion-subgroup.

Further if we have a separable isogeny φ with kernel of size `, we define the degree of the
isogeny φ to be ` [Sil09, III.4.10c]. Additionally the kernel of the isogeny kerφ with kernel
size ` is a subgroup of the `-torsion-subgroup of the elliptic curve E.

kerφ ⊆ E[`]

18

2.1 Background

Proposition 2.6 ([Sil09, III.4.12]). Let E be an elliptic curve and let Φ be a finite subgroup
of E. There are a unique elliptic curve E′ and a separable isogeny

φ : E → E′ satisfying kerφ = Φ.

With the above proposition, we can ensure that for every subgroup H ⊆ E[`] there is an up
to isomorphism unique elliptic curve E′ and a separable isogeny φ : E → E′ with kerφ = H.
The phrase “up to isomorphism” means that there are more elliptic curves that satisfy given
conditions, but those curves are all isomorphic. Vélu presents explicit formulas for the
computation of E′ [Sil09, Remark 4.13.3], [Vél71].

Under certain conditions, we can specify the `-torsion-subgroup in greater detail. If p
generating the finite subgroup Fq does not divide ` (p - `) and ` 6= 0 and p > 0, then we can
denote the `-torsion-subgroup E[`] as follows [Sil09, III Corollary 6.4]:

E[`] = Z/`Z× Z/`Z

Using that property, it can be shown that exactly `+ 1 subgroups of E[`] of order ` exist.
Combining that with the previous shown proposition 2.6, we have:

Theorem 2.7. For every `-torsion-subgroup E[`] of an elliptic curve E defined over Fq,
where p - ` and ` is prime we have exactly `+ 1 up to isomorphism unique isogenies of degree
`.

Not every degree-` isogeny is defined over Fq but over Fq, which would cause problems
implementing such a cryptographic system, because we cannot predefine a fixed finite field
Fq. Fq would have to be dynamically adapted, calculating the degree-` isogenies. To prevent
this situation, we use supersingular elliptic curves.

Definition 2.8 ([Sil09, V.3.1(a)(i)]). The `-torsion-subgroup E[`] of an elliptic curve E/Fq
is either

1. E[`] = O

2. E[`] = Z/`Z

In the first case we say, E is supersingular, in the second case, E is ordinary.

For p ≥ 5 there exists a finite number of supersingular elliptic curves over Fq which can be
calculated as follows [Sil09, V.4.1(c)]:

bp/12c+


0 if p ≡ 1(mod 12)

1 if p ≡ 5(mod 12)

1 if p ≡ 7(mod 12)

2 if p ≡ 11(mod 12)

(2.1)

This set of supersingular elliptic curves is called isogeny class.

According to the theorem [Sil09, V.3.1], giving equivalent definitions of supersingularity, an
elliptic curve is supersingular if and only if the multiplication-by-` map [`] : E → E is purely
inseparable and j(E) ∈ Fp2 . j(E) is the j-invariant of the elliptic curve E, which is defined
for elliptic curves in the Weierstrass notation as follows:

19

2 Background and Related Work

Definition 2.9.

j(E) = 1728
4a3

4a3 + 27b2

If and only if two elliptic curves have the same j-invariant, those two curves are isomorphic.
Since j(E) ∈ Fp2 in the supersingular case, we ensure, that every up to isomorphism unique
elliptic curve is defined over Fp2 . Further if p2 | q, the elliptic curves are guaranteed to be

defined over Fq instead of Fq. This is what simplifies the implementation of this cryptographic
system without weakening its strength.

2.1.7 Isogeny Graphs

An isogeny graph contains elliptic curves represented by their j-invariants as nodes and
isogenies to other elliptic curves are shown by edges connecting those two curves. Those
edges are undirectional due to the existence of the dual isogeny [Sil09, III.6.1], which states
that to every isogeny φ of degree ` that maps one elliptic curve E to another elliptic curve E′

there is a dual isogeny φ′ of degree ` that satisfies φ ◦ φ′ = [`]. Note that for a finite field of
definition Fq a finite set of isomorphic elliptic curves exists (see Equation 2.1). This enables
us to calculate every j-invariant of every up to isomorphism elliptic curve defined within the
predefined finite field. For every kernel size ` we get a different isogeny graph, which preserves
the nodes being the j-invariants, but has different edges representing isogenies. Note that as
discussed in Theorem 2.7 every node has `+ 1 edges. Figure 2.13 shows the 9 supersingular
j-invariants of the finite field R1092 and the 2-isogenies (` = 2) connecting those j-invariants.

An important property of isogeny graphs of supersingular elliptic curves is that they are
ramanujan graphs, as proven by Pizer [Piz90][Piz98]. Ramanujan graphs are optimal expander
graphs, i.e. they mix rapidly. That means, taking a relatively small amount of random steps
in the graph can lead to any vertex in the graph.

This is an important property for cryptography, as one cannot restrict the set of potential
destination vertices by knowing the starting vertex.

2.2 Related Work

This Section outlines work that is related to the integration of a isogeny-based signature
scheme into IKEv2. First we will discuss how isogenies between supersingular elliptic curves
can leverage the Diffie-Hellman key exchange to a quantum-safe key exchange. Further we
will take a look at ongoing work in IKEv2 to establish a quantum-safe key exchange.

2.2.1 Supersingular Isogeny Diffie-Hellman

In 2011 Jao et al. proposed a Diffie-Hellman key exchange based on the problem of finding
isogenies between supersingular elliptic curves often referred to as Supersingular Isogeny
Diffie-Hellman (SIDH)[JDF11]. Figure 2.14 shows the necessary steps for the key exchange
with SIDH.

20

2.2 Related Work

102*z2 + 19
74*z2 + 96

35*z2 + 61

7*z2 + 12

89*z2 + 108

41

20*z2 + 88

43

17

Figure 2.13: Nine j-invariants of all supersingular elliptic curves defined over finite field F1092

and their 2-isogenies

Public Parameter
Agreement

Private Key
Computation

Public Key
Computation

Shared Secret
Computation

Alice Bob

E/Fp2 supersingular
PA, QA ∈ E[`eAA]
PB, QB ∈ E[`eBB]

SA = PA + [kA]QA, kA ∈ [0, `eAA)
φA = (φ3 ◦ φ2 ◦ φ1 ◦ φ0)

SB = PB + [kB]QB, kB ∈ [0, `eBB)
φB = (φ2 ◦ φ1 ◦ φ0)

EA = φA(E) = E/〈SA〉
PKA = (EA, φA(PB), φA(QB))

EB = φB(E) = E/〈SB〉
PKB = (EB, φB(PA), φB(QA))

PKA

PKB

S′A = φB(PA) + [kA]φB(QA)
φ′A = (φ′3 ◦ φ′2 ◦ φ′1 ◦ φ′0)
φ′A : EB → EAB
EAB = φ′A(EB) = EB/〈S′A〉

S′B = φA(PB) + [kB]φA(QB)
φ′B = (φ′2 ◦ φ′1 ◦ φ′0)
φ′B : EA → EAB
EAB = φ′B(EA) = EA/〈S′B〉

Figure 2.14: Supersingular Isogeny key exchange

21

2 Background and Related Work

Public Parameter Agreement First Alice and Bob agree on an elliptic curve defined over
Fp2 . p needs to be a prime and generated as follows:

p = `eAA `eBB · f ± 1

` needs to be a small prime, usually `A = 2 and `B = 3 as these are the two smallest
primes. f is a factor which was intended for more flexibility, however, in current
implementations of SIDH this factor is 1. The added or subtracted one ensures, p is
prime.

Further Alice and Bob agree on two points PA and PB that are generators of the
`eAA -torsion subgroup E[`eAA] and on two points PB and PQ that are generators of the
`eBB -torsion subgroup E[`eBB].

Secret Key Computation In the next step Alice and Bob compute their secret generator
points. Alice does this by choosing a random value kA in the range from 0 to `eAA .
Then she calculates SA = PA + [kA]QA, which represents Alice’s secret generator point.
Alice generates her secret key by computing a composition of eA degree-`A isogenies
φA = (φeA−1 ◦φeA−2 ◦ . . .◦φ0) with kernel SA. This calculation can be thought of taking
eA random steps in the isogeny graph. The secret key is an isogeny φA : E → EA, which
can map points on the initial curve E to points on the curve EA = φA(E) = E/〈SA〉.

Bob performs the same process of choosing a random value kB in the range from 0 to
`eBB and then calculating SB = PB + [kB]QB, representing Bob’s secret generator point.
With SB, Bob can compute eB degree-`B isogenies φB = (φeB−1 ◦ φeB−2 ◦ . . . ◦ φ0)
resulting in Bob’s private key φB : E → EB.

Public Key Computation Then Alice and Bob continue computing their public keys. Alice’s
public key PKA is the concatenation of the curve EA = φA(E) and the points φA(PB)
and φA(QB) which are the two points from Bobs `eBB -torsion group after applying the
isogeny φA to them. Bob concatenates EB = φB(E) and the two points φB(PA) and
φB(QA) to build his public key PKB. Alice and Bob exchange their public keys PKA

and PKB.

Shared Secret Computation Now Alice uses the points φB(PA) and φB(PA) she received
from Bob and generates a second secret generator point S′A. Using that point S′A, Alice
computes another composition of eA degree-`A isogenies resulting in the Isogeny φ′A,
which she applies to the curve EB, she also received from Bob. This leads Alice to
the curve EAB = φ′A(EB) = EB/〈S′A〉. Bob does the same, composing eB degree-`B
isogenies resulting in an isogeny φ′B which Bob then applies to EA leading him to EAB .
At that point Alice and Bob have arrived at the same elliptic curve EAB from which
they can derive their shared secret.

2.2.2 Towards a quantum-safe key exchange in IKEv2

There is ongoing work on IKEv2 with regards to a quantum-safe key exchange. Taking this
work into account helps with understanding problems introduced by quantum-safe algorithms.
Also found solutions of this work might assist in solving challenges of quantum-resistant
authentication.

22

2.2 Related Work

Heider elaborated a quantum-safe key exchange protocol in IKEv2 in his masters thesis[Hei19].
In his work, he enabled IKEv2 to do a hybrid key exchange meaning after a (not neccessarily)
classic key exchange up to 7 other potentially quantum-safe Key Encapsulation Mechanisms
(KEMs) can be incorporated. This does not only ensure to achieve at least the same security
as the traditional IKEv2 protocol but enables the operator to use more than one quantum-safe
KEM. By this, quantum-security is still ensured even in the case where one KEM gets broken.

IKE INTERMEDIATE

The hybrid key exchange needs to incorporate public keys of sizes that are too big to operate
without IKEv2 fragmentation. Usually the key exchange algorithms are negotitated in the
IKE SA INIT exchange. The IKE SA INIT exchange is not subject to fragmentation, as both
peers must have agreed on the usage of fragmentation which is only possible after the first
exchange. This means the IKE AUTH request is the first message that can be fragmented by
IKEv2. That is why the negotiation of the additional key exchanges can not take place in the
IKE SA INIT exchange. Heider discussed possible options, how else to realize the negotiation
of multiple key exchanges with the result of utilizing a new type of IKEv2 exchange, namely
the IKE INTERMEDIATE which is currently subject to standardization in the Internet-Draft
“draft-ietf-ipsecme-ikev2-intermediate-05”[Smy20]. The initial key exchange gets negotiated
as usual in the IKE SA INIT exchange, whereas every additional key exchange get negotiated
in a separate IKE INTERMEDIATE exchange. Note, that every IKE INTERMEDIATE
exchange uses keying material from its preceding exchange. That way it is ensured, that
every negotiated key exchange affects the keying material used for the establishment of the
SA.

23

3 Towards a Signature Scheme for IKEv2

Integrating a digital signature scheme in IKEv2 inherits different constraints and limitations.
The goal is to operate IKEv2 with a quantum-safe signature scheme without noteworthy
changes for the user in setting up a SA. This chapter discusses requirements for a digital
signature scheme to achieve this objective. Further we present a signature scheme, fulfilling
the stated requirements and resulting in a candidate for integration in IKEv2.

3.1 Requirements analysis

Before establishing requirements for the integration of a signature scheme into IKEv2, we
need to analyse the current state of IKEv2 as well as go into the technical development of
IKEv2.

3.1.1 Classic IKEv2 Authentication

The authentication mechanism, IKEv2 provides was designed with very few possible signature
algorithms in mind. The first specification of IKEv2 (RFC 4306[Kau05]) from 2005 only
mentions RSA and DSS as signature algorithms for authentication.

The DSS method is bound to SHA-1 as hash algorithm (see RFC 7296 [KHN+14, §3.8]),
which is not considered a secure hash function nowadays. SHA-1 has been object to several
theoretical attacks and in 2015 Stevens et al. presented the first practical attack which carries
out a collision attack from a freestart[SKP15]. In their work they argue that it is within the
scope of criminal organizations to practically break SHA-1 by estimating the cost of of the
computation on Amazon EC2 Instances.

Although RSA was meant to only use SHA-1 and therefore suffering from the same drawbacks
as DSS, newer IKEv2 specifications (RFC 5996[KHNE10] and RFC 7296[KHN+14]) state
that IKEv2 implementations can use certificates to negotiate other hash functions. However,
this is just a hack to circumvent the lack of flexibility of the RSA authentication method.

RFC 4754[FS07] adds another authentication method to IKEv2, namely ECDSA. This
standard extends the IKEv2 protocol by three authentication methods, which differ only by
the elliptic curve they operate on and by the used hash function. Note that either elliptic
curve parameter is bound to one specific hash algorithm.

3.1.2 RFC 7427 - Digital Signature

Due to the inflexible integration of further signature algorithms, RFC 7427[KS15] introduces
a more generic “Digital Signature” authentication method, which tries to mitigate the issues

25

3 Towards a Signature Scheme for IKEv2

mentioned above. It uses one authentication method which has been defined by the IANA with
a value of 14. If the peers use this authentication method, the Authentication Data payload
contains more than just the raw signature value, most notably an AlgorithmIdentifier ASN.1

Object, specifying the used algorithm, and the Signature Value itself. The hash algorithm is
negotiated within the IKE_SA_INIT exchange in the form of a notification payload. It contains
on the one hand confirmation that the peer supports the Digital Signature authentication
method and on the other hand the supported hash algorithms in the Notification Data. The
negotiation of the signature algorithm itself remains unspecified in RFC 7427, however, three
suggestions how to find an agreement are made within the document. The first suggestion
utilizes the IDr payload of the IKe_AUTH request, the second suggestion uses the CERTREQ

payloads and the third proposed option is for the responder to check the key-type which
the initiator has used and simply use the same algorithm. For more details on algorithm
negotiation see RFC 7427[KS15].

3.1.3 IKEv2 Size Constraints

The size of public keys and the signature data of quantum-safe signature algorithms exceeds
their counterparts of classic signature schemes like RSA and (EC)DSA by far. We need to
consider two size limitations, the IKEv2 protocol implicates.

Maximum Transmission Unit Size

Since IKEv2 is based on UDP, packets with a size bigger then the Maximum Transmission
Unit (MTU) get fragmented on the IP level. Thereby issues with networking middleware as
well as firewalls arise, resulting in IP packets being potentially dropped. For IPv4 this MTU
can be as low as 68 bytes (see RFC 791[Pos81, §3.2 p25]) whereas IPv6 has to support 1280
bytes (see RFC 8200[DH17, §5 p25]). In practice these values are usually higher, in Ethernet
networks the MTU often has a value of 1500 bytes. The IKEv2 standard defined in RFC 7296
requires an implementation to support at least 1280 bytes (see RFC 7296[KHN+14, §2 p24]).

IKE Fragmentation

The problem of IP-level fragmentation of packages bigger than the MTU is addressed by
implementing fragmentation of IKEv2 packets as part of the IKEv2 protocol itself (see RFC
7383[Smy14]), so that on IP-level the packages are small enough not to be fragmented. This
approach can only be applied after both communication partners have agreed on fragmenting
within IKEv2. As a result IKEv2 fragmentation can not be used at the IKE_SA_INIT exchange.

64kiB Limit

The second limit is the maximum payload size of an IKEv2 structure. The payload size is
stored in a 16 bit field allowing a maximum value of 216 Byte = 65536 Byte = 64 kiByte.
IKEv2 fragmentation is not a solution to this limitation because the message structure does
not change and the fragmentation takes place on binary data just before sending the message.
To be able for a peer to reconstruct the data, IKEv2 needs to put together all the received

26

3.1 Requirements analysis

fragments and parse the headers to reconstruct the payload data. Therefore it is necessary
for the payload headers to reflect the actual size of the payload and we need to adhere to a
maximum length of 64kiB for each payload.

Support for Payload Sizes bigger than 64kiB

To deal with the 64kiB limit another Internet-Draft “draft-tjhai-ikev2-beyond-64k-limit-
00”[THS20] is currently discussed and on its way to get standardized. In this draft two
approaches to bypass the described limit are proposed. The first approach is to incorporate
the “Hash and URL” method which hashes the big data payload and serves the actual data
via HTTP from a web server. Only the hash and the URL where the data can be downloaded
from are sent within the IKEv2 protocol. The other peer can then download payload sizes
bigger than 64kiB from the first peer’s web server.

The second approach is “Payload Fragmentation” which uses a similar approach as the IKEv2
fragmentation. The Internet-Draft presents two possible Payload Fragmentation variants each
having its advantages and disadvantages. The first approach basically splits a big payload
up into smaller payloads with a size smaller than 64kiB but leaves the smaller payloads
part of one IKEv2 message. The IKEv2 message fragmentation mechanism handles the
fragmentation of the message before sending it on the wire.

The second approach also splits the big payload up into smaller payloads but in contrast
to the first variant, these payload fragments are sent as separate IKEv2 messages. After
the peer received an IKEv2 message, it acknowledges it. Only after having received the
acknowledgement of the previously sent IKEv2 message does the initiator continue to send
the next IKEv2 message containing the next part of the payload.

3.1.4 Hybrid Authentication

Research is ongoing to integrate a quantum-safe key exchange in IKEv2 ([Hei19], [Smy20],
[TTB+20]) which adds a hybrid key exchange to the key exchange mechanism of IKEv2.
The target of this work is to not depend on the security of one single KEM. Most of the
quantum-safe cryptographic suites are quite young compared to classic cryptographic systems.
As the security of such a system can ultimately only be proven by not being broken over a
long time, the confidence in new quantum-safe algorithms is not as high as the confidence in
cryptographic systems that have existed for a long time and withstood cryptographic analysis.
This is why previously mentioned work incorporates first a classic key exchange which is
considered highly secure against an attacker in possession of just a classic computer. The
following one or more key exchanges are usually quantum-safe key exchanges adding security
against an attacker in possession of a quantum computer. This procedure ensures that, if
one of the new quantum-safe algorithms is rendered unsecure, there is still the security of at
least the classic algorithm.

This approach is incorporated at the key exchange and can also be transferred to the
authentication in IKEv2. The idea is to use a classic authentication mechanism like RSA
in a first round of authentication. Then, in one or more following rounds of authentication,
newer quantum-safe authentication mechanisms with a lower degree of confidence can be

27

3 Towards a Signature Scheme for IKEv2

incorporated. Again, in a worst case scenario, where a new algorithm is broken, we can still
rely on the classic security of the first authentication round. This ensures that there is no
reduction of security by introducing new quantum-safe signature mechanisms, even in case of
the new mechanism being broken by a newly found attack.

3.2 A Digital Signature Scheme based on supersingular Isogenies

In [DFJP14] De Feo et al. published an updated version of [JDF11], where they extended
their cryptosystems based on supersingular elliptic curve isogenies by a zero-knowledge proof
of identity. This will be the starting point towards a signature scheme that can finally get
integrated into the IKEv2 protocol.

This work will explain zero-knowledge proofs in general and the zero-knowledge proof of
identity proposed by De Feo et al. in greater detail. We will also show that their proof
meets the structure of sigma protocols with special properties, namely completeness, special
soundness and honest verifier zero-knowledge. Further we will discuss Non-interactive Zero-
knowledge Proofs (NIZKs) and Unruhs transformation of the proof of identity proposed by
De Feo et al. to a NIZK [Unr15]. One last modification will be applied to transform the NIZK
to a signature scheme, not only proving an identity but proving authenticity of a message.

3.2.1 Zero-knowledge proof of identity

A zero-knowledge proof of identity is an interactive proof of a secret where the prover does
not reveal any information about secret.

Figure 3.1 shows a zero-knowledge proof which makes it easy to understand those proofs. In
order to prove to Vic that she is in possession of a secret to open the door, Peggy enters the
cave randomly via side A or B. Vic does not see which side she chooses. Vic then tells Peggy
on which side she should appear and observes, if she actually appears where Vic told her to.
If Peggy can appear at the correct side for a defined amount of rounds, Vic can assume that
she indeed knows the secret to open the door in the cave.

Note that Peggy could also enter the cave together with Vic, leave him at the branching
point and enter one branch and come out at the other branch. This would prove knowledge
of the secret to open the door without revealing the secret to Vic or anyone else, but Peggy
could not deny knowing the secret to a third party secretly watching the scene.

Also important to note is that this proof only works for Vic because third parties have no
way of knowing whether Peggy and Vic have made an agreement in advance on where Peggy
should appear, or not.

Zero-knowledge Proof by De Feo et al.

The zero-knowledge proof of identity proposed by De Feo et al. ([DFJP14]) composes private
and public parameters as follows: The prover Peggy chooses a secret point S that generates
the kernel of the isogeny φ : E → E/〈S〉. The public parameters are:

• p = `eAA `eBB f ± 1

28

3.2 A Digital Signature Scheme based on supersingular Isogenies

A

B
Peggy

Vic

Figure 3.1: Zero-knowledge Proof

• supersingular elliptic curves E(Fp2) and E/〈S〉

• generator points PB, QB of the `eBB -torsion subgroup E[`eBB]

• image points φ(PB) and φ(QB) of the generator points PB, QB

The secret parameter is the isogeny φ : E → E/〈S〉.

The protocol looks as follows [YAJ+17, §2.1]:

1. Peggy picks random point R of order `eBB

2. Peggy computes the isogeny ψ : E → E/〈R〉

3. Peggy computes the isogeny ψ′ : E/〈S〉 → E/〈S,R〉 or the isogeny φ′ : E/〈R〉 →
E/〈S,R〉

4. Commitment: Peggy sends com = (E1, E2), where E1 = E/〈R〉 and E2 = E/〈S,R〉
to Vic (verifier)

5. Challenge: Vic sends randomly chosen bit ch ∈ 0, 1 to Peggy

6. Response: If ch = 0, Peggy sends resp = (R,φ(R)), else Peggy sends resp = ψ(S)

7. If ch = 0, Vic verifies that R and φ(R) have order `eBB and generate the kernels of the
isogenies E → E1 and E → E2 respectively
If ch = 1, Vic verifies that ψ(S) has order `eAA and generates the kernel for the isogeny
E1 → E2

Figure 3.2 shows Peggy’s computations indicating that the isogenies she sends in her response
to Vic depend on the challenge bit. On the left side in the figure, Peggy reveals the randomly
chosen point R and the point φ(R) after applying the secret isogeny φ to that point. This
enables Vic to compute the isogeny ψ by knowing R and to compute the isogeny ψ′ by
knowing φ(R). On the right side Peggy reveals ψ(S), enabling Vic to compute the isogeny φ′.

In both cases, Vic is able to compute E/〈R,S〉 with the help of the response message from
Peggy and compare the resulting curve with the one of the commitment message from Peggy.
If both curves match, Vic can be sure that Peggy is in possession of the Secret Point S. This
protocol is repeated several times and only if all rounds result in the verification of Vic, we
can assume Peggy’s identity to be proven.

The downside of zero-knowledge proofs is the need for multiple interactions. To integrate a
signature scheme in IKEv2 the interactions need to be reduced to the absolute minimum. This

29

3 Towards a Signature Scheme for IKEv2

E E/〈S〉

E/〈R〉 E/〈S,R〉

φ

ψ ψ′

φ′

ch=0

E E/〈S〉

E/〈R〉 E/〈S,R〉

φ

ψ ψ′

φ′

ch=1

Figure 3.2: Zero-knowledge proof and published isogenies [YAJ+17]

zero-knowledge proof would require one message exchange per round it executes, rendering the
proof useless for protocols that run on distributed peers with traffic and bandwidth limitations,
like IKEv2. To reduce the amount of interactions, there is Unruh’s transformation, which
transforms special zero-knowledge proofs to NIZKs. These special zero-knowledge proofs need
to be sigma protocols complying with the properties completeness, special soundness and
honest verifier zero-knowledge. The next subsection discusses these protocols and properties.

3.2.2 Sigma protocol

A sigma protocol is an interactive zero-knowledge proof generally engaging three messages.
The first is the commitment com← P1(x,w), where the prover sends a claim x and a witness
of that claim w to the verifier. The second message sent from the verifier to the prover

is the challenge ch
$←− Nch where Nch = {0, 1} usually. The dollar-sign indicates that the

challenge is a randomly chosen value from the set Nch. The prover sends the third message,
namely the response message resp← P2(ch), revealing information which depends on the
challenge bit. The verifier then accepts or rejects the claim of the prover. Having a look
at the zero-knowledge proof from the previous Section 3.2.1, we see that the proof engages
those three messages making it a sigma protocol.

Sigma protocols may have the three following properties [YAJ+17, §3.1]:

Completeness: If the prover knows a witness to his claim, the verifier accepts the claim.

Special soundness: There exists a polynomial time extractor EΣ such that, given any pair
of valid interactions (com,ch,resp) and (com,ch’,resp’) with ch6=ch’ that the verifier
accepts, EΣ can compute a witness to the claim

Honest-verifier zero-knowledge: There is a polynomial time simulator SΣ with outputs of
the form (com,ch,resp) that are indistinguishable from valid interactions between a
prover and an honest verifier by any quantum polynomial time algorithm.

De Feo et al. prove in their work [DFJP14, §6.2] that their zero-knowledge proof meets
completeness, soundness and honest-verifier zero-knowledge. Further Yoo et al prove that the
proof also has special soundness.

30

3.2 A Digital Signature Scheme based on supersingular Isogenies

3.2.3 Unruhs Transformation towards a non-interactive Proof System

A non-interactive proof of identity aims to achieve the same functionality as the zero-knowledge
proof of identity, but without the need for messages containing a challenge and a response to
the challenge.

Formally we can describe a proof system by taking a R that is a fixed decidable relation on
bitstrings[Unr15, §2.1]. The prover can claim x if there is a witness w so that (x,w) ∈ R.
In the non-interactive case, we have two algorithms, P(x,w) and V(x, π). P(x,w) takes the
claim x and the witness w and outputs a proof π. V(x, π) takes the claim x and the proof π
and accepts or rejects the claim x.

Unruh’s states following in [Unr15, Corollary 14]:

Corollary. If there is a sigma-protocol Σ that is complete and HVZK and has special
soundness, then there exists a non-interactive zero-knowledge proof system with simulation-
sound online extractability in the random oracle model.

Online extractability is the property that guarantees, that the extractor does not have to
rewind the prover to extract the witness from the proof. Simulation-soundness ensures that
one can not prove a statement if one is only in possession of a proof of a related statement.
That property is essential to signature schemes from non-interactive proof systems, as we do
not want a third party to be able to capture Peggy’s signed data, amend it and then forward
it to Vic with a valid signature belonging to Peggy.

Due to the fact that the zero-knowledge proof of identity proposed by De Feo et al. fulfills
all requirements to be able to apply Unruh’s construction, we can obtain a non-interactive
proof system from it.

Unruhs Transformation

The transformation proposed by Unruh [Unr15] deals with the problem of eliminating the
need for the challenge and the response messages, that sigma protocols engage. Other
transformations exists, most notably by Fiat-Shamir [FS86] and by Fishlin [Fis05], which are
both not considered safe in a quantum adversary setting, at least not without having strict
constraints affecting particularly efficiency.

Unruh introduces a transformation that is based on the Fiat-Shamir transformation but
modified to hold up against quantum attackers. Generally, Unruh’s construct gets around
the interactions of zero-knowledge proofs by calculating every response, that a challenge
might request. The challenge and respective response which are finally used are determined
by a challenge hash that is generated from some parameters, including a hash of all possible
responses of all rounds. This is the main difference to the Fiat-Shamir transformation which
generates the challenge hash only from the commitments of each round.

Algorithm 3.1 and Algorithm 3.2 show the proving algorithm P(x,w) and the verifying
algorithm V(x, π) of the NIZK resulting from a sigma protocol in full detail.

31

3 Towards a Signature Scheme for IKEv2

Algorithm 3.1: Prover P(x,w) [Unr15, Fig. 1]

Input : (x,w) with (x,w) ∈ R
// Create t ·m proofs (comi, chi,j , respi,j)
for i = 1 to t do

comi ← P 1
Σ(x,w)

for j = 1 to m do

chi,j
$←− Nch \ {chi,1, . . . chi,j−1}

respi,j ← P 2
Σ(chi,j)

// Commit to responses
for i = 1 to t do

for j = 1 to m do
hi,j := G(respi,j)

// Get challenge by hashing
J1‖ . . . ‖Jt := H(x, (comi)i, (chi,j)i,j , (hi,j)i,j)

// Return Proof (only some responses)
return π := ((comi)i, (chi,j)i,j , (hi,j)i,j , (respi,Ji)i)

Algorithm 3.2: Verifier V(x, π) [Unr15, Fig. 1]

Input : (x, π) with π = ((comi)i, (chi,j)i,j , (hi,j)i,j , (respi)i)

J1‖ . . . ‖Jt := H(x, (comi)i, (chi,j)i,j , (hi,j)i,j)
for i = 1 to t do

check chi,1, . . . , chi,m pairwise distinct

for i = 1 to t do
check VΣ(x, comi, chi,Ji , respi) = 1

for i = 1 to t do
check hi,Ji = G(respi)

if all checks succeed then
return 1

32

3.3 Requirements

3.2.4 Signature Scheme

As discussed in Section 2.1.2 a signature scheme usually consists of three algorithms.

1. Keygen(λ): generates a key pair (sk, pk) based on a security parameter λ.

2. Sign(sk,m): generates a signature σ using a message m and the signing key sk.

3. Verify(pk,m, σ): verifies the signature σ using the prover’s public key, the message m
and the signature σ itself.

To transform a non-interactive proof of identity to a signature scheme, the claim x has to
consist of the public key pk and the message m. The witness w of the claim x is the signing
key sk. R needs to ignore the message m, so that ((pk,m), w) ∈ R if and only if (pk, w) is a
valid key pair generated by the Keygen algorithm.

In summary, we get a signature scheme with the three algorithms Keygen(λ), Sign(sk,m) =
P ((pk,m), sk) and Verify(pk,m, σ) = V ((pk,m), σ).

Signature Scheme based on Isogenies [YAJ+17]

Applying Unruh’s construction to the zero-knowledge proof Σ shown in Section 3.2.1 by De
Feo et al. we obtain a non-interactive proof of identity, which we again can transfer into a
signature scheme.

The public parameters of the signature scheme are the same as in the zero-knowledge
proof discussed in Section 3.2.1:

• p = `eAA `eBB f ± 1

• supersingular elliptic curves E(Fp2) and E/〈S〉

• generator points PB, QB of the `eBB -torsion subgroup E[`eBB]

• image points φ(PB) and φ(QB) of the generator points PB, QB

The key generation makes use of a random point S of order `eA , which allows the computa-
tion of the isogeny φ : E → E/〈S〉. The public key composes to pk = (E/〈S〉, φ(PB), φ(QB))
whereas the signing key sk = S. The signing follows the equation

Sign(sk,m) = P ((pk,m), sk)

and the verification follows

Verify(pk,m, σ) = V ((pk,m)σ)

The key generation, signing and verifying algorithms are shown in full detail in Algorithm 3.3,
Algorithm 3.4 and Algorithm 3.5.

3.3 Requirements

From the IKEv2 status quo and current developments mainly in the field of quantum-safe key
exchanges in IKEv2 discussed in Section 3.1 and after understanding the internal functionality

33

3 Towards a Signature Scheme for IKEv2

Algorithm 3.3: Key generation algorithm [YAJ+17, §4.1]

Input :λ
Pick a random point S of order `eAA
Compute the isogeny φ : E → E/〈S〉
pk ← (E/〈S〉, φ(PB), φ(PQ))
sk ← S
return (pk, sk)

Algorithm 3.4: Signing algorithm [YAJ+17, §4.1]

Input : sk, m
for i = 1 to 2λ do

Pick a random point R of order `eBB
Compute the isogeny ψ : E → E/〈R〉
Compute either φ′ : E/〈R〉 → E/〈R,S〉 or ψ′ : E/〈S〉 → E/〈R,S〉
(E1, E2)← (E/〈R〉, E/〈R,S〉)
comi ← (E1, E2)

chi,0
$←− 0, 1

(respi,0, respi,1)← ((R,φ(R)), ψ(S))
if chi,0 = 1 then

swap(respi,0, respi,1)

hi,j ← G(respi,j)

J1‖ . . . ‖J2λ := H(pk,m, (comi)i, (chi,j)i,j , (hi,j)i,j)

return σ ← ((comi)i, (chi,j)i,j , (hi,j)i,j , (respi,Ji)i)

Algorithm 3.5: Verifying algorithm [YAJ+17, §4.1]

Input : pk, m, σ
J1‖ . . . ‖J2λ := H(pk,m, (comi)i, (chi,j)i,j , (hi,j)i,j)

for i = 1to2λ do
check hi,j = G(respi,Ji)
if chi,Ji = 0 then

Parse (R,φ(R))← respi,Ji
check R,φ(R) have order `eBB
check R generates the kernel of the isogeny E → E1

check φ(R) generates the kernel of the isogeny E/〈S〉 → E2

else
Parse ψ(S)← respi,Ji
check ψ(S) has order `eAA
check ψ(S) generates the kernel of the isogeny E1 → E2

if all checks succeed then
return 1

34

3.3 Requirements

Figure 3.3: Likelihood of Quantum Threat to Public-Key Cryptography [MP19]

of the isogeny-based signature scheme shown in Section 3.2 we can derive requirements for a
protocol extension allowing quantum-safe authentication in IKEv2. The following paragraphs
extract and elaborate on requirements resulting from the previous Sections.

Quantum Security: Achieving quantum-safe authentication in the IKE_AUTH exchange is the
main motivation of this work. Section 1 already pointed out the threat a quantum
computer poses to the classic public key cryptography. Although it is unclear when a
sufficiently powerful quantum computer will be available, the time to prepare for this
event is now. Mosca and Piani published a report [MP19] in 2019 where they performed
a survey, asking various researchers about the “likelihood of significant quantum threat
to public-key cybersecurity as function of time”. Their result is shown in Figure 3.3,
representing the opinions of 22 researchers. Whilst only two experts estimate the
discussed likelihood to be higher than 30% in 2024 (5 years from 2019), in 2034 (15
years from 2019) 19 of the 22 experts chose this likelihood value or higher. All experts
estimate the likelihood in 30 years (from 2019) to be at least 50% or higher, 6 of them
even settling at a likelihood of >99%. The 15year mark is further interesting as exactly
half of the researchers think the likelihood of a quantum threat is smaller than 50% and
the other half thinks it is around 50% or higher. This survey represents the opinion of
the experts which have taken part and does not guarantee for whatever outcome. It
does, however, give a rough idea of the time remaining to get prepared for the quantum
threat to public-key cryptography.

In the context of digital signatures, quantum security means an attacker utilizing
a quantum computer is not able to successfully claim a third party identity to a
communication partner. This requires the signature scheme to use algorithms which
are assumed hard to break for quantum computers.

35

3 Towards a Signature Scheme for IKEv2

Compliance with protection goals Authenticity, Integrity and Non-Repudiation: In Section
2.1.2 we have shown five properties of digital signatures, i.e. the signature is authentic,
unforgeable, not reusable, the signed document is unalterable and the signature cannot
be repudiated. These five points have been transferred from handwritten signatures to
digital signatures by Schneier [Sch07]. Further we extracted security goals from these
properties, being authenticity, integrity and non-repudiation. Only if our signature
scheme complies with those security goals, we can ensure compliance to the five stated
properties. This would make our signature scheme a reliable way of proving authorship
of a message.

Prevention of security reduction: The usage of a quantum-safe signature scheme must not
weaken the IKEv2 authentication under any circumstances. Due to the fact that most
of the post-quantum algorithms are relatively new compared to classic algorithms like
RSA which exist for almost 50 years, the confidence in those newer algorithms is lower
than the confidence in algorithms that have been subject to attacks for a long time.
However unlikely, it might happen that a cryptographic suite which is assumed to be
quantum resistant is broken by a newly invented attack which can be executed efficiently
on a classic computer. Therefore we need to ensure that the whole authentication of
IKEv2 is not broken by the usage of an unsecure post-quantum signature algorithm We
still need to provide (potentially less strong) authenticity, integrity and non-repudiation.
The ipsecme working group1 of the Internet Engineering Task Force (IETF) was facing
a similar problem at IKEv2 with the key exchange which led them to a hybrid key
exchange [TTB+20]. Also from the IETF comes a draft for standardization of a hybrid
key exchange for TLS1.3 eliminating the need to trust a newer quantum-safe algorithm
by relying on a classic key exchange previous to quantum safe exchanges [SFG20].

Crypto-agility: As mentioned in Section 3.1.1 the IKEv2 authentication mechanism was
designed in an inflexible manner. RFC 7427[KS15] as described in Section 3.1.2 has
been introduced to mitigate this inflexibility. While designing a quantum-safe protocol
extension, we must not reintroduce this inflexibility. It is even more important to
allow the drop-in replacement of other signature algorithms, as we might have to
deal with broken signature algorithms due to the immaturity of the quantum-safe
algorithms. The NIST has also taken this fact into account by explicitly stating, that
the Post-Quantum Cryptography Standardization Process is not a competition but an
attempt to standardize several cryptographic suites from which the user can chose the
most appropriate for a specific use case [Che17][CCJ+16].

Support for Payloads > 64kiB: As crypto-agility needs to support various different signature
algorithms we need to deal with different types of properties of those algorithms. One
property, that all of the quantum-safe algorithms have in common is, that they either
use much bigger public keys or much bigger signature data than the traditional signature
algorithms like RSA or (EC)DSA do. Figure 3.4 shows the public key size and the
signature size of the finalists and alternatives from the third round of the NIST post-
quantum standardization program and of the isogeny-based signature scheme discussed
in Section 3.2. The red points represent the public key size of the respective signature
scheme and the blue points represent the signature size. The horizontal line indicates
the 64KiB limit, dots over that line equal an exceedance of this limit. We can see

1IP Security Maintenance and Extensions (https://datatracker.ietf.org/wg/ipsecme/about/)

36

3.3 Requirements

Table 3.1: Summary of Requirements

ID Requirement

SigR1 Quantum-Security

SigR2 Compliance with protection goals Authenticity, Integrity and Non-Repudiation

SigR3 Prevention of security reduction

SigR4 Crypto-agility

SigR5 Support of Payloads > 64kiB

SigR6 Minimalism

SigR7 Practicability

several public keys exceeding the 64KiB limit, but also some of the signatures are bigger
than the limit. To enable crypto-agility and to support a broad range of signature
schemes it is vital for the IKEv2 extension to support payload sizes bigger than the
64kiB limit, described in Section 3.1.3.

Minimalism: Although the requirements “Prevention of security reduction”, “Crypto-agility”
and “Support for Payloads > 64kiB” all add complexity to the IKEv2 protocol, we
need to keep minimalism in mind. This is critical to the protocol as adding too much
complexity can result in design flaws and increases implementation bugs, both resulting
in less security.

Practicability: The non-functional requirement “Practicability” needs to be taken into ac-
count, as there is a possibility that a protocol is developed, fulfilling all previous
requirements but has for instance performance issues which render the protocol use-
less. Paquin, Stebila and Tamvada benchmarked post-quantum cryptography in TLS
[PST20], pointing out that cryptographic suits which fragment across many packets
suffer significantly from network package loss at rates of 3-5%. In their work they
benchmarked key exchange as well as authentication mechanisms. TLS serves a different
purpose in a different environment, however, the effects, Paquin et al. have discovered
might also be applicable to the integration of quantum-safe cryptographic suites in
IKEv2. Therefore we need to keep an eye on the practicability of the protocol extension.
Only deploying and testing the extended protocol in a test environment can show, how
it performs and in what scenarios potential drawbacks with regards to practicability
are acceptable and what is not.

Table 3.1 provides an overview of the elaborated requirements for a digital signature scheme
to be integrated in IKEv2. A unique requirement ID is assigned to each requirement which
can be referred to more easily in the further work.

37

3 Towards a Signature Scheme for IKEv2

20

25

210

215

220

D
ili

th
iu

m

Fa
lc
on

st
an

da
rd

R
ai
nb

ow

C
om

pr
es

se
d/

C
Z-R

ai
nb

ow

Pic
ni

c-
Fu

ll

Pic
ni

c

G
eM

SS

B
lu

eG
eM

SS

R
ed

G
eM

SS

W
hi

te
G
eM

SS

C
ya

nG
eM

SS

M
ag

en
ta

G
eM

SS

SP
H
IN

X
+
s

SP
H
IN

X
+
f

Is
og

en
y-

ba
se

d

S
iz

e
in

B
y
te

s

pubkey
sig

64kiB

Figure 3.4: Comparison of Public key and Signature Sizes of NIST Round 3 Signature Finalists
and Alternatives and Isogeny-based Signature Scheme

38

4 IKEv2 Protocol Design for
quantum-resistant Authentication

This chapter presents a protocol extension of the IKEv2 protocol which provides quantum-
resistant authentication. First we will discuss ideas to make the IKEv2 protocol comply
with the requirements defined in Section 3.3. To get a comprehensive overview of possible
approaches, also ideas that are not part of the final protocol are taken into account. Figure 4.1
gives an overview of the topics that have been considered to develop the protocol. The three
top-level topics, Signature Scheme Integration, Hybrid Authentication and Payloads >64kiB
are the high level problems that need to be addressed to obtain a protocol which complies with
the previously defined requirements. The child topics on the same level represent alternative
approaches for dealing with a problem and are directly related to their parent topic. To give
an example, the approach Bulk Transfer and Incremental Transfer are exclusive alternatives
to realize Payload Fragmentation which is one candidate to solve the Payloads >64kiB
top-level topic.

Following the discussion of possible approaches to solve the top-level topics, Section 4.4
presents the final design of the elaborated protocol to incorporate quantum-safe authentication
in IKEv2. We outline the approaches chosen to address the top-level problems set out, give a
detailed explanation of the protocol procedure and evaluate the protocol with regards to the
requirements defined in Section 3.3.

4.1 Integration of quantum-resistant Signature Schemes in IKEv2

As described in Section 3.1.1, IKEv2 was designed with only a few authentication mechanisms
in mind. We do not look at the Extensible Authentication Protocol (EAP) method to authen-
ticate, as it is irrelevant for this work. Instead we look for a replacement for the implemented
authentication methods incorporating signing of data. Originally IKEv2 supported RSA and
DSA and has later been extended by ECDSA in RFC 4754 [FS07]. All these mechanisms
are tightly integrated into the IKEv2 protocol, making it non-trivial to replace the signature
algorithms with newer, more secure ones. To make use of a signature algorithm other than
RSA and (EC)DSA, one can choose between two options, either register a new authentication
method or use the Digital Signature extension to IKEv2 as proposed in RFC 7424 [KS15].
The two approaches are discussed in the following Sections 4.1.1 and 4.1.2.

4.1.1 Registering a new Authentication Method

The first option, registering a new authentication method requires only small modifications
to the protocol. Figure 2.6 shows the authentication payload which consists of the generic

39

4 IKEv2 Protocol Design for quantum-resistant Authentication

Signature Scheme
Integration

Registering a new Au-
thentication Method

Digital Signture (RFC
7427)

Request SigAlg using
IDr Payload

Request SigAlg using
CERTREQ Payload

Indicate Key-Type
via Private Use
Range

Indicate Key-Type
via Raw Public Key

Request SigAlg using
same Key-Type as
Initiator

No Requesting

Hybrid Authentication

Multiple Authentica-
tion Exchanges

Payloads >64kiB

Hash and URL

Key Exchange Pay-
load

Certificate Payload

Payload Fragmenta-
tion

Bulk Transfer

Incremental Transfer

Figure 4.1: Considered Approaches for the Protocol Design

40

4.1 Integration of quantum-resistant Signature Schemes in IKEv2

payload header and the Auth Method and the Authentication Data. Integrating a new
signature scheme by registering a new authentication method is as simple as setting the
Auth Method field to the value of this new method and putting its signature data into the
Authentication Data field. By looking at the Auth Method of the IKE AUTH message, the
responder can determine the new authentication mechanism and verify the signature data
accordingly.

The downside of this approach is the inflexibility with regards to the combination of signature
schemes and hash algorithms. When using a new authentication method, there is no
negotiation of either the hash algorithm or the signature algorithm. This results in a fixed
binding of the hash algorithm to the signature algorithm. In other words, every signature
algorithm in cooperation with a specific hash algorithm needs its own assigned authentication
method. This inflexibility means that the DSA signature algorithm can only be used in
conjunction with SHA-1, which is flawed. Also the single ECDSA method is specified in three
authentication methods combining different parameter sets with different hash algorithms.
Only for the RSA signature algorithm the IKEv2 standard (RFC 7296 [KHN+14]) mentions
a workaround to negotiate a more secure hash function via certificate payloads.

As far as new quantum-resistant algorithms are concerned, we should consider crypto-agility,
which is the possibility to incorporate more than one algorithm and also to quickly exchange
an algorithm which has proven unsecure. Furthermore we should still be able to use classic
algorithms which have proven secure against classic attackers over the last decades. So
ideally we do not just add one quantum-safe signature scheme to IKEv2 but implement the
possibility to select from a pool of available signature schemes, classic ones and some of which
are quantum-safe. Adding a pool of signature schemes, each combined with one or more
hash algorithms, to IKEv2 via new authentication methods is cumbersome. Also the need
for quick adaption conflicts with the static way of registering new authentication methods.

In summary, we can say that registering a new authentication method fulfills the requirements
SigR1 Quantum Security, SigR2 Compliance with protection goals Authenticity, Integrity and
Non-Repudiation and SigR6 Minimalism as it enables us to use a quantum safe signature
scheme ensuring the required protection goals while only being minimal intrusive. However,
this approach fails to fulfill SigR4 Crypto-Agility as well as SigR7 Practicability as the static
character of registering new combinations of signature and hash algorithms is neither agile
nor practical.

4.1.2 Digital Signature (RFC 7427)

The second option uses the authentication method “Digital Signature” which is registered at
the IANA with a value of 14. This approach is described in RFC 7427 [KS15] and tries to
mitigate the problems, the first approach has been criticized for, as shown above. This digital
signature method has to be supported by both peers before they can use it for authentication
purposes.

41

4 IKEv2 Protocol Design for quantum-resistant Authentication

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Next Payload |C| RESERVED | Payload Length |
+-+
| Protocol ID | SPI Size | Notify Message Type |
+-+
| |
˜ Security Parameter Index (SPI) ˜
| |
+-+
| |
˜ Notification Data ˜
| |
+-+

Figure 4.2: Notify Payload Format

Table 4.1: IKEv2 Hash Algorithms

Value Hash Algorithm Reference

0 Reserved [RFC7427]

1 SHA1 [RFC7427]

2 SHA2-256 [RFC7427]

3 SHA2-384 [RFC7427]

4 SHA2-512 [RFC7427]

5 Identity [RFC8420]

6 STRIBOG 256 [draft-smyslov-ike2-gost-02]

7 STRIBOG 512 [draft-smyslov-ike2-gost-02]

8-1023 Unassigned

1024-65535 Reserved for Private Use [RFC7427]

Indicating Support and Negotiating a Hash Algorithm

A peer indicates support for the authentication method by sending a notify payload of
type SIGNATURE HASH ALGORITHM. The notify payload is described in RFC 7296
as shown in Figure 4.2. The Protocol ID field as well as the SPI Size field are both set
to 0. The Notify Message Type is set to 16431, identifying the notify payload as SIGNA-
TURE HASH ALGORITHM. The Nofification Data contains one or more hash algorithms
supported by the peer. Table 4.1 shows the list of available hash algorithms. Note that this
list does not show any members of the SHA-3-family as of now, but it can be easily adapted
in the future to also support further hash algorithms.

Note that a peer may only use a specific hash algorithm, if the other peer indicated support
for this hash algorithm in the SIGNATURE HASH ALGORITHM notify payload.

42

4.1 Integration of quantum-resistant Signature Schemes in IKEv2

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Next Payload |C| RESERVED | Payload Length |
+-+
| Auth Method | RESERVED |
+-+ -+
| ASN.1 Length | AlgorithmIdentifier ASN.1 object | |
+-+ |
| | |
˜ AlgorithmIdentifier ASN.1 object continuing ˜ |
| | |- Authenti-
+-+ | cation
| | | Data
˜ Signature Value ˜ |
| | |
+-+ -+

Figure 4.3: Authentication Payload Format Digital Signature

Authentication Data Format

Using the digital signature authentication method comes with a change in the Authentication

Data field in the authentication payload. For details on the authentication payload, see
Figure 2.6. Authentication methods described in the IKEv2 specification in RFC 7296
[KHN+14] put the raw signature value into the Authentication Data. In contrast, by using
the digital signature method we prepend two fields to the raw signature value, namely the
ASN.1 Length and the AlgorithmIdentifier ASN.1 object. The format of the authentication
payload is shown in Figure 4.3.

By looking at the AlgorithmIdentifier ASN.1 object of the authentication payload, the
receiving peer knows what signature algorithm has been used for the signature generation and
can choose the matching verifying algorithm accordingly. It is important to understand that
specifying the AlgorithmIdentifier ASN.1 object is not a negotiation of signature schemes
but identification of the algorithm that has been used for signature generation. The next
paragraph describes methods to agree a signature algorithm.

Selecting the Signature Algorithm

RFC 7427 suggests three methods to agree on the signature algorithm. Neither of them
describes an actual negotiation of signature algorithms but helps the initiator to request
the use of a specific public/secret key pair from the responder. The initiator has to either
know what signature schemes the responder supports by out-of-band communication or
guess. If the responder is not able to verify the signature because he does not support the
signature algorithm used by the initiator, he responds with a notify payload of error type
AUTHENTICATION_FAILED. Below are the three proposals from RFC 7427.

Using IDr payload: This method uses the IDr payload of the IKE AUTH request of the
initiator. Hereby the initiator requests to talk to the peer with the IDr identity of the

43

4 IKEv2 Protocol Design for quantum-resistant Authentication

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Next Payload |C| RESERVED | Payload Length |
+-+
| Cert Encoding | |
+-+-+-+-+-+-+-+-+ |
˜ Certification Authority ˜
| |
+-+

Figure 4.4: Certificate Request Payload Format

other peer. This IDr identity must be bound to a key type using a specific signature
scheme.

Using CERTREQ payload: The initiator can use the optional payload CERTREQ and indicate
support of a signature algorithm to the responder by trusting a CA that uses this kind
of signature algorithm.

Using same key type as initiator: The responder can use the same type of keys, the initiator
used generating his signature. This way the responder ensures that initiator is capable
to verify his signature. On the downside, this only works if both peers use public key
authentication. If the initiator uses EAP or shared secret authentication, this option is
rendered useless.

To circumvent the aforementioned fact, that with either of the shown methods the initiator
has to know or guess the supported signature schemes of the responder, the responder
could make use of the optional CERTREQ payload in the IKE SA INIT exchange. As soon
as the responder receives the IKE SA INIT request including the notify payload SIGNA-
TURE HASH SUPPORTED, he knows that the initiator is able to authenticate via the
digital signature method. The responder can at that point already add a CERTREQ payload,
hinting the initiator towards a signature algorithm he supports.

Neither the responder nor the initiator necessarily have to send a CA they trust in the
CERTREQ payload, they can instead use a different Cert Encoding. Figure 4.4 shows the
CERTREQ payload as defined by RFC 7296 [KHN+14] and Table 4.2 shows the possible Cert

Encoding values as defined by the IANA [IAN]. The peers can now use one of the cert
encodings for private use with values starting at 201 or they can utilize the “Raw Public
Key” (15) encoding that has been specified in RFC 7670 [KWT16].

In the first case, both peers have to interpret the cert encoding correctly. The Certification

Authority field can be left blank, as the receiving peer only needs to know the type of the
public key of the signature. This enables the receiving peer to use the secret key belonging to
the public key to generate the signature data. The other peer can then verify the signature
as he indicated his capability in the CERTREQ payload.

The second case using Certificate Encoding “Raw Public Key” (15) makes this approach
even more generic. The type of the public key is not propagated via the Certificate Encoding

field but is encoded using the SubjectPublicKeyInfo structure of the PKIX certificate inside
the Certificate Authority field of the CERTREQ payload. The drawback of this approach

44

4.1 Integration of quantum-resistant Signature Schemes in IKEv2

Table 4.2: IKEv2 Certificate Encodings

Value Certificate Encoding Reference

0 Reserved RFC7296

1 PKCS #8 wrapped X.509 certificate UNSPECIFIED

2 PGP Certificate UNSPECIFIED

3 DNS Signed Key UNSPECIFIED

4 X.509 Certificate - Signature RFC7296

5 Reserved RFC7296

6 Kerberos Token UNSPECIFIED

7 Certificate Revocation List (CRL) RFC7296

8 Authority Revocation List (ARL) UNSPECIFIED

9 SPKI Certificate UNSPECIFIED

10 X.509 Certificate - Attribute UNSPECIFIED

11 Raw RSA Key (DEPRECATED) RFC7296

12 Hash and URL of X.509 certificate RFC7296

13 Hash and URL of X.509 bundle RFC7296

14 OCSP Content RFC4806

15 Raw Public Key RFC7670

16-200 Unassigned

201-255 Private use RFC7296

45

4 IKEv2 Protocol Design for quantum-resistant Authentication

is, that the public key is sent within the SubjectPublicKeyInfo structure. Due to the fact
that the CERTREQ payload of the responder is in the IKE SA INIT response, it can not be
fragmented. This might result in fragmentation of the message on IP level and ultimately
in the potential loss in transit. Even if this issue could be mitigated, there would still be
constraints with regards to the maximum payload size of 64kiB, which might get exceeded
by some of the post-quantum signature schemes.

Using the digital signature method from RFC 7427 fulfills SigR1 Quantum Security, SigR2
Compliance with protection goals Integrity, Authenticity and Non-repudiation, SigR4 Crypto-
agility and SigR7 Practicability, as it enables us to use a quantum-safe signature scheme
protecting authenticity, integrity and non-repudiation. It also ensures crypto-agility by
allowing drop-in replacements of the signature and the hash algorithms. The method
is practical as there is no need for a registration of a new signature scheme but only a
configuration change is required to exchange the signature scheme in use. On the downside,
the digital signature method adds slightly more overhead compared to the previously described
method of registering a new authentication method, conflicting with the requirement SigR6
Minimalism.

4.2 Multiple Authentication Exchanges (RFC 4739)

Hybrid authentication is a mechanism of authenticating more than once. In the context of
post-quantum cryptography it is a common way to not depend on one cryptographic suite
but combine the security of more than one suite. By implementing hybrid authentication, we
realize the requirement SigR3 Prevention of Security Reduction.

To incorporate hybrid authentication we need to enable more than one IKE AUTH exchange.
RFC 4739 [EK06] specifies an IKEv2 protocol extension to run several rounds of authentication.
The communication peers indicate support for multiple authentication exchanges by including
a notify payload of type MULTIPLE AUTH SUPPORTED (16404). The initiator includes the
notify payload in the IKE AUTH request and the responder already announces the capability
in the IKE SA INIT message. If both peers indicate support for multiple authentication
exchanges, either peer can use the notify payload ANOTHER AUTH FOLLOWS (16405) in
an IKE AUTH exchange to let the other peer know, that he wishes to send another IKE AUTH
message. RFC 4739 does not make any assumptions on the type of authentications, it is
compatible with signature schemes as well as with pre-shared key authentication and even with
EAP authentication. Figure 4.5 shows an exemplary procedure where both peers authenticate
twice using the digital signature authentication method as described in Section 4.1.2

Note that the Listing shows both peers authenticating twice. It is not mandatory that
the peers authenticate the same number of times. To achieve out target of using a classic
signature scheme and then one or more quantum-safe signature schemes, it makes sense
to have the peers authenticate symmetrically. In our post-quantum scenario, this Listing
might represent both peers first authenticate via a classic algorithm, e.g. RSA, and then use
another signature algorithm, e.g. an isogeny-based signature scheme for quantum-resistant
authentication.

Using multiple authentication methods requires the peers to know the mechanisms they want
to authenticate with beforehand. Negotiation of an authentication mechanism is not possible.

46

4.3 Support for Payloads bigger than 64kiB

Initiator Responder
----------- -----------
1. HDR, SAi1, KE, Ni,

N(SIGNATURE_HASH_ALGORITHMS) -->
<-- 2. HDR, SAr1, KE, Nr, [CERTREQ],

N(SIGNATURE_HASH_ALGORITHMS),
N(MULTIPLE_AUTH_SUPPORTED)

3. HDR, SK { IDi, [CERT+], [CERTREQ],
[IDr], AUTH, SAi2, TSi, TSr,
N(MULTIPLE_AUTH_SUPPORTED),
N(ANOTHER_AUTH_FOLLOWS) } -->

<-- 4. HDR, SK { IDr, [CERT+], AUTH,
N(ANOTHER_AUTH_FOLLOWS) }

5. HDR, SK { IDi, [CERT+], AUTH } -->
<-- 6. HDR, SK { IDr, [CERT+], AUTH,

SAr2, TSi, TSr }

Figure 4.5: Initiator and Responder authenticating twice using the digital signature authenti-
cation method

Also the suggestions how to select a signature scheme proposed in RFC 7427 and discussed
in Section 4.1.2 partly do not work anymore. The first option using the IDr payload is of
no help because we want to use more than one signature scheme to authenticate one ID.
Using the CERTREQ payload only helps finding a signature scheme for the first of the multiple
authentication methods, as only the IKE SA INIT response and the first IKE AUTH request
contain the CERTREQ payload. If both peers want to use the same signature schemes in their
multiple authentications, the third method, using the same key type as the initiator helps the
responder to choose which authentication mechanisms to use. However, it seems to be the
better alternative to agree on the authentication mechanisms via out-of-band communication.

One might argue that introducing several IKE AUTH exchanges conflicts with the requirement
SigR6 Minimalism as it adds significant overhead to the protocol. However, we introduced
multiple exchanges to fulfill requirement SigR3 Prevention of Security Reduction. We can
see that these two requirements are conflicting, we can’t yet achieve them at the same
time. A decision has to be made which one is more important. Relying on only one of
the quantum-safe signature schemes solely is irresponsible as the confidence in those new
cryptographic systems is too low. However, it is possible that in future, when we have more
confidence in a post-quantum cryptographic system, one quantum-safe authentication method
is sufficient to protect against classical attacks and attackers in posession of a quantum
computer. Only then can hybrid authentication be discarded for the sake of simplicity.

4.3 Support for Payloads bigger than 64kiB

As some quantum-safe signature schemes generate signature data that exceeds the size of
64kiB, the IKEv2 protocol extension should consider enabling payloads bigger than 64kiB.
The issue that a single payload can not be bigger than 64kiB is caused by the Payload Length

field of the Payload Header being only 16 bit wide. This allows values from 0-65536 bytes.
IKEv2 fragmentation can not solve this issue, due to the way it operates on IKEv2 messages.

47

4 IKEv2 Protocol Design for quantum-resistant Authentication

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Next Payload |C|F| RESERVED | Payload Length |
+-+
| Key Exchange Method | RESERVED |
+-+
| |
˜ Key Exchange Data ˜
| |
+-+

Figure 4.6: Key Exchange Payload

Fragmentation takes all the payloads inside of the SK{} payload as binary blob, splits it up
into smaller chunks of binary data and encrypts and integrity-protects those smaller chunks in
the SKF{} payload. For successful reassembly the receiving peer needs to receive all fragments
before it can start. Then it looks at each Payload Length field to know the length of the
payload data. If that length can not be represented by an unsigned 16 bit value, the receiving
peer does not know where the payload ends and a new payload begins. Thus the receiving
peer will fail to reassemble the fragmented IKEv2 message.

There is an Internet Draft “draft-tjhai-ikev2-beyond-64K-limit” [THS20] that discusses
approaches enabling payloads of bigger sizes. It generally proposes two solutions which are
discussed in the following sections.

4.3.1 Hash and URL

The first solution is the Hash and URL mechanism. The Internet Draft mentions two options,
how to transfer big public keys.

Key Exchange Payload

The first option is to utilize the key exchange payload which is shown in Figure 4.6. Important
is the F bit in the payload header, which is normally part of the RESERVED field. If this bit is
set to 0, the Key Exchange Data follows the specification of RFC 7296. If this bit is 1, the
Key Exchange Data field contains the hash and URL value.

Certificate Payload

The second method of using the Hash and URL mechanism is to utilize the Certificate
payload. There are two certificate encodings registered at IANA [IAN] that are relevant
for Hash and URL, namely “Hash and URL of X.509 certificate” (12) and “Hash and URL
of X.509 bundle” (13). The authors of the “draft-tjhai-ikev2-beyond-64K-limit” [THS20]
mention, that the CERT payload is part of the IKE AUTH exchange and therefore not the
right place for key exchange data. As this work aims to send signature sizes exceeding the
64kiB limit, this argument is irrelevant.

48

4.3 Support for Payloads bigger than 64kiB

Initiator Responder

HDR, SAi1, KEi1, Ni,

N(IKEV2_FRAGMENTATION_SUPPORTED)*,
N(INTERMEDIATE_EXCHANGE_SUPPORTED) --->

HDR, SAr1, KEr1, Nr,
N(IKEV2_FRAGMENTATION_SUPPORTED)*,

<--- N(INTERMEDIATE_EXCHANGE_SUPPORTED)

HDR, SK{KEi2.1, KEi2.2, KEi2.3, ...} --->

<--- HDR, SK{KEr2, ...}

*: optional

Figure 4.7: Bulk Transfer and Confirmation

Drawback of Hash and URL

The obvious drawback is that the peers must support downloading a file via HTTP and also
operate a publicly available web server. This might be acceptable for endpoints that have a
public IP, road warriors behind a NAT-Box in contrast technically can not provide their big
payloads via a publicly available web server. Firewall rules or policies may also interfere with
opening a port to the public to operate a web server. Although there are certain scenarios
where the Hash and URL method might be acceptable, for a majority of application scenarios,
this approach is at least cumbersome.

The Hash and URL approach not only resolves the requirement SigR5 Support for payloads
>64kiB but also complies with SigR6 Minimalism. As mentioned above the need for the peers
to support HTTP and run a public web server does not comply with SigR7 Practicability.

4.3.2 Payload Fragmentation

The second solution is “Payload Fragmentation” which uses a similar approach as the IKEv2
fragmentation. The Internet-Draft presents two possible Payload Fragmentation variants
each having its advantages and disadvantages.

Bulk Transfer and Confirmation

The first one splits a big payload up into smaller payloads with a size below 64kiB but
leaves the smaller payloads part of one IKEv2 message. The IKEv2 message fragmentation
mechanism handles the fragmentation of the message before sending it on the wire. The
following Figure 4.7 shows an exemplary IKE_INTERMEDIATE exchange with the “Bulk Transfer
and Confirmation” taken from “draft-tjhai-ikev2-beyond-64K-limit” [THS20].

49

4 IKEv2 Protocol Design for quantum-resistant Authentication

Initiator Responder

HDR, SAi1, KEi1, Ni,

N(IKEV2_FRAGMENTATION_SUPPORTED)*,
N(INTERMEDIATE_EXCHANGE_SUPPORTED) --->

HDR, SAr1, KEr1, Nr,
N(IKEV2_FRAGMENTATION_SUPPORTED)*,

<--- N(INTERMEDIATE_EXCHANGE_SUPPORTED)

HDR, SK{KEi2.1, ...} --->

<--- HDR, SK{}

HDR, SK{KEi2.2, ...} --->

<--- HDR, SK{}

HDR, SK{KEi2.3, ...} --->

<--- HDR, SK{KEr2, ...}

HDR, SK{} --->

*: optional

Figure 4.8: Incremental Transfer and Confirmation

Incremental Transfer and Confirmation

The second variant also splits the big payload up into smaller payloads but in contrast to
the first variant, those payload fragments are sent as separate IKEv2 messages with their
own IKEv2 header HDR. After the peer has received an IKEv2 message, it acknowledges
the reception by sending an IKEv2 message containing just the header HDR and an empty
payload SK{}. Only after having received the acknowledge of the last sent IKEv2 message, the
initiator continues to send the next IKEv2 message containing the next part of the payload.
Figure 4.8 again shows an IKE_INTERMEDIATE exchange of the “Inctemental Transfer and
Confirmation” variant also taken from the “Beyond 64KB” draft.

4.3.3 Leveraging Payload Fragmentation to IKE AUTH exchange

The “draft-tjhai-ikev2-beyond-64K-limit” mainly focuses on the payload size of the key
exchange payload. However, they keep their specification generic enough so it also applies
to other payloads. This work requires the capability to send an authentication payload
exceeding the 64kiB limit. The IKEv2 initial exchanges with payload fragmentation and bulk
transferring of the authentication payload at both peers is shown in Figure 4.9.

The initial exchanges with incremental transfer of the payload fragments applied to the
authentication payload at both peers accordingly is shown in Figure 4.10.

Payload fragmentation resolves the requirement SigR5 Support for Payloads >64kiB and also

50

4.3 Support for Payloads bigger than 64kiB

Initiator Responder

HDR, SAi1, KEi, Ni,

N(IKEV2_FRAGMENTATION_SUPPORTED) -->
<-- HDR, SAr1, KEr, Nr, [CERTREQ,]

N(IKEV2_FRAGMENTATION_SUPPORTED)

HDR, SK {IDi, [CERT,] [CERTREQ,] [IDr,]
AUTHi.1, AUTHi.2, AUTHi.3 ,
SAi2, TSi, TSr} -->

<-- HDR, SK {IDr, [CERT,]
AUTHr.1, AUTHr.2, AUTHr.3,
SAr2, TSi, TSr}

HDR, SK {} -->

Figure 4.9: IKEv2 Initial Exchanges with Payload Fragmentation and Bulk Transfer of
Authentication Payload

Initiator Responder

HDR, SAi1, KEi, Ni,

N(IKEV2_FRAGMENTATION_SUPPORTED) -->
<-- HDR, SAr1, KEr, Nr, [CERTREQ,]

N(IKEV2_FRAGMENTATION_SUPPORTED)

HDR, SK {IDi, [CERT,] [CERTREQ,] [IDr,]
AUTHi.1, SAi2, TSi, TSr} -->

<-- HDR, SK {}
HDR, SK {IDi, [CERT,] [CERTREQ,] [IDr,]

AUTHi2, SAi2, TSi, TSr} -->
<-- HDR, SK {}

HDR, SK {IDi, [CERT,] [CERTREQ,] [IDr,]
AUTHi.3, SAi2, TSi, TSr} -->

<-- HDR, SK {IDr, [CERT,]
AUTHr.1, SAr2, TSi, TSr}

HDR, SK {} -->
<-- HDR, SK {IDr, [CERT,]

AUTHr.2, SAr2, TSi, TSr}
HDR, SK {} -->

<-- HDR, SK {IDr, [CERT,]
AUTHr.3, SAr2, TSi, TSr}

HDR, SK {} -->

Figure 4.10: IKEv2 Initial Exchanges with Payload Fragmentation and Incremental Transfer
of Authentication Payload

51

4 IKEv2 Protocol Design for quantum-resistant Authentication

Table 4.3: Variety of Approaches towards a quantum-safe Signature Algorithm

Integrating a new Signature Algorithm

New Authentication Method RFC 7427 Digital Signature

Requesting a Signature Algorithm

IDr Payload CERTREQ Payload

Use Key Type of Initiator No requesting

Indicating the Key Type in CERTREQ payload

Private Use Range 201-255 Raw Public Key 15

Hybrid Authentication

Multiple Authentication Exchanges

Support Payload > 64kiB

Hash and URL Payload Fragmentation

Payload Fragmentation

Bulk Transfer Incremental Transfer

serves the requirement SigR7 Practicability, as all communication happens within the IKEv2
protocol. But it is not the most minimalistic approach as it adds computational complexity
and even additional message exchanges in the case of the incremental transfer. That is the
reason why this approach fails to comply with the requirement SigR6 Minimalism.

4.4 Final Protocol Design

The previous sections in this chapter showed multiple approaches of how to solve different
problems with regards to the integration of quantum-safe authentication in IKEv2. In this
section we now present the final protocol by explaining design decisions and showing an
exemplary sequence of the protocol. Further we will discuss the combination of a quantum-safe
key exchange together with the quantum-safe authentication elaborated in this protocol.

4.4.1 Design Decisions

Table 4.3 summarizes the provided approaches introduced in Sections 4.1 - 4.3 from which
we need to choose towards the integration of a quantum-safe authentication in IKEv2.

To integrate a new signature algorithm in the IKEv2 protocol, the Digital Signature method
proposed by RFC 7427 [KS15] is chosen. It mitigates most of the design flaws that come with
the traditional authentication mechanism as described in Section 4.1.1. Moreover, the hash
algorithm negotiation and the options to indicate the signature algorithm provide a good
amount of flexibility without introducing too much complexity. Combining these properties
with the fact that the Digital Signature method allows a simple exchange of the signature

52

4.4 Final Protocol Design

algorithm, aligning well with crypto-agility, makes it a good fit for the protocol extension for
integrating a quantum-safe signature scheme into IKEv2.

Since the final protocol will incorporate multiple authentication exchanges, the methods to
request a specific signature algorithm from the other peer shown in RFC 7424 [KS15] are
rendered useless. Using the IDr payload to bind an ID to a signature algorithm does not
work as we want to authenticate one ID with more than one signature algorithm. Using
the CERTREQ payload only allows peers to request an algorithm which they use in the first
round of authentication exchanges and is therefore not useful for the following authentication
exchanges. For the responder it is possible to always authenticate with the same method as
the initiator but has the drawback of lost flexibility. There is no reason for the responder to
strictly follow the choices which the initiator made to authenticate itself. This is the reason
why there will not be any requesting of a signature algorithm. It either assumes, that both
peers are capable of using the same signature schemes or requires the peers to have some
out-of-band communication. If one peer authenticates using a method which the other peer
does not support, there is the AUTHENTICATION FAILED error type that can be sent as
response and potentially terminate the connection.

Since we do not utilize the CERTREQ payload to request a signature algorithm, we consequently
do not need to indicate a key type within this payload.

For hybrid authentication multiple authentication exchanges as described in RFC 4739
[EK06] are incorporated. This approach offers the possibility to authenticate with one classic
signature algorithm and one or more quantum-safe algorithms. It allows both peers to choose
their signature schemes independent from the other peer and even allows the peers to make
use of other authentication mechanisms like EAP or pre-shared key authentication.

To be able so send AUTH payloads containing signature data bigger than 64kiB, the protocol
makes use of payload fragmentation. The alternative, Hash and URL, comes with constraints
which drastically reduce the functional scope. As discussed in Section 4.3.1, peers behind a
NAT cannot easily operate a publicly accessible web server and firewall and policy restrictions
may also prevent peers from running a web server. Although the implementation of payload
fragmentation adds complexity to the IKEv2 protocol and the need to transfer big data
inside the protocol will slow down the operation, it is still considered the preferred option
over the Hash and URL approach.

Within payload fragmentation the bulk transfer option as described in Section 4.3.2 is the
preferred method of transmitting big payloads. It adds less complexity to IKEv2 and integrates
seamlessly into the already established IKEv2 message fragmentation. The drawback is that
the loss of one message fragment over the network requires the re-sending of all fragments
again. However, the alternative would be to acknowledge each single message containing a
bit of the split up big payload. This adds a much bigger delay to the protocol operation,
since each peer has to wait for the next message to arrive over the network. In particularly
lossy networks the incremental approach might be the better choice, however, usually the
bulk transfer should perform much better. Due to these circumstances the final protocol
design does not require one of the two approaches, but allows for both.

Table 4.4 shows the possible approaches to solve the challenges of integrating quantum-safe
signature schemes into IKEv2 again, this time with the chosen approaches highlighted in
green.

53

4 IKEv2 Protocol Design for quantum-resistant Authentication

Table 4.4: Approaches chosen towards a quantum-safe Signature Algorithm

Integrating a new Signature Algorithm

New Authentication Method RFC 7427 Digital Signature

Requesting a Signature Algorithm

IDr Payload CERTREQ Payload

Use Key Type of Initiator No requesting

Indicating the Key Type in CERTREQ payload

Private Use Range 201-255 Raw Public Key 15

Hybrid Authentication

Multiple Authentication Exchanges

Support Payload > 64kiB

Hash and URL Payload Fragmentation

Payload Fragmentation

Bulk Transfer Incremental Transfer

4.4.2 Procedure of the Protocol

Figure 4.11 shows the initial exchanges of the elaborated IKEv2 protocol exemplary authen-
ticating first with a classic signature algorithm and then two times with a quantum-safe
algorithm. The first authentication mechanism does not need payload fragmentation, as the
AUTH payload remains under the 64kiB limit. Both quantum-safe authentications in contrast
do make use of payload fragmentation, which is indicated by using more than one AUTH

payload (AUTHi[23].1, AUTHi[23].2, ... and AUTHr[23].1, AUTHr[23].2, ...).

A similar scenario using the incremental transfer and confirmation approach of payload frag-
menting is shown in Figure 4.12. It uses just one classic and one quantum-safe authentication
mechanism.

4.4.3 Integration with Quantum-safe Key Exchange in IKEv2

To not only achieve a quantum-safe authentication in IKEv2 but make it entirely quantum-
safe, the elaborated protocol can be combined with the work on implementing a quantum-safe
key exchange mechanism for IKEv2. As mentioned in Section 2.2.2 Heider’s work [Hei19]
introducing IKE INTERMEDIATE as described in [Smy20] provides a full protocol extension
to IKEv2. The elaborated protocol for quantum-resistant authentication presented in this
work can be used alongside his work, resulting in an IKEv2 protocol which incorporates
quantum-safe key exchange and authentication.

54

4.4 Final Protocol Design

Initiator Responder

HDR, SAi1, KEi, Ni,

N(IKEV2_FRAGMENTATION_SUPPORTED),
N(SIGNATURE_HASH_ALGORITHMS) -->

<-- HDR, SAr1, KEr, Nr, [CERTREQ,]
N(IKEV2_FRAGMENTATION_SUPPORTED),
N(SIGNATURE_HASH_ALGORITHMS),
N(MULTIPLE_AUTH_SUPPORTED)

HDR, SK { IDi, [CERT+,] [CERTREQ,]
[IDr,] AUTHi1, SAi2, TSi, TSr,
N(MULTIPLE_AUTH_SUPPORTED),
N(ANOTHER_AUTH_FOLLOWS) } -->

<-- HDR, SK { IDr, [CERT+,] AUTHr1,
N(ANOTHER_AUTH_FOLLOWS) }

HDR, SK { IDi, [CERT+,]
AUTHi2.1, AUTHi2.2, ...,
N(ANOTHER_AUTH_FOLLOWS) } -->

<-- HDR, SK { IDr, [CERT+,]
AUTHr2.1, AUTHr2.2, ...,
N(ANOTHER_AUTH_FOLLOWS) }

HDR, SK { IDi, [CERT+,]
AUTHi3.1, AUTHi3.2, ... } -->

<-- HDR, SK { IDr, [CERT+,]
AUTHr3.1, AUTHr3.2, ...,
SAr2, TSi, TSr }

HDR, SK { } -->

Figure 4.11: Initial Exchanges with three Authentication Rounds, two of them with Bulk
Transmission of Fragmentated Payloads

55

4 IKEv2 Protocol Design for quantum-resistant Authentication

Initiator Responder

HDR, SAi1, KEi, Ni,

N(IKEV2_FRAGMENTATION_SUPPORTED),
N(SIGNATURE_HASH_ALGORITHMS) -->

<-- HDR, SAr1, KEr, Nr, [CERTREQ,]
N(IKEV2_FRAGMENTATION_SUPPORTED),
N(SIGNATURE_HASH_ALGORITHMS),
N(MULTIPLE_AUTH_SUPPORTED)

HDR, SK { IDi, [CERT+,] [CERTREQ,]
[IDr,] AUTHi1, SAi2, TSi, TSr,
N(MULTIPLE_AUTH_SUPPORTED),
N(ANOTHER_AUTH_FOLLOWS) } -->

<-- HDR, SK { IDr, [CERT+], AUTHr1,
N(ANOTHER_AUTH_FOLLOWS) }

HDR, SK { IDi, [CERT+,] AUTHi2.1 } -->
<-- HDR, SK {}

HDR, SK { IDi, [CERT+,] AUTHi2.2 } -->
<-- HDR, SK {}

...

HDR, SK { IDi, [CERT+,] AUTHi2.n } -->
<-- HDR, SK {IDr, [CERT+,]

AUTHr2.1, SAr2, TSi, TSr}
HDR, SK {} -->

<-- HDR, SK {IDr, [CERT+,]
AUTHr2.2, SAr2, TSi, TSr}

HDR, SK {} -->
...

<-- HDR, SK {IDr, [CERT+,]
AUTHr2.n, SAr2, TSi, TSr}

HDR, SK {} -->

Figure 4.12: Initial Exchanges with two Authentication Rounds, one of them with Incremental
Transmission of Fragmentated Payload

56

4.4 Final Protocol Design

4.4.4 Compliance with Requirements

After having developed the protocol for an integration of quantum-safe authentication into
IKEv2, we take a look at the requirements, defined in Section 3.3, to check the compatibility
of the protocol with those requirements.

The requirement SigR1: Quantum Security has been fulfilled, as the protocol enables us
to freely choose several signature schemes that can incorporate signature data bigger than
64kiB. It is up to the signature scheme to ensure the second requirement SigR2: Compliance
with protection goals Authenticity, Integrity and Non-repudiation. Due to the flexible way of
incorporating several signature schemes into the IKE AUTH exchanges, the requirement is
fulfilled if the user uses a signature scheme which complies with these protection goals. In
the end it is the user’s responsibility to fulfill this requirement, but as the protocol design
enables the user to comply with these goals, we therefore consider this requirement as fulfilled.
However, note that it is possible for a user to use a signature scheme that does not protect
one or more of authenticity, integrity and non-repudiation. The third requirement, SigR3:
Prevention of Security Reduction is fulfilled by having more than one IKE AUTH exchange,
enabling the peers to first authenticate with a classic signature scheme and then in one
or more further exchanges incorporating quantum-safe authentication mechanisms. This
way we do have at least the security of the classic algorithm. SigR4: Crypto-Agility has
also been taken into account by using the “Digital Signature” authentication method in
combination with multiple authentication exchanges. This allows the peers to easily replace
one or more of the incorporated authentication mechanisms with other mechanisms if needed.
The requirement SigR5: Support for payloads >64kiB is fulfilled by implementing the work
from the IETF draft “Beyond 64KB Limit of IKEv2 Payload” [THS20] in the IKE AUTH
exchange. The last two requirements SigR6: Minimalism and SigR7: Practicability are
non-functional requirements which makes them harder to evaluate. The protocol has been
designed with minimalism in mind, however, decisions have been made that do not comply
with minimalism, e.g. the decision to not use the Hash and URL approach for payloads
bigger than 64kiB. We explained these decisions, but consider them a compromise that had
to be made to get a functional, practical and reliable protocol. Although we payed close
attention to develop a protocol without design flaws the Sig7: Practicability requirement
can ultimately only be proven by fully implementing the protocol and performing tests and
measurements, simulating a real-world scenario. We consider the last two requirements as
not fulfilled.

Table 4.5 shows the requirements defined in Section 3.3 and indicates whether each requirement
has been fulfilled or not, as described in the above paragraph. If a requirement has been
fulfilled, this is shown by a check mark symbol on green background in the last column. A
requirement that has no been met is shown as a “x” on red background.

57

4 IKEv2 Protocol Design for quantum-resistant Authentication

Table 4.5: Requirements Fullfillment in the final Protocol Design

ID Requirement Fulfilled

SigR1 Quantum-Security X

SigR2 Compliance with protection goals Authenticity,
Integrity and Non-Repudiation

X

SigR3 Prevention of security reduction X

SigR4 Crypto-agility X

SigR5 Support of Payloads > 64kiB X

SigR6 Minimalism x

SigR7 Practicability x

58

5 Proof of Concept

To show the feasibility of the elaborated protocol towards a quantum-resistant authentication
in IKEv2 based on isogenies, an implementation is provided. Section 5.1 provides an
implementation of the isogeny-based signature scheme. Section 5.2 discusses the integration
of the elaborated protocol into iked, the IKEv2 daemon of OpenBSD.

5.1 Digital Signature Scheme based on Supersingular Isogenies

In [YAJ+17] Yoo et al. not only propose a digital signature scheme based on supersingular
isogenies, but they also provide an implementation of their approach1. Based on the SIDH
library provided by Microsoft 2,3, the implementation utilizes a key generation, a signing and
a verifying algorithm, which makes it a promising candidate for a working digital signature
scheme. That is the reason why this implementation has been chosen as a starting point for
the signature scheme that has been integrated into the IKEv2 protocol. Yoo et al. implement
their signature scheme using SIDHp751 of the PQCrypto-SIDH from Microsoft and achieve
128 bits of post-quantum security by choosing to perform 248 rounds of zero-knowledge proof
as part of their algorithm. However, taking a closer look at their implementation, some
drawbacks and issues become obvious.

5.1.1 Drawbacks and issues of the implementation of Yoo et al.

This section describes drawbacks and issues of the implementation of Yoo et al.

OpenBSD support: The isogenysignature implementation provides support to the operating
systems Microsoft Windows and GNU/Linux. It supports the C compiler GNU GCC[gcc]
and the Clang Compiler [cla] which makes it possible to port the application to
OpenBSD.

Memory management: Not only does the isogenysignature implementation leak memory by
not freeing allocated memory after usage but it also accesses memory at uninitialized
addresses. This leads to random segmentation faults and undefined behaviour. Although
the Linux kernel seems to be quite open to illegal memory access, the implementation
of malloc(3) in OpenBSD is a lot more stricter. This results in the signature scheme
not being usable after having been ported to OpenBSD. Figure 5.1 shows the summary
of a Valgrind([val]) analysis of the kex_test program offered by the isogenysignature
implementation. The sourcecode has not been altered and has been built with following
command: make ARCH=x64 CC=gcc ASM=FALSE GENERIC=FALSE on a 5.8 Linux kernel and

1https://github.com/yhyoo93/isogenysignature
2https://www.microsoft.com/en-us/research/project/sidh-library
3https://github.com/microsoft/PQCrypto-SIDH

59

5 Proof of Concept

an Intel Core I7-4600M. Note that slight changes have been made in the Makefile,
disabling optimization (-O0) and adding the debug flag to the compiler command (-g).
This is necessary to analyse programs with Valgrind.

Unruhs construct: Unruhs construct is not correctly applied in the implementation of the
signature scheme. The idea behind Unruhs construct is explained in Section 3.2.3. In
summary, the signer creates a hash based on input parameters. Depending on this hash
a bit is generated for every round of the underlying NIZK, which determines which
response is included in the signature. The verifier computes the same hash (based on
the data he gets from the signature) and generates the same bit from the hash for
every round. Depending on that bit, the verifier knows, which response he expects
in the signature and can verify the response. In contrast to Unruh’s construct, the
signing algorithm of the isogenysignature implementation puts both responses (one for
challenge 0 and one for challenge 1) of each round into the signature data and sends the
signature over to the verifier. The verifier then computes a hash from data that differs
from the approach of Unruh and depending on that hash he generates a bit. This bit
determines which response the verifier checks for validity. Due to the fact that both
responses are valid responses (but for different challenges), the verification is always
successful. What kind of data has been used to generate the aforementioned hash and
how the bit is generated is not essential, as long as the responses contained in the
signature are valid responses of their types. This leads to the signature proving that
the signer is capable of computing isogenies, but it does not authenticate the author of
a message nor does it protect the integrity of a message.

Message signing: The isogenysignature implementation does not sign a message. This issue
correlates with the implementation not applying Unruh’s construct correctly. The
signing algorithm does not generate a challenge hash at all and the verifying algorithm
does compute the challenge hash, but not including the message as partial input of
the challenge hash. It is mandatory for both parties to generate the hash and also
to incorporate the message in the hash generation as this is the mechanism to ensure
integrity of the message. If the message has been altered in transit, the verifier notices it
by the hash being different from the one the signer calculated. This results in different
bits for each round of verification. At the first bit, that differs from the one the signer
has used, the verifier would fail his verification and reject the message. If the messages
are not incorporated into the challenge hashes, these hashes and therefore also the bits
for the rounds of the underlying NIZK can be the same for the signer and the verifier
even though the message has been altered in transit. This makes it impossible for the
verifier to detect whether the message has been altered in transit or not.

Outdated SIDH library: The version of the SIDH library used for the implementation of the
isogeny-based signature scheme could not be clearly identified. The latest version of the
SIDH library as at the date of writing this work is v3.3 (2020-10-19). Comparing this
version to the one used in the isogenysignature implementation leads to the assumption
that an older, nowadays outdated version of the SIDH library has been used. This
might have a negative impact on the efficiency of the isogeny based cryptography that
is used via that library and therefore lower the performance of the signature scheme.

Unsafe Random Generator: There are several points in the process of the isogeny-based
signature scheme where randomness is necessary. Most notably the signing party has

60

5.1 Digital Signature Scheme based on Supersingular Isogenies

to generate a random point R on which he calculates his commitments in every round
of the underlying NIZK. The implementation uses the rand() function which generates
pseudo random numbers based on a seed. The problem is that the behaviour of the rand
function is deterministic, which means if given the same seed the function produces the
same random number. This is not acceptable in high security scenarios, as the random
number depends on the state of a system which might be exploited by an attacker.

==5902== LEAK SUMMARY:
==5902== definitely lost: 8,739,020 bytes in 17,550 blocks
==5902== indirectly lost: 0 bytes in 0 blocks
==5902== possibly lost: 0 bytes in 0 blocks
==5902== still reachable: 0 bytes in 0 blocks
==5902== suppressed: 0 bytes in 0 blocks
==5902==
==5902== ERROR SUMMARY: 23590 errors from 34 contexts (suppressed: 0 from 0)

Listing 5.1: Valgrind memory errors summarized

As the implementation elaborated in this work is just for the purpose of proving the concept,
we do not fix the last two drawbacks being “Outdated SIDH Library” and “Unsafe Random
Generator”.

5.1.2 Porting to OpenBSD

The first task that needed to be done in order to port the signature scheme implementation
to OpenBSD was writing a new makefile. The syntax for the makefile of the GNU Make
utility differs from the syntax the OpenBSD version of make(1) supports. Two of the most
notable differences are that inclusion statements, conditional and loop structures start with
a single dot in OpenBSD makefiles and that some of the conditional statements (like ifeq)
are not available in OpenBSD makefiles. Also OpenBSD makefiles enclose variables in curly
braces whereas GNU makefiles enclose variable names in parenthesis. For more information
on the syntax of the different Make utilities please consult the respective manuals, [bsda] for
the OpenBSD makefile syntax and [gnu] for the GNU makefile syntax.

The second step in porting the implementation to OpenBSD is defining preprocessor directives,
just like they have been defined for Microsoft Windows and GNU/Linux. The program
sometimes uses OS specific system calls which makes it necessary for the program to know
on which OS it is currently running. As GNU/Linux and OpenBSD are both largely POSIX
compliant, the system calls of GNU/Linux and OpenBSD do not differ and the program calls
the same system calls no matter if it is run on GNU/Linux or OpenBSD. Microsoft Windows
does not comply with the POSIX standards. Therefore, different system calls are used in
most cases.

The third change that has to be made in the process of porting the implementation to
OpenBSD was adapting the #include preprocessor directives, as some functions in OpenBSD
need different inclusions than on other operating systems. This relates e.g. to the open()

function call that needs the inclusion of the header file sys/stat.h which defines the mode a
new file is created with.

61

5 Proof of Concept

5.1.3 Improving Memory Management

The biggest issue regarding memory management was the function call fpcopy751 in the file
fpx.c which copies a field element of 96 bytes to another field element of the same size. This
function was called with an input of 48 bytes which led to the illegal memory access. The
issue appears in the SIDH library from Microsoft which is outdated, newer versions of the
SIDH library mitigate this problem. This work uses the outdated SIDH library, but mitigated
the issue by using the copy_word() function also declared in fpx.c. This function behaves
the same way as the fpcopy751 function with the difference, that the length of bytes to copy
has to be handed over as input parameter. By specifying the right amount of bytes to be
copied the illegal memory access problem is resolved.

Another problem that has been detected using Valgrind shows that hardly any allocated
memory regions are freed when they are not needed anymore. This fact has also been
confirmed by OpenBSD’s memory leak detection using MALLOC_OPTION ”D”. It leads to
memory leaks which result in high main memory usage and in the worst case in the program
crashing. Freeing these memory allocations as soon as they are not needed anymore mitigates
this issue and results in a leak free, stable running program.

5.1.4 Applying Unruhs Transformation

In their work [YAJ+17], Yoo et al. describe their signature scheme with three algorithms,
namely a key generation algorithm, a signing algorithm and a verifying algorithm. This is
intuitively expected when it comes to signature schemes. The signing algorithm and the
verifying algorithm are affected by Unruh’s Transformation described in Section 3.2.3. Yoo
et al. adapt Unruh’s transformation correctly to use a cocatenation of the public key and
a message (pk,m) instead of a claim of identity (x). However, they do not apply Unruh’s
transformation to their implementation and, on top of that, their signature data differs from
the data they describe in their paper. The first change applied to the signature scheme
implementation was to fix the signature data. The left side of the following listing (5.2) shows
the modified signature struct. The right side (5.3) shows the signature struct of the original
implementation.

struct Signature {
unsigned char

*com[NUM_ROUNDS][2];
uint8_t

*ch[NUM_ROUNDS];
unsigned char

*h[NUM_ROUNDS][2];
unsigned char

*resp[NUM_ROUNDS];
};

Listing 5.2: Modified signature struct

struct Signature{
unsigned char

*Commitments1[NUM_ROUNDS];
unsigned char

*Commitments2[NUM_ROUNDS];
unsigned char

*HashResp;
unsigned char

*Randoms[NUM_ROUNDS];
point_proj

*psiS[NUM_ROUNDS];
};

Listing 5.3: Initial signature struct

Note that both structures contain the commitments for each round, just represented in a
slightly different way. The original implementation does not contain the challenge bit in

62

5.1 Digital Signature Scheme based on Supersingular Isogenies

the signature struct, which later makes it impossible to know which response is part of the
signature. This field has been added to the modified signature structure. Further both
structures contain the hash field, again represented in a slightly different way. However, the
original implementation fills the field incorrectly as it does not take into account the challenge
bit. This issue has been resolved in the modified implementation. Each round i of the
underlying NIZK has a challenge bit ch[i]. If the challenge bit equals zero, the resp[i][0]

has to be hashed and stored in the h[i][0]. If the challenge bit is one, resp[i][1] has to be
hashed and stored in h[i][0]. The other response is also hashed and stored in h[i][1].

Based on the content of the first three data fields of the modified struct, it is possible to
generate a challenge hash H from which the bitstring J_1|| ... ||J_i is derived. This
bitstring together with the ch[i] determines which of the responses (resp[i][0] or resp

[i][1]) is part of the actual signature. The resulting response is stored in the last field
of the modified signature struct named resp[i]. In contrast, the original implementation
simply stored both possible responses in the fields Randoms[i] and psiS[i], as they do not
apply Unruhs construct. This is a significant waste of memory and makes the signature size
bigger than it needs to be. But also including both possible responses into the signature data
conflicts with the idea behind Unruhs transformation where only one possible response is
sent to the verifier, together with necessary information of how to verify it.

Due to the fact, that the two possible responses use a different amount of memory, one has
to be cautious in allocating memory for the resp[i] field. One idea is to pad the shorter
response to use the same amount of memory as the bigger response, however, this again
would waste a substantial amount of memory depending on the number of rounds of the
underlying NIZK. Allocating a different amount of memory for the resp[i] for each round
has implications on the receiver side as the verifier does not know how to parse the signature
before generating the challenge hash and deriving the bitstring J_1|| ... ||J_i.

On the receiver’s side, the verifier has to parse the first three data fields being com[i][2],

ch[i] and h[i][2]. These values can be parsed by the verifier, only because the length of
those fields is known. The verifier has to generate the challenge hash from the public key
of the signer, the message itself and the values of these parsed data fields and derive the
bitstring J_1|| ... ||J_i. Combining the knowledge of the ch[i] and the bitstring, the
verifier knows which kind of response is in each field resp[i] and can allocate memory and
parse the expected response. Then the verifier can check the response for the criteria of the
expected type of response. If all those checks succeed, the verifier can be sure that the signer
is the one he claims to be and further that the message has not been altered in transit.

5.1.5 Message Integration

The original implementation of Yoo et al. does not incorporate a message which is signed
by their signature scheme. Although it is theoretically possible to not sign a message but
just prove ownership of a secret key, this is not what we want to achieve with a signature
scheme. The integration of a message only changes the challenge hash as it is concatenated
with the public key of the signer and other parameters that can be found in Algorithm 3.4
and Algorithm 3.5.

Note that is critical to include the message in the signature scheme to ensure the integrity of

63

5 Proof of Concept

the message. The receiver of a message does not only want to know that the sender actually
owns the identity he claims to have but also wants to be sure that the message has not been
altered in transit.

5.1.6 Providing an API to the Isogenysignature scheme

To provide a well-defined uniform access to the functionality of the signature scheme based on
supersingular isogenies, it has been compiled as shared library. The functions implemented
by the shared library can be seen from the header file SISig.h provided as part of the library.
This header file is shown in the following Figure 5.4.

1 #define OBYTES 48
2 #define PBYTES 96
3 #define PRIV_KEY_LEN OBYTES //Privatekey len in bytes
4 #define PUB_KEY_LEN 8*PBYTES //Publickey len in bytes
5

6 struct SigData {
7 unsigned char *sig;
8 unsigned int siglen;
9 };

10

11 int
12 SISig_P751_Keygen(unsigned char *PrivateKey, unsigned char *PublicKey);
13

14 struct SigData *
15 SISig_P751_Sign(char *msg, unsigned char *PrivateKey, unsigned char *PublicKey);
16

17 int
18 SISig_P751_Verify(char *msg, struct SigData *sigdata, unsigned char *PublicKey);
19

20 unsigned char *
21 SISig_P751_Read_Pubkey(char *file);
22

23 unsigned char *
24 SISig_P751_Read_Privkey(char *file);
25

26 int
27 SISig_P751_Write_Pubkey(unsigned char *PublicKey, char *file);
28

29 int
30 SISig_P751_Write_Privkey(unsigned char *PrivateKey, char *file);

Listing 5.4: Functions of Shared Library of Isogeny-based Signature Scheme

The define-statements serve the length of the public key and the private key to programs
using the API. The SigData struct provides a simple structure containing the signature data
itself as well as the length of the data, which simplifies further parsing of the signature
data. The first three functions defined by the header file expose the algorithms specifying a
signature scheme.

SISig_P751_Keygen generates a signing key and a public key, storing these keys in the memory
pointed to by the PrivateKey and PublicKey pointers provided by the function caller. On
success, the function returnes 0, otherwise, -1 is returned.

SISig_P751_Sign generates the signature data based on a message msg, a signing key

64

5.2 Integration in OpenBSDs iked

PrivateKey and a public key PublicKey. The function allocates memory for the gener-
ated signature and returns a pointer to the struct SigData filled with the signature data
itself and the length of the signature data. Note that it is the responsibility of the function
caller to free the allocated memory for the struct SigData, after it is not used anymore, to
avoid memory leaks.

SISig_P751_Verify takes a message msg, a signature sigdata and a public key PublicKey,
to verify the authenticity and integrity of the message. On success the function returns 0,
otherwise, -1 is returned.

The remaining four functions SISig_P751_(Read|Write)_(Priv|Pub)key read/write the se-
cret/public key from/to the file specified in file string. In the case of reading, the result
gets stored in a pointer to unsigned chars provided by the function caller. When writing, the
functions return 0 on success, otherwise, -1 is returned.

5.2 Integration in OpenBSDs iked

This work does not provide the full implementation of the protocol described in Section 4.4,
as this would have exceeded the scope of the work. Nevertheless, analyzing the iked daemon
especially with a view on what needs to be adapted to fit to the new elaborated protocol,
provides a good starting point for an implementation of the full protocol extension. This
chapter gives an overview of the internal structure of iked as well as discusses ways to
implement the protocol extension proposed in Chapter 4

5.2.1 OpenBSD iked

The IKEv2 daemon iked [ikeb] which is part of the OpenBSD [ope] base system has been
chosen as starting point for the integration of the protocol extension for several reasons. The
first reason is that it operates on OpenBSD being an operating system that has been designed
with security deeply integrated ([bsdb], [Raa]). Iked follows this philosophy providing a
minimalistic and secure codebase that makes maintenance easier and allows for an overview of
the security incorporated in the project. It is designed to fully run in user land, for interaction
with the kernel the PF KEY Key Management API PFKEYv2 specified in [MMP98] is used.
Iked makes use of three privilege separated processes as shown in Figure 5.1 (taken from [Flo],
slightly modified). There is the parent process that is responsible for parsing and loading the
configuration and controlling the other two processes. The configuration is on the one hand
taken from a configuration file which defaults to /etc/iked.conf and on the other hand comes
from the additional utility “ikectl” [ikea] which is able to change configuration parameters
during the runtime of the iked daemon. The ca process is responsible for operations related
with certificates and key actions, whereas the ikev2 process handles message composition and
transmission. Interprocess communication is done using imsgs which is a mechanism using
sockets for exchanging messages between local processes. The implementation guarantees
imsgs are received as the whole message. For more details on imsgs, see [ims].

A simple configuration to establish an IPSec connection between the two networks 192.168.0.0/24
and 192.168.1.0/24 using a DH key exchange and a pre-shared key for authentication might
look like shown in Figure 5.2

65

5 Proof of Concept

ikectl parent
reload request
or SIGHUP

/etc/iked.conf

ca (ch-
root
/etc/iked)

send config

ikev2
(chroot
/var/empty)

sends config
and sockets

certificate and
key actions

/bsd kernel

PFKEYv2

network
proto udp
port
500,4500

imsgs

Figure 5.1: OpenBSD iked privilege separation model

ikev2 active esp from 192.168.0.0/24 to 192.168.1.0/24 \
peer 192.168.1.1 \
psk supersecretpassword

Figure 5.2: Exemplary iked.conf Configuration File

66

5.2 Integration in OpenBSDs iked

-----BEGIN SISIG PRIVATE KEY-----
d617605485a29c20fa1565c42db93ecc9bcb26191c724b47
7ac2f9a4b9baf08dcf50e257f37b75ed8ed7b1b990f08501
-----END SISIG PRIVATE KEY-----

Figure 5.3: Exemplary encoding of Isogeny-based Secret Key

struct imsg {
struct imsg_hdr hdr;
int fd;
void *data;

};

Figure 5.4: Imsg Data Structure

uint32_t type;
uint16_t len;
uint16_t flags;
uint32_t peerid;
uint32_t pid;

};

Figure 5.5: Imsg Header Data Structure

5.2.2 Integration of a new Signature Method

Iked implements Digital Signature Authentication as specified in RFC 7427 [KS15] allowing
a straightforward integration of the further signature schemes. The challenge in integrating a
new signature scheme lies in parsing the public and secret keys as the iked implementation
uses the crypto library [liba] provided by LibreSSL [libb]. New signature schemes that are
not supported by the crypto library need to deal with the encoding and parsing of the keys
on their own. A simple solution might be to represent the key data in hexadecimal format,
two chars per byte, and indicate the key type in meta data provided with the key data.
Figure 5.3 shows a potential representation of a secret key of the isogeny-based signature
scheme. Iked could then parse the first line and find out the actual used signature scheme.

To actually incorporate the keygeneration, signing and verifying algorithms in iked, the
cleanest approach is to provide a library with a header file defining the API to the signature
scheme. This allows iked to call a function provided by the API while maintaining a separation
between iked and the signature scheme.

5.2.3 Dealing with imsgs bigger 16384 bytes

As mentioned in Section 5.2.1 iked uses imsgs to exchange messages between local processes
using UNIX domain sockets. The current implementation of the imsg functionality allows
the sending of messages of up to 16384 bytes. This limit is not sufficient in the context of
quantum-resistant algorithms. Most of the quantum-safe algorithms either have public keys
or signature data, that exceeds this internal limit. As this data needs to be passed between
the ca and the ikev2 process, we must think of a way to get around this 16kiB limit. The
proposed solution is to send more than one imsg which needs adaptions at both processes.
The sending process needs to split the buffer containing either the public key or the signature
data up into chunks smaller than 16kiB. Additionally, the sending process needs to indicate to
the receiving process, that it will receive more than one chunk, which needs to be reassembled.
This can be done with the imsg type which is specified in the imsg_header struct, which is
part of the imsg struct. Those data structures are shown in Figure 5.4 and 5.5.

67

5 Proof of Concept

struct ibuf_truncated {
uint16_t curr_no;
uint16_t total;
uint8_t *data;

};

Figure 5.6: Truncated Ibuf Structure

To enable the receiving peer to reassemble fragmented imsgs, the sender provides metadata
together with the chunk of data itself, which is shown in Figure 5.6. This metadata consists
of the sequence number of the current chunk and is represented by the curr_no variable. The
second part of the metadata is the total number of chunks the big data has been split into,
represented by total. This enables the receiver to reassemble the chunks in the correct order
and gives information on the number of outstanding imsgs.

5.2.4 Incorporating multiple IKE AUTH Messages

To enable the iked implementation to incorporate more than one IKE AUTH message, it first
needs to indicate the capability of multiple authentication to the other peer. Therefore, as
described in Section 3.1.4, the initiator sends a notify payload in the first IKE AUTH request,
whereas the responder already sends the notify payload in the IKE SA INIT response. To add
the notify payload we need to modify two functions, as the exchanges differ depending on a peer
acting as initiator or as responder. The initiator needs to add the MULTIPLE_AUTH_SUPPORTED

payload in the ikev2_init_ike_auth() function executed by the ikev2 process. The responder
uses the ikev2_resp_ike_sa_init() function to add the notify payload indicating support
for multiple authentications.

After the peers have mutually indicated the capability to authenticate more than once,
each peer can add the ANOTHER_AUTH_FOLLOWS notify payload in their IKE AUTH message to
express the wish to authenticate one more time. This payload needs to be added in the function
ikev2_init_ike_auth() if the peer is the initiator, otherwise in the ikev2_resp_ike_auth()

function.

The peer receiving an IKE AUTH message recognizes the presence of an ANOTHER_AUTH_FOLLOWS

notify payload in the ikev2_pld_payloads() function and needs to behave different from
the case where this payload is not present. Most notably, the peer must not change the
state of the SA to “authenticated” after having verified the authentication payload, but must
wait for at least one more IKE AUTH exchange. A peer can only assume the SA to be
authenticated successfully after having received and verified an IKE AUTH payload without
the ANOTHER_AUTH_FOLLOWS notify payload, as this is how the sending peer indicates that it
does not wish to authenticate with another method.

5.2.5 Dealing with Payloads bigger 64kiB

In the context of quantum-safe authentication incorporating the protocol specified in Chapter 4
the only payload that might exceed the 64kiB limit is the AUTH payload containing the signature
data. The ikev2_next_payload() function handles the adding of another payload. The first

68

5.2 Integration in OpenBSDs iked

ikev2 active esp from 192.168.0.0/24 to 192.168.1.0/24 \
peer 192.168.1.1 \
rfc7427 rsa sisig

Figure 5.7: Examplary iked.conf Configuration File

step in this function is to check if the size of the payload exceeds 64kiB. A mechanism needs
to be implemented so that the function will, in case of a payload bigger than 64kiB, not
return an error, but split the payload into smaller chunks as described in Section 4.3.

If the “Bulk Transfer and Confirmation” approach is chosen, it is sufficient to just split
a large payload into smaller payloads and put all of them into one IKEv2 message. In a
scenario where both peers use signature schemes with signature data exceeding the limit,
this approach requires one more IKEv2 message which is the confirmation of the IKE AUTH
response. The initiators IKE AUTH request is implicitly confirmed by the responder sending
the IKE AUTH response.

Using the “Incremental Transfer and Confirmation” approach, the process gets more compli-
cated. Every smaller chunk of data needs to be transferred in an separate IKEv2 message
and has to be confirmed separately by the receiver before the usual protocol procedure can
continue. This is more intrusive to the protocol and requires more changes to the current
implementation.

The same holds true on the receiving peer where the bulk transfer approach only requires the
parsing of more than one AUTH payload and reassembling the data. Additionally the initiator
peer has to acknowledge the receipt of the full IKE AUTH message from the responder to
ensure correct transfer of the data. The function ikev2_pld_payloads detects that the AUTH

payload is split up into smaller chunks and is responsible for reassembling the payload.

In contrast, the incremental transfer approach requires the receiving end to parse each IKEv2
message, store the content temporarily, acknowledge each received message and wait for the
next message to arrive. In this case also the ikev2_pld_payloads() function would detect
that the AUTH payload is split over more than one IKEv2 message. But the behaviour of the
function needs to differ from the bulk transfer case so that the confirmation message gets
prepared and sent to the other peer.

5.2.6 Adapting the Configuration and the Configuration-Parser

The last thing that needs to be taken into account when integrating quantum-safe signature
schemes into IKEv2 is adapting the configuration. This mainly happens in the file parse.y,
which is responsible for reading in the configuration file. The new signature algorithm needs
to be configurable in the configuration file. Also, with hybrid authentication more than one
signature scheme has to be configurable. A potential configuration file might look like the
following Figure 5.7 establishing an ESP tunnel between the two networks 192.168.0.0/24 and
192.168.1.0/24 where the other peer has the IP-address 192.168.1.1 using two Digital Signature
(RFC 7427) authentication methods being RSA and the isogeny-based SISig signature scheme.

The ikectl(8) [ikea] utility also needs adaptions which enable it to generate secret and
public keys for the added signature schemes.

69

6 Evaluation

After having discussed the proof-of-concept implementation of the isogeny-based signature
scheme and the IKEv2 protocol extension, we evaluate both. In Section 6.1 we show the
performance of the implemented signature scheme, followed by explaining the security of the
scheme in Section 6.2. Finally we also present security considerations of the IKEv2 protocol
extension in Section 6.3.

6.1 Performance Analysis of the isogeny-based Signature Scheme

We evaluate the isogeny-based signature scheme proposed in Chapter 3 and implemented as
described in Chapter 5 with regards to performance in a real world scenario. Therefore we
run experiments on three different machines with different operating systems. We use two
notebooks, one with a 5.9 Linux kernel and an Intel Core i5-6300 processor and one with
OpenBSD and an Intel Core i7-4600 CPU. The third machine is a workstation running Linux
5.8 and an Intel Core i7-8700 processor.

Figure 6.1 shows the execution time for key generating, signing and verifying algorithms
for each of these machines (average over 100 measurements). The time (in milliseconds)
which the algorithm needs to finish is shown on the y-axis. It is logarithmic to base 10.
We can see from the figure, that the key generation algorithm takes significant less time
(∼ 10ms) than the signing and verifying algorithm (∼ 4000ms−8000ms). This is expected,
since the key generation algorithm does not perform multiple rounds of the incorporated
zero-knowledge proof as described in Section 3.2. Calculating isogenies is the most time
consuming operation. Table 6.1 shows the computations, each algorithm executes. The key
generation algorithm chooses a random point S and generates one isogeny φ(S). The signing
algorithm runs a determined number of rounds and within each round it computes two
isogenies as part of the commitment, as described in Section 3.2.4. The verifying algorithm
also runs the same number of rounds and either calculates two isogenies or calculates one
isogeny and triples one point to check its order, depending on the challenge bit. In Table 6.1,
computational expensive operations are highlighted with red background color. Overall, a
complete execution of the isogeny-based signature scheme takes up to 13 seconds on the
two slower dual core processors and around seven seconds on the faster hexa-core processor.
To put these time measurements into context, the RSA signature scheme using SHA256
(executed on the i5-6300) needs approximately 100ms for the process of generating a key-pair,
signing a message with the secret key and verifying the message with the public key.

The measurements present the result of the signature scheme running in one thread. To
improve performance, we let the signature scheme run on the various machines using all
threads the machine can work on concurrently. Although in theory all of the three CPUs
support hyper-threading, i.e. being able to execute four threads concurrently, only two

71

6 Evaluation

Table 6.1: Calculation steps done by Key-generation, Signing and Verifying algorithm

Algorithm Input Computation

Key-generation E,S φ : E → E/〈S〉
}

executed
once

Signing E,E/〈S〉, R ψ : E → E/〈R〉


executed
over multi-
ple rounds

φ′ : E/〈R〉 → E/〈R,S〉
φ(R), ψ(S)

Verifying E,E/〈S〉, case1: check order of R and φ(R)

E/〈R〉, E/〈R,S〉 ψ : E → E/〈R〉
case1: R,φ(R) ψ′ : E/〈S〉 → E/〈R,S〉
case2: ψ(S) case2: check order of ψ(S)

φ′ : E/〈R〉 → E/〈R,S〉

1

10

100

1 k

10 k

i5-6300
Linux 5.9

i7-4600
OBSD 6.8

i7-8700
Linux 5.8

D
u

ra
ti

o
n

[m
s]

keygen
signing

verifying

Figure 6.1: Single-threaded Runtime of Key generation, Signing and Verifying Algorithm

72

6.1 Performance Analysis of the isogeny-based Signature Scheme

0

2

4

6

8

10

12

14

#1 #4 #1 #2 #1 #12 #Threads

D
u

ra
ti

o
n

[s
]

signing
verifying

i7-8700
Linux 5.8

i7-4600
OBSD 6.8

i5-6300
Linux 5.9

Figure 6.2: Performance Improvements achieved by Parallelization

threads have been spawned on the i7-4600, since OpenBSD disabled hyper-threading for
security reasons. On the i5-6300, 4 threads have been spawned, and we utilized even 12
threads on the i7-8700. For spawning new threads, we used the pthreads-API, defined in the
POSIX.1 standard (see [SR13, §11-12]). The execution of the rounds in the signing and in
the verifying algorithm can be easily parallelized, as computational steps of these rounds do
not correlate.

Figure 6.2 only shows the signing algorithm and the verifying algorithm, as this allows to
have a linear y-axis, again showing the runtime of each algorithms. The runtime of the key
generation is negligible and has therefore not been included on the revised stacked bar chart.
The figure shows the performance improvement on each CPU when using multiple threads.
In the group of two bars, the left bar shows the runtime of the algorithms computed on one
thread (indicated with #1), whereas the right bar shows the runtime utilizing more threads
(indicated with #2, #4 and #12). The performance improves approximately by a factor of
two on the dual core processors and by a factor of 5 on the i7-8700. Furthermore, on the
most powerful CPU, the i7-8700, both the signing and verifying algorithm finish in under
one second, improving the practicability of the signature scheme.

As mentioned in Section 5.1.1 the signature scheme does not use a current implementation of
the PQCrypto-SIDH library. Current implementations of this library provide an optimization
for processors which already have the ADX extension. This extension allows the use of further
assembly instructions, which speed up the field arithmetic computations notably. Migrating
the signature scheme to this newer library would result in a performance gain on processors
of the Broadwell generation or newer.

Summarizing the runtime evaluation, we see that the performance of the isogeny-based
signature scheme is far from optimal taking more than 10 seconds on conventional dual
core processors. However, we have seen that considerable improvements can be achieved
by tweaking the algorithms to run CPU-intensive tasks concurrently. The existence of an
improved PQCrypto-SIDH library and ongoing research in post quantum algorithms means

73

6 Evaluation

we can expect further improvements on the runtime of isogeny-based cryptography in general.

6.2 Security Considerations of the isogeny-based Signature
Scheme

This section discusses the underlying security of the isogeny-based signature scheme from
a theoretical perspective in Section 6.2.1. Afterwards, in Section 6.2.2 the security of the
proof-of-concept implementation is taken into consideration.

6.2.1 Theoretical Foundation

De Feo et al. define five problems in their work towards quantum-resistant isogeny-based cryp-
tographic systems, the following two being relevant to their zero-knowledge proof [DFJP14,
§5].

Problem 6.1 (Computational Supersingular Isogeny (CSSI) problem). Let φA : E0 → EA
be an isogeny whose kernel is 〈[mA]PA + [nA]QA〉, where mA and nA are chosen at random
from Z/`eAA Z and not both divisible by `A. Given EA and the values φa(PB), φA(QB), find a
generator RA of 〈[mA]PA + [nA]QA〉.

Problem 6.2 (Decisional Supersingular Product (DSSP) problem). Given an isogeny φ :
E0 → E3 of degree `eAA and a tuple sampled with probability 0.5 from one of the following
two distributions:

• (E1, E2, φ
′), where the product E1×E2 is chosen at random among those `eBB -isogenous

to E0 × E3, and where φ′ : E1 → E2 is an isogeny of degree `eAA , and

• (E1, E2, φ
′), where E1 is chosen at random among the curves having the same cardinality

as E0, and φ′ : E1 → E2 is a random isogeny of degree `eAA ,

determine from which distribution the tuple is sampled.

These problems are believed to be hard to solve for both, a classic computer as well as a
quantum computer.

Further De Feo et al. prove that under the assumptions of CSSI and DSSP their proposed
identification scheme is zero-knowledge and therefore meeting the requirements of a sigma
protocol shown in Section 3.2.2[DFJP14, §6.2].

Applying Unruh’s transformation to this proof of identity results in an NIZK proof that
is simulation-sound and online extractable in the random oracle model as discussed in
Section 3.2.3. According to Unruh [Unr15, Therorem 18] we get a strongly unforgeable
signature scheme in the random oracle model from this NIZK.

6.2.2 Security of the Implementation

To evaluate the security of the isogeny-based signature scheme implementation, this section
discusses security relevant topics. We take a look at the PQCrypto-SIDH library provided by

74

6.2 Security Considerations of the isogeny-based Signature Scheme

Microsoft, discuss the used random number generators and hash functions before the memory
management is examined from a security perspective. These topics are particular important
for the implementation as they are the cryptographic foundation, the signature scheme is
based on.

PQCrypto-SIDH Library The implementation as described in Section 5.1 incorporates the
PQCrypto-SIDH library from Microsoft [pqc]. This implementation claims to protect
against timing and cache-timing attacks by using regular, constant time operations on
all secret key material. As mentioned in Section 5.1.1 the signature scheme incorporates
an outdated SIDH library, but there is no information on security issues of the older
version which would reduce the security of the signature scheme.

Random Number Generator The implementation uses the rand() and srand() calls from
the C standard library. The usual procedure is to initialize the srand() function with
a seed that is used by the rand function, to generate pseudo random numbers between
0 and RAND_MAX. The call to srand() is deterministic, meaning, if one calls the function
with the same seed twice, the same sequence of random numbers is returned by the
rand() function. This enables an attacker who either knows or guesses the right seed to
generate the same pseudo random numbers as the actual program and thus to compute
the same values. For example an attacker might be able to compute the same secret
key as its victim empowering the attacker to authenticate as the victim.

The OpenBSD operating system replaced the standard rand()/srand() implementations
with the one from arc4random(3) [arc]. This eliminates the problem described above by
ignoring the call to srand() and instead requesting pseudo random numbers from the
kernel incorporating different mechanisms to ensure randomness. However, when using
this signature scheme on systems that do not replace the standard random mechanism
with arc4random, this is a security threat and must be taken into account when using
the scheme for more than just a proof of concept.

Hash Function The isogeny-based signature scheme implementation utilizes a minimal SHA-3
implementation. This implementation has not been analyzed with regards to security as
this is not within the scope of this work. Using the signature scheme in scenarios beyond
a proof of concept, one should consider replacing the prototypical implementation with
either the reference implementation or another more mature implementation of SHA-3.

Memory Management Section 5.1.3 has already discussed the measures taken to eliminate
bogus memory access and memory leaks. It is important to ensure correct memory
access to prevent the signature scheme to crash or, in the worst case, allow an attacker
to execute malicious code by illegal memory access. The implementation has been
tested with Valgrind [val] and OpenBSD’s internal malloc-option to dump statistics
[mal]. Both tools confirmed that the program is free from memory leaks and illegal
memory access. Figure 6.3 shows the Heap and Error summary of Valgrind on the
implemented signature scheme.

75

6 Evaluation

==90062== HEAP SUMMARY:
==90062== in use at exit: 0 bytes in 0 blocks
==90062== total heap usage: 4,037 allocs, 4,037 frees, 1,309,878 bytes

allocated
==90062==
==90062== All heap blocks were freed -- no leaks are possible
==90062==
==90062== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

Figure 6.3: Valgrind Heap and Error summary of improved Memory Management

6.3 Security Considerations of the IKEv2 Protocol Extension

The security considerations for plain IKEv2 are discussed in [KHN+14, §5]. This work adds
extensions to IKEv2 interfering with the protocol procedure. As a result it is necessary to
take a look at the implications for the security of the protocol.

Signature Authentication (RFC 7427) [KS15] The use of the Digital Signature authentica-
tion method as shown in Section 4.1.2 allows a flexible combination of hash algorithms
and signature schemes. This enables the user to choose from any available hash al-
gorithm and signature scheme, of which some are more secure than others. The user
might choose a secure signature scheme in combination with a less secure hash function
or the other way round. It is important to understand that the achieved security is just
as high as the weakest algorithm and might result in users thinking their authentication
is harder to break than it actually is.

One might think that negotiation of the hash algorithm in the IKE SA INIT exchanges
might be prone to downgrading attacks. A man-in-the-middle might change the
SIGNARURE_HASH_ALGORITHM notify payload of either the initiator or the responder,
forwarding a slightly changed payload indicating support for only one unsecure hash
function. The other peer thinks its communication partner only supports this kind of
hash algorithm and makes use of it. Note that the man-in-the-middle would be detected
in the IKE AUTH message, where the peer whose SIGNARURE_HASH_ALGORITHM has been
altered, composes its AUTH payload signing, inter alia, this payload. The man-in-the-
middle could exploit the unsecure hash algorithm if he can generate the same hash from
the altered payload as the originating peer from the actual payload. As hash algorithms
always map any data to a fixed size digest, one can not eliminate the case, where two
inputs result in the same digest and so there is the theoretical possibility for this to
happen. Nevertheless, this is something we have to accept dealing with hash algorithms
and common hash algorithms that can be used in the SIGNARURE_HASH_ALGORITHM (see
“IKEv2 Notify Message Types - Status Types” by [IAN]) can reduce the probability of
a hash collision to a point where it is negligible.

Downgrade attacks modifying the AUTH payload of an IKE AUTH message are of less
concern as the peer receiving the message would fail to verify the AUTH payload with
the public key of the sending peer.

Multiple Authentication Exchanges (RFC 4739) As proposed by RFC 7296 [KHN+14], in
IKEv2 the responder discloses his identity only after the initiator has been successfully

76

6.3 Security Considerations of the IKEv2 Protocol Extension

authenticated. This changes with the initiator using multiple exchanges to authenticate.
The initiator is only considered authenticated by the responder once he has reveived a
message of type IKE AUTH which does not contain an ANOTHER_AUTH_FOLLOWS notify
payload. If the initiator sends an IKE AUTH message to the responder with the
ANOTHER_AUTH_FOLLOWS notify payload, the responder does not yet consider the initiator
as authenticated, but in his response he already reveals his identity in the IDr payload
which is part of the IKE AUTH response. An attacker might exploit this by breaking
a weak authentication method of an initiator, authenticating to the responder as the
initiator with this broken authentication mechanism and promising a more secure
authentication to follow. As soon as the attacker has seemingly authenticated as
the actual initiator, the responder reveals its identity and the attacker can gather
information related to its identity. A SA is never established as the attacker can not
complete its own authentication at the peer.

Beyond 64kiB Limit of IKEv2 Paylod The ability of a peer to accept IKEv2 messages con-
taining payloads bigger than 64kiB makes the peer vulnerable to (distributed) Denial
of Service (DOS) attacks where an attacker initiates an IKE AUTH exchange sending
huge payloads in its IKE AUTH message. The responder has to parse these payloads
and perform computations on the received data using resources like memory and CPU
time. If the attacker sends a big enough amount of IKE AUTH messages, this can
exceed the responder’s capability to handle all those requests. As a result, the victim
may be unable to process any requests from non-malicious peers. For a peer to protect
itself from one single rogue peer, RFC 7296 proposes to use Cookies as described in
[KHN+14, §2.6], though this method does not provide protection from a botnet e.g.
where the attacker uses more than one IP address. See [NS16] for measurements against
(D)DOS attacks.

77

7 Conclusion and Future Work

No one can safely predict the progress of research in the field of quantum computing. We
need to expect a breakthrough in the development of a large-scale quantum computer. Thus
we need to prepare for a scenario where today’s cryptography is rendered unsecure. While
there exists a protocol extension to IKEv2 realizing a quantum safe key exchange, this
approach does not consider authenticity, arguing that it would require a quantum computer
in real-time to exploit authenticity. Although this argument is true, with the arrival of a
quantum computer with enough computing power, forging a wrong identity becomes a real
threat.

This work aims to tackle the lack of quantum-safe authentication in IKEv2. We can achieve
our goal by incorporating a quantum-safe signature scheme in the initial exchanges of IKEv2
by adapting the IKE SA INIT and IKE AUTH exchanges. This work integrates an isogeny-
based signature scheme in IKEv2, which is assumed to hold against attacks utilizing a
quantum computer. We provide an extensive description of isogeny-based cryptography in
general and of an isogeny-based signature scheme in particular. Moreover an overview of the
IKEv2 protocol is given.

In the next step of this work, an extensive analysis of the IKEv2 environment and post-
quantum cryptography results in requirements for a successful integration of a quantum-safe
authentication. One important finding of the requirements analysis is to not develop a
protocol extension requiring one specific signature scheme, but to ensure crypto-agility. This
enables the drop-in replacements of various authentication mechanisms, which is vital in a
scenario where one authentication mechanism is broken and needs to be replaced. Another
finding is the need for hybrid authentication, which allows to authenticate with a classic,
more mature algorithm and additionally with a new quantum-resistant algorithm. In a case,
where the new quantum-resistant algorithm is broken, we can still rely on the security of the
classic algorithm protecting against a classic attacker. But if the quantum-resistant algorithm
holds, we additionally get protection from an attacker utilizing a quantum computer. By
hybrid authentication, we prevent a reduction of security.

Finally we design a protocol extension allowing quantum-resistant authentication in IKEv2.
Combining the flexible Digital Signature authentication method with multiple authentication
exchanges allows hybrid authentication where the selected signature schemes can easily be
exchanged. It is even possible to authenticate using a classic authentication mechanism
followed by several quantum-safe mechanisms. Furthermore, since signature data potentially
exceeds the IKEv2-internal limit of 64kiB, we need the protocol extension to fragment payloads
>64kiB to avoid this limit.

A proof-of-concept implementation is provided, to see how the signature scheme performs
in a real-world scenario. We start using an existing implementation of an isogeny-based
NIZK that has major flaws and turn it into an isogeny-based signature scheme by eliminating

79

7 Conclusion and Future Work

the flaws and adding functionality. Further we discuss in detail an implementation of the
elaborated protocol extension of IKEv2 and point out challenges that need to be considered
when implementing the protocol.

Focusing on performance and security, we give an evaluation of the isogeny-based signature
scheme. We observe high runtimes of the signing and the verification algorithms, but the
improvement by parallelization and current research give hope that the overall performance
will improve significantly. The extended IKEv2 protocol is also evaluated from a security
perspective, by discussing the introduced approaches necessary for a quantum-resistant
authentication. We show that the protocol extension is not prone to downgrading attacks
and how to mitigate the risk of man-in-the-middle and DOS attacks.

This work shows the feasibility of quantum-resistant authentication in IKEv2 fulfilling the
functional requirements of quantum-security, compliance with the protection goals integrity,
authenticity and non-repudiation, prevention of security reduction, crypto-agility and support
for payloads bigger than 64kiB. The introduction of multiple authentication exchanges as
well as the interchangeability of signature mechanisms and the payload fragmentation all
add additional complexity to the otherwise simple IKEv2 protocol. This is why we could
not accomplish compliance with the requirement of being minimalistic. Maybe in future,
the need for hybrid authentication becomes unnecessary, as soon as we have gained enough
confidence to trust in new quantum-resistant authentication mechanisms. This would again
reduce the complexity of the protocol. However, we will not be able to reduce the complexity
introduced by the interchangeability of the signature mechanisms, as this would lower the
crypto-agility that has shown to be vital for cryptography. The payload fragmentation has
to be introduced because of an internal shortcoming of IKEv2 specifying the payload size in
a 16bit wide field. It appears unlikely that this will ever be subject to change, as this would
mean changes in the core of IKEv2 affecting backwards compatibility and interoperability of
the protocol significantly. Practicability can only be proven by a full implementation of the
provided protocol and evaluating the implementation in a real-world scenario which is left to
future work.

The performance analysis of the isogeny-based signature scheme confirmed the well known fact
that isogeny-based cryptography suffers from suboptimal runtime. It is subject to research to
further improve the performance of isogeny-based cryptography and a lot of improvement has
already been achieved on this topic. As mentioned in Chapter 5, the implementation of the
isogeny-based signature scheme provided in this work does not use a current implementation
of the PQCrypto-SIDH library. We can expect a performance improvement already by porting
the signature scheme to an up-to-date implementation of the PQCrypto-SIDH library, which
is also left for future work. The isogeny-based signature scheme may be extended by adding
alternative security parameters. The provided implementation only operates on the field
arithmetic over the prime P751. While this offers the highest security at the expense of
computing time, the signature scheme might benefit from an implementation utilizing other
security parameters providing less security but improving the performance.

Finally, combining this protocol with the aforementioned quantum-resistant key exchange
that has already been developed for IKEv2 enables us for the first time to establish an
IPSec communication, securing both confidentiality and authenticity against an attacker in
possession of a large-scale quantum computer and is also subject to future work.

80

This work including the source code of the proof-of-concept implementations is freely available,
hoping for and enabling further research on this topic.

81

Glossary

API Application Programming Interface. 67, 84

CA Certificate Authority. 9, 44, 84

DH Diffie-Hellman. 1, 9, 16, 65, 84

DLP Discrete Logarithm Problem. 1, 16, 84

DOS Denial of Service. 77, 80, 84

DSA Digital Signature Algorithm. 1, 7, 14, 16, 26, 39, 84

DSS Digital Signature Standard. 7, 84

EAP Extensible Authentication Protocol. 39, 44, 46, 84

ECC Elliptic Curve Cryptography. 14–17, 84

ECDH Elliptic Curve Diffie-Hellman. 1, 14, 16, 84

ECDLP Elliptic Curve Discrete Logarithm Problem. 15, 16, 84

ECDSA Elliptic Curve Digital Signature Algorithm. 1, 7, 14, 15, 25, 39, 41, 84

EdDSA Edward-curves Digital Signature Algorithm. 7, 84

ESP Encapsulating Security Payload. 69, 84

HTTP Hypertext Transfer Protocol. 27, 49, 84

HVZK Honest Verifier Zero-Knowledge. 31, 84

IANA Internet Assigned Numbers Authority. 26, 41, 44, 48, 84

IETF Internet Engineering Task Force. 36, 57, 84

IKEv2 Internet Key Exchange Protocol version 2. vii, 2, 3, 5, 7, 9, 12, 13, 20, 22, 23, 25–30,
33, 35–37, 39, 41, 43, 46–50, 52–54, 57, 59, 65, 69, 71, 76, 77, 79, 80, 84

IP Internet Protocol. 69, 84

IPSec Internet Protocl Security. vii, 2, 7, 12, 65, 80, 84

KEM Key Encapsulation Mechanism. 23, 27, 84

MTU Maximum Transmission Unit. 26, 84

NAT Netword Address Translation. 49, 53, 84

83

Glossary

NIST National Institute of Standards and Technology. 7, 15–17, 36, 84

NIZK Non-interactive Zero-knowledge Proof. 28, 30, 31, 60, 61, 63, 74, 79, 84

PKCS Public Key Cryptographic System. 1, 2, 84

PRF Pseudo Random Function. 9, 84

RFC Request for Comments. 84

RSA Rives, Shamir and Adleman. 1, 7, 14, 16, 26, 27, 36, 39, 46, 69, 84

SA Security Association. 7, 9, 12, 13, 23, 25, 68, 84

SHA-1 Secure Hash Algorithm 1. 25, 41, 84

SHA-2 Secure Hash Algorithm 2. 84

SHA-3 Secure Hash Algorithm 3. 42, 75, 84

SIDH Supersingular Isogeny Diffie-Hellman. 20, 84

SPD Security Policy Database. 84

SPI Security Parameter Index. 9, 13, 84

TCP Transport Control Protocol. 84

TLS Transport Layer Security. 84

UDP User Datagram Protocol. 26, 84

84

List of Figures

1.1 Seven stages in the development of quantum information processing according
to [DS13] . 1

1.2 Evaluation of Necessity of Action . 2

2.1 Classic Diffie-Hellman key exchange . 6

2.2 Digital Signature . 8

2.3 IKE SA INIT . 9

2.4 IKE Header format . 10

2.5 IKE AUTH exchange . 10

2.6 Authentication Payload format . 11

2.7 Creation of new Child SA with the CREATE CHILD SA exchange 12

2.8 Rekeying SAs with the CREATE CHILD SA exchange 13

2.9 Rekeying of a Child SA with the CREATE CHILD SA exchange 13

2.10 INFORMATIONAL exchange . 14

2.11 Addition of Points and Point-Doubling on an Elliptic Curve 15

2.12 Elliptic-curve Diffie-Hellman key exchange . 16

2.13 Nine j-invariants of all supersingular elliptic curves defined over finite field
F1092 and their 2-isogenies . 21

2.14 Supersingular Isogeny key exchange . 21

3.1 Zero-knowledge Proof . 29

3.2 Zero-knowledge proof and published isogenies [YAJ+17] 30

3.3 Likelihood of Quantum Threat to Public-Key Cryptography [MP19] 35

3.4 Comparison of Public key and Signature Sizes of NIST Round 3 Signature
Finalists and Alternatives and Isogeny-based Signature Scheme 38

4.1 Considered Approaches for the Protocol Design 40

4.2 Notify Payload Format . 42

4.3 Authentication Payload Format Digital Signature 43

4.4 Certificate Request Payload Format . 44

4.5 Initiator and Responder authenticating twice using the digital signature au-
thentication method . 47

4.6 Key Exchange Payload . 48

4.7 Bulk Transfer and Confirmation . 49

4.8 Incremental Transfer and Confirmation . 50

4.9 IKEv2 Initial Exchanges with Payload Fragmentation and Bulk Transfer of
Authentication Payload . 51

4.10 IKEv2 Initial Exchanges with Payload Fragmentation and Incremental Transfer
of Authentication Payload . 51

85

List of Figures

4.11 Initial Exchanges with three Authentication Rounds, two of them with Bulk
Transmission of Fragmentated Payloads . 55

4.12 Initial Exchanges with two Authentication Rounds, one of them with Incre-
mental Transmission of Fragmentated Payload 56

5.1 OpenBSD iked privilege separation model . 66
5.2 Exemplary iked.conf Configuration File . 66
5.3 Exemplary encoding of Isogeny-based Secret Key 67
5.4 Imsg Data Structure . 67
5.5 Imsg Header Data Structure . 67
5.6 Truncated Ibuf Structure . 68
5.7 Examplary iked.conf Configuration File . 69

6.1 Single-threaded Runtime of Key generation, Signing and Verifying Algorithm 72
6.2 Performance Improvements achieved by Parallelization 73
6.3 Valgrind Heap and Error summary of improved Memory Management 76

86

Bibliography

[arc] arc4random(3). : arc4random(3), https://man.openbsd.org/
arc4random.3. – Last checked: 2021-01-17

[Bar13] Barker, Elaine B.: Digital Dignature Standard (DSS) / National In-
stitute of Standards and Technology. 2013 (186-4). – Federal Inf.
Process. Stds. (NIST FIPS). – Last checked: 2021-01-17, Available:
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

[Bar20] Barker, Elaine B.: Recommendation for Key Management: Part 1 - Gen-
eral / National Institute of Standards and Technology. 2020 (800-57 Pt1
Rev 5). – Special Publication (NIST SP). – Last checked: 2021-01-17,
Available: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
57pt1r5.pdf

[BCR+18] Barker, Elaine B. ; Chen, Lidong ; Roginsky, Allen L. ; Vas-
silev, Apostol T. ; Davis, Richard: Recommendation for Pair-Wise
Key-Establishment Schemes Using Discrete Logarithm Cryptography / Na-
tional Institute of Standards and Technology. 2018 (800-56Ar3). – Spe-
cial Publication (NIST SP). – Last checked: 2021-01-17, Available:
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf

[bsda] OpenBSD Make Utility. : OpenBSD Make Utility, https://man.openbsd.
org/make. – Last checked: 2021-01-17

[bsdb] OpenBSD Security. : OpenBSD Security, https://www.openbsd.org/
security.html. – Last checked: 2021-01-17

[cas] The Case for Elliptic Curve Cryptography. : The Case for Elliptic Curve
Cryptography, https://web.archive.org/web/20090117023500/http:
//www.nsa.gov/business/programs/elliptic_curve.shtml. – Last
checked: 2021-01-17

[CCJ+16] Chen, Lily ; Chen, Lily ; Jordan, Stephen ; Liu, Yi-Kai ; Moody, Dustin
; Peralta, Rene ; Perlner, Ray ; Smith-Tone, Daniel: Report on post-
quantum cryptography. Bd. 12. US Department of Commerce, National Institute
of Standards and Technology, 2016

[Che17] Chen, L.: Cryptography Standards in Quantum Time: New Wine in an Old
Wineskin? In: IEEE Security Privacy 15 (2017), Nr. 4, S. 51–57. http://dx.
doi.org/10.1109/MSP.2017.3151339. – DOI 10.1109/MSP.2017.3151339

[cla] Clang: a C language family frontend for LLVM. : Clang: a C language family
frontend for LLVM, https://clang.llvm.org. – Last checked: 2021-01-17

[CMS+15] Córcoles, Antonio D. ; Magesan, Easwar ; Srinivasan, Srikanth J. ; Cross,

87

https://man.openbsd.org/arc4random.3
https://man.openbsd.org/arc4random.3
https://man.openbsd.org/make
https://man.openbsd.org/make
https://www.openbsd.org/security.html
https://www.openbsd.org/security.html
https://web.archive.org/web/20090117023500/http://www.nsa.gov/business/programs/elliptic_curve.shtml
https://web.archive.org/web/20090117023500/http://www.nsa.gov/business/programs/elliptic_curve.shtml
http://dx.doi.org/10.1109/MSP.2017.3151339
http://dx.doi.org/10.1109/MSP.2017.3151339
https://clang.llvm.org

Bibliography

Andrew W. ; Steffen, Matthias ; Gambetta, Jay M. ; Chow, Jerry M.:
Demonstration of a quantum error detection code using a square lattice of four
superconducting qubits. In: Nature communications 6 (2015), Nr. 1, S. 1–10

[DFJP14] De Feo, Luca ; Jao, David ; Plût, Jérôme: Towards quantum-resistant cryp-
tosystems from supersingular elliptic curve isogenies. In: Journal of Mathematical
Cryptology 8 (2014), Nr. 3, S. 209–247

[DH76] Diffie, Whitfield ; Hellman, Martin: New directions in cryptography. In: IEEE
transactions on Information Theory 22 (1976), Nr. 6, S. 644–654

[DH17] Deering, S. ; Hinden, R.: Internet Protocol, Version 6 (IPv6) Specification.
RFC 8200 (Internet Standard). Version: Juli 2017. http://dx.doi.org/10.
17487/RFC8200 (Internet Request for Comments)

[DS13] Devoret, Michel H. ; Schoelkopf, Robert J.: Superconducting circuits for
quantum information: an outlook. In: Science 339 (2013), Nr. 6124, S. 1169–1174

[EK06] Eronen, P. ; Korhonen, J.: Multiple Authentication Exchanges in the Internet
Key Exchange (IKEv2) Protocol. RFC 4739 (Experimental). Version: November
2006. http://dx.doi.org/10.17487/RFC4739 (Internet Request for Com-
ments)

[Fis05] Fischlin, Marc: Communication-efficient non-interactive proofs of knowledge
with online extractors. In: Annual International Cryptology Conference Springer,
2005, S. 152–168

[Flo] Floeter, Reyk: IKEv2 VPN with OpenBSD iked(8), https://www.openbsd.
org/papers/eurobsdcon2010-iked.pdf. – Last checked: 2021-01-17

[FS86] Fiat, Amos ; Shamir, Adi: How to prove yourself: Practical solutions to
identification and signature problems. In: Conference on the theory and application
of cryptographic techniques Springer, 1986, S. 186–194

[FS07] Fu, D. ; Solinas, J.: IKE and IKEv2 Authentication Using the Elliptic
Curve Digital Signature Algorithm (ECDSA). RFC 4754 (Proposed Standard).
Version: Januar 2007. http://dx.doi.org/10.17487/RFC4754 (Internet
Request for Comments)

[gcc] GCC, the GNU Compiler Collection. : GCC, the GNU Compiler Collection,
https://gcc.gnu.org/. – Last checked: 2021-01-17

[gnu] GNU Make Utility. : GNU Make Utility, https://www.gnu.org/software/
make/manual/. – Last checked: 2021-01-17

[HC98] Harkins, D. ; Carrel, D.: The Internet Key Exchange (IKE). RFC 2409 (Pro-
posed Standard). Version: November 1998. http://dx.doi.org/10.17487/
RFC2409 (Internet Request for Comments). Obsoleted by RFC 4306, updated
by RFC 4109

[Hei19] Heider, Tobias: Towards a Verifiably Secure Quantum-Resistant Key Exchange
in IKEv2, Ludwig-Maximilians Universität München, Diplomarbeit, 2019

[IAN] IANA: Internet Key Exchange Version 2 (IKEv2) Parameters. https://www.
iana.org/assignments/ikev2-parameters. – Last checked: 2021-01-17

88

http://dx.doi.org/10.17487/RFC8200
http://dx.doi.org/10.17487/RFC8200
http://dx.doi.org/10.17487/RFC4739
https://www.openbsd.org/papers/eurobsdcon2010-iked.pdf
https://www.openbsd.org/papers/eurobsdcon2010-iked.pdf
http://dx.doi.org/10.17487/RFC4754
https://gcc.gnu.org/
https://www.gnu.org/software/make/manual/
https://www.gnu.org/software/make/manual/
http://dx.doi.org/10.17487/RFC2409
http://dx.doi.org/10.17487/RFC2409
https://www.iana.org/assignments/ikev2-parameters
https://www.iana.org/assignments/ikev2-parameters

Bibliography

[ikea] ikectl(8). : ikectl(8), https://man.openbsd.org/man8/ikectl.8. – Last
checked: 2021-01-17

[ikeb] OpenIKED. : OpenIKED, https://www.openiked.org. – Last checked:
2021-01-17

[ims] IMSG INIT(3). : IMSG INIT(3), https://man.openbsd.org/imsg_init.
3. – Last checked: 2021-01-17

[JDF11] Jao, David ; De Feo, Luca: Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies. In: International Workshop on Post-
Quantum Cryptography Springer, 2011, S. 19–34

[Kau05] Kaufman (Ed.), C.: Internet Key Exchange (IKEv2) Protocol. RFC 4306 (Pro-
posed Standard). Version: Dezember 2005. http://dx.doi.org/10.17487/
RFC4306 (Internet Request for Comments). Obsoleted by RFC 5996, updated
by RFC 5282

[KBF+15] Kelly, Julian ; Barends, Rami ; Fowler, Austin G. ; Megrant, Anthony
; Jeffrey, Evan ; White, Theodore C. ; Sank, Daniel ; Mutus, Josh Y. ;
Campbell, Brooks ; Chen, Yu u. a.: State preservation by repetitive error
detection in a superconducting quantum circuit. In: Nature 519 (2015), Nr. 7541,
S. 66–69

[KHN+14] Kaufman, C. ; Hoffman, P. ; Nir, Y. ; Eronen, P. ; Kivinen, T.: Internet
Key Exchange Protocol Version 2 (IKEv2). RFC 7296 (Internet Standard).
Version: Oktober 2014. http://dx.doi.org/10.17487/RFC7296 (Internet
Request for Comments). Updated by RFCs 7427, 7670, 8247

[KHNE10] Kaufman, C. ; Hoffman, P. ; Nir, Y. ; Eronen, P.: Internet Key Exchange
Protocol Version 2 (IKEv2). RFC 5996 (Proposed Standard). Version: September
2010. http://dx.doi.org/10.17487/RFC5996 (Internet Request for Com-
ments). Obsoleted by RFC 7296, updated by RFCs 5998, 6989

[Kiv11] Kivinen, T.: Secure Password Framework for Internet Key Exchange Version 2
(IKEv2). RFC 6467 (Informational). Version: Dezember 2011. http://dx.doi.
org/10.17487/RFC6467 (Internet Request for Comments)

[KK10] Karpfinger, Christian ; Kiechle, Hubert: Kryptologie - Algebraische Methoden
und Algorithmen. Springer, 2010

[Kob87] Koblitz, Neal: Elliptic curve cryptosystems. In: Mathematics of computation
48 (1987), Nr. 177, S. 203–209

[KS05] Kent, S. ; Seo, K.: Security Architecture for the Internet Protocol. RFC
4301 (Proposed Standard). Version: Dezember 2005. http://dx.doi.org/
10.17487/RFC4301 (Internet Request for Comments). Updated by RFCs 6040,
7619

[KS15] Kivinen, T. ; Snyder, J.: Signature Authentication in the Internet Key Exchange
Version 2 (IKEv2). RFC 7427 (Proposed Standard). Version: Januar 2015.
http://dx.doi.org/10.17487/RFC7427 (Internet Request for Comments)

[KWT16] Kivinen, T. ; Wouters, P. ; Tschofenig, H.: Generic Raw Public-Key

89

https://man.openbsd.org/man8/ikectl.8
https://www.openiked.org
https://man.openbsd.org/imsg_init.3
https://man.openbsd.org/imsg_init.3
http://dx.doi.org/10.17487/RFC4306
http://dx.doi.org/10.17487/RFC4306
http://dx.doi.org/10.17487/RFC7296
http://dx.doi.org/10.17487/RFC5996
http://dx.doi.org/10.17487/RFC6467
http://dx.doi.org/10.17487/RFC6467
http://dx.doi.org/10.17487/RFC4301
http://dx.doi.org/10.17487/RFC4301
http://dx.doi.org/10.17487/RFC7427

Bibliography

Support for IKEv2. RFC 7670 (Proposed Standard). Version: Januar 2016.
http://dx.doi.org/10.17487/RFC7670 (Internet Request for Comments)

[liba] crypto(3). : crypto(3), https://man.openbsd.org/man3/crypto.3. –
Last checked: 2021-01-17

[libb] LibreSSL. : LibreSSL, https://www.libressl.org. – Last checked: 2021-
01-17

[mal] malloc(3). : malloc(3), https://man.openbsd.org/malloc.3. – Last
checked: 2021-01-17

[Mil85] Miller, Victor S.: Use of elliptic curves in cryptography. In: Conference on the
theory and application of cryptographic techniques Springer, 1985, S. 417–426

[MKJR16] Moriarty (Ed.), K. ; Kaliski, B. ; Jonsson, J. ; Rusch, A.: PKCS
#1: RSA Cryptography Specifications Version 2.2. RFC 8017 (Informational).
Version: November 2016. http://dx.doi.org/10.17487/RFC8017 (Inter-
net Request for Comments)

[MMP98] McDonald, D. ; Metz, C. ; Phan, B.: PF KEY Key Management API, Version
2. RFC 2367 (Informational). Version: Juli 1998. http://dx.doi.org/10.
17487/RFC2367 (Internet Request for Comments)

[Mos18] Mosca, Michele: Cybersecurity in an era with quantum computers: will we be
ready? In: IEEE Security & Privacy 16 (2018), Nr. 5, S. 38–41

[MP19] Mosca, Michele ; Piani, Marco: Quantum Threat Timeline Re-
port. https://globalriskinstitute.org/publications/quantum-threat-timeline/, 2019.
– https://globalriskinstitute.org/download/quantum-threat-timeline-full-report-2/

[NIS16] NIST: Submission Requirements and Evaluation Criteria for the Post-Quantum
Cryptography Standardization Process / National Institute of Standards and
Technology. 2016. – Forschungsbericht

[NS16] Nir, Y. ; Smyslov, V.: Protecting Internet Key Exchange Protocol Version
2 (IKEv2) Implementations from Distributed Denial-of-Service Attacks. RFC
8019 (Proposed Standard). Version: November 2016. http://dx.doi.org/
10.17487/RFC8019 (Internet Request for Comments)

[ope] OpenBSD. : OpenBSD, https://www.openbsd.org. – Last checked: 2021-
01-17

[Piz90] Pizer, Arnold K.: Ramanujan graphs and Hecke operators. In: Bulletin of the
American Mathematical Society 23 (1990), Nr. 1, S. 127–137

[Piz98] Pizer, Arnold K.: Ramanujan graphs. In: Computational perspectives on number
theory (Chicago, IL, 1995) Bd. 7. Providence, RI : Amer. Math. Soc., 1998

[Pos80] Postel, J.: User Datagram Protocol. RFC 768 (Internet Standard).
Version: August 1980. http://dx.doi.org/10.17487/RFC0768 (Internet
Request for Comments)

[Pos81] Postel, J.: Internet Protocol. RFC 791 (Internet Standard). Version: September
1981. http://dx.doi.org/10.17487/RFC0791 (Internet Request for Com-

90

http://dx.doi.org/10.17487/RFC7670
https://man.openbsd.org/man3/crypto.3
https://www.libressl.org
https://man.openbsd.org/malloc.3
http://dx.doi.org/10.17487/RFC8017
http://dx.doi.org/10.17487/RFC2367
http://dx.doi.org/10.17487/RFC2367
http://dx.doi.org/10.17487/RFC8019
http://dx.doi.org/10.17487/RFC8019
https://www.openbsd.org
http://dx.doi.org/10.17487/RFC0768
http://dx.doi.org/10.17487/RFC0791

Bibliography

ments). Updated by RFCs 1349, 2474, 6864

[pqc] SIDH Library. : SIDH Library, https://www.microsoft.com/en-us/
research/project/sidh-library/. – Last checked: 2021-01-17

[PST20] Paquin, Christian ; Stebila, Douglas ; Tamvada, Goutam: Benchmarking
post-quantum cryptography in tls. In: International Conference on Post-Quantum
Cryptography Springer, 2020, S. 72–91

[Raa] Raadt, Theo de: Mitigations and other real security features, https://www.
openbsd.org/papers/bsdtw.pdf. – Last checked: 2021-01-17

[RPH+15] Riste, Diego ; Poletto, Stefano ; Huang, M-Z ; Bruno, Alessandro ; Vester-
inen, Visa ; Saira, O-P ; DiCarlo, Leonardo: Detecting bit-flip errors in a
logical qubit using stabilizer measurements. In: Nature communications 6 (2015),
Nr. 1, S. 1–6

[Sch07] Schneier, Bruce: Applied cryptography: protocols, algorithms, and source code
in C. john wiley & sons, 2007

[SFG20] Steblia, Douglas ; Fluhrer, Scott ; Gueron, Shay: Hy-
brid key exchange in TLS 1.3 / Internet Engineering Task Force.
Version: Oktober 2020. https://datatracker.ietf.org/doc/html/
draft-ietf-tls-hybrid-design-01. Internet Engineering Task Force,
Oktober 2020 (draft-ietf-tls-hybrid-design-01). – Internet-Draft. – Work in
Progress

[Sho94] Shor, Peter W.: Algorithms for quantum computation: discrete logarithms and
factoring. In: Proceedings 35th annual symposium on foundations of computer
science Ieee, 1994, S. 124–134

[sik] SIKE – Supersingular Isogeny Key Encapsulation. : SIKE – Supersingular Isogeny
Key Encapsulation, https://sike.org. – Last checked: 2021-01-17

[Sil09] Silverman, Joseph H.: The arithmetic of elliptic curves. Bd. 106. Springer
Science & Business Media, 2009

[SKP15] Stevens, Marc ; Karpman, Pierre ; Peyrin, Thomas: Freestart collision
for full SHA-1. Cryptology ePrint Archive, Report 2015/967, 2015. – https:
//eprint.iacr.org/2015/967

[Smy14] Smyslov, V.: Internet Key Exchange Protocol Version 2 (IKEv2) Message
Fragmentation. RFC 7383 (Proposed Standard). Version: November 2014. http:
//dx.doi.org/10.17487/RFC7383 (Internet Request for Comments)

[Smy20] Smyslov, Valery: Intermediate Exchange in the IKEv2 Protocol / Internet Engi-
neering Task Force. Version: September 2020. https://datatracker.ietf.
org/doc/html/draft-ietf-ipsecme-ikev2-intermediate-05. In-
ternet Engineering Task Force, September 2020 (draft-ietf-ipsecme-ikev2-
intermediate-05). – Internet-Draft. – Work in Progress

[SR13] Stevens, W. R. ; Rago, Stephen A.: Advanced Programming in the UNIX
Environment. 2013. – ISBN 9780321637734

[SW15] Smyslov, V. ; Wouters, P.: The NULL Authentication Method in the Internet

91

https://www.microsoft.com/en-us/research/project/sidh-library/
https://www.microsoft.com/en-us/research/project/sidh-library/
https://www.openbsd.org/papers/bsdtw.pdf
https://www.openbsd.org/papers/bsdtw.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-01
https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-01
https://sike.org
https://eprint.iacr.org/2015/967
https://eprint.iacr.org/2015/967
http://dx.doi.org/10.17487/RFC7383
http://dx.doi.org/10.17487/RFC7383
https://datatracker.ietf.org/doc/html/draft-ietf-ipsecme-ikev2-intermediate-05
https://datatracker.ietf.org/doc/html/draft-ietf-ipsecme-ikev2-intermediate-05

Bibliography

Key Exchange Protocol Version 2 (IKEv2). RFC 7619 (Proposed Standard).
Version: August 2015. http://dx.doi.org/10.17487/RFC7619 (Internet
Request for Comments)

[THS20] Tjhai, C. ; Heider, Tobias ; Smyslov, Valery: Beyond
64KB Limit of IKEv2 Payload / Internet Engineering Task Force.
Version: Oktober 2020. https://datatracker.ietf.org/doc/html/
draft-tjhai-ikev2-beyond-64k-limit-00. Internet Engineering Task
Force, Oktober 2020 (draft-tjhai-ikev2-beyond-64k-limit-00). – Internet-Draft. –
Work in Progress

[TTB+20] Tjhai, C. ; Tomlinson, M. ; Bartlett, G. ; Fluhrer, Scott ;
Geest, Daniel V. ; Garcia-Morchon, Oscar ; Smyslov, Valery:
Multiple Key Exchanges in IKEv2 / Internet Engineering Task Force.
Version: Juli 2020. https://datatracker.ietf.org/doc/html/
draft-ietf-ipsecme-ikev2-multiple-ke-01. Internet Engineering
Task Force, Juli 2020 (draft-ietf-ipsecme-ikev2-multiple-ke-01). – Internet-Draft. –
Work in Progress

[Unr15] Unruh, Dominique: Non-interactive zero-knowledge proofs in the quantum
random oracle model. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques Springer, 2015, S. 755–784

[val] Valgrind. : Valgrind, https://valgrind.org. – Last checked: 2021-01-17

[Vél71] Vélu, Jacques: Isogénies entre courbes elliptiques. In: CR Acad. Sci. Paris,
Séries A 273 (1971), S. 305–347

[YAJ+17] Yoo, Youngho ; Azarderakhsh, Reza ; Jalali, Amir ; Jao, David ;
Soukharev, Vladimir: A post-quantum digital signature scheme based on
supersingular isogenies. In: International Conference on Financial Cryptography
and Data Security Springer, 2017, S. 163–181

92

http://dx.doi.org/10.17487/RFC7619
https://datatracker.ietf.org/doc/html/draft-tjhai-ikev2-beyond-64k-limit-00
https://datatracker.ietf.org/doc/html/draft-tjhai-ikev2-beyond-64k-limit-00
https://datatracker.ietf.org/doc/html/draft-ietf-ipsecme-ikev2-multiple-ke-01
https://datatracker.ietf.org/doc/html/draft-ietf-ipsecme-ikev2-multiple-ke-01
https://valgrind.org

	Introduction
	Background and Related Work
	Background
	Diffie-Hellman Key Exchange
	Digital Signature
	Internet Key Exchange Protocol version 2 (IKEv2)
	Elliptic Curve Cryptography
	Isogeny-Based Cryptography
	Isogenies
	Isogeny Graphs

	Related Work
	Supersingular Isogeny Diffie-Hellman
	Towards a quantum-safe key exchange in IKEv2

	Towards a Signature Scheme for IKEv2
	Requirements analysis
	Classic IKEv2 Authentication
	RFC 7427 - Digital Signature
	IKEv2 Size Constraints
	Hybrid Authentication

	A Digital Signature Scheme based on supersingular Isogenies
	Zero-knowledge proof of identity
	Sigma protocol
	Unruhs Transformation towards a non-interactive Proof System
	Signature Scheme

	Requirements

	IKEv2 Protocol Design for quantum-resistant Authentication
	Integration of quantum-resistant Signature Schemes in IKEv2
	Registering a new Authentication Method
	Digital Signature (RFC 7427)

	Multiple Authentication Exchanges (RFC 4739)
	Support for Payloads bigger than 64kiB
	Hash and URL
	Payload Fragmentation
	Leveraging Payload Fragmentation to IKE_AUTH exchange

	Final Protocol Design
	Design Decisions
	Procedure of the Protocol
	Integration with Quantum-safe Key Exchange in IKEv2
	Compliance with Requirements

	Proof of Concept
	Digital Signature Scheme based on Supersingular Isogenies
	Drawbacks and issues of the implementation of Yoo et al.
	Porting to OpenBSD
	Improving Memory Management
	Applying Unruhs Transformation
	Message Integration
	Providing an API to the Isogenysignature scheme

	Integration in OpenBSDs iked
	OpenBSD iked
	Integration of a new Signature Method
	Dealing with imsgs bigger 16384 bytes
	Incorporating multiple IKE_AUTH Messages
	Dealing with Payloads bigger 64kiB
	Adapting the Configuration and the Configuration-Parser

	Evaluation
	Performance Analysis of the isogeny-based Signature Scheme
	Security Considerations of the isogeny-based Signature Scheme
	Theoretical Foundation
	Security of the Implementation

	Security Considerations of the IKEv2 Protocol Extension

	Conclusion and Future Work
	Glossary
	List of Figures
	Bibliography

