
INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelor Thesis

Evaluation of ZMTP in
Constrained Environments

Theresa Müller

INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelor Thesis

Evaluation of ZMTP in
Constrained Environments

Theresa Müller

Supervision: Prof. Dr. Dieter Kranzlmüller

Advisors: Dr. Nils gentschen Felde
Maximilian Höb

Date: January, 10th 2019

Hiermit versichere ich, dass ich die vorliegende Bachelorarbeit selbständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

München, den 10. Januar 2019

. .
(Unterschrift des Kandidaten)

Abstract

As the prevalence of constrained environments progressed over the past few years, the de-
mand for distributed computing approaches that could potentially remedy the limited pro-
cessing power of such networks emerged. Since constrained environments, such as the In-
ternet of Things or Wireless Sensor Networks, are typically composed of nodes that exhibit
severe restrictions on computational power, memory capacity and energy supply, resource
scarcity is a fundamental characteristic of constrained environments. This thesis therefore
introduces the ZeroMQ Message Transport Protocol (ZMTP), which enables distributed
computing through peer-to-peer networking and is based on TCP. In order to assess the
scalability of ZMTP in constrained environments, a protocol port tailored to the RIOT op-
erating system is used in the course of this thesis. An experimental approach comprising a
series of experiments with runtime measurements is conducted by means of two distributed
applications that constitute representative use cases. The consequent analysis and evaluation
of the measurement results reveal an undesired scaling behavior of ZMTP, that is an insuffi-
cient performance improvement mainly caused by the vast communication overhead, which
limits the speedup through parallelization within both use cases. As a result, the protocol
exhibits a rather weak scalability in general, so with respect to these two use cases, ZMTP
is considered not suitable for the purpose of efficiently realizing distributed computing in
constrained environments.

vii

Zusammenfassung

Während die zunehmende Verbreitung von Constrained Environments in den letzten Jahren
stetig vorangeschritten ist, stieg auch der Bedarf an verteilten Rechenansätzen in solchen
Netzwerken, um der hierbei auftretenden eingeschränkten Rechenleistung entgegenzuwirken.
Da Constrained Environments, wie beispielsweise das Internet der Dinge oder sogenannte
Sensornetze, auf Geräten basieren, die meistens nur über eine begrenzte Rechenleistung,
Speicherkapazität und Energiezufuhr verfügen, ist Ressourcenknappheit eine fundamentale
Eigenschaft solcher Netzwerke. Im Rahmen dieser Arbeit wird das ZeroMQ Message Trans-
port Protocol (ZMTP) vorgestellt, das verteiltes Rechnen durch TCP basierte Peer-to-Peer
Kommunikation ermöglicht. Um ZMTP in Constrained Environments anwenden zu können,
wird ein Port des Protokolls für das Betriebssystem RIOT verwendet. Mit Hilfe eines expe-
rimentellen Ansatzes kann somit die Skalierbarkeit von ZMTP in Constrained Environments
untersucht und evaluiert werden. Zu diesem Zwecke wird anhand von zwei repräsenta-
tiven Anwendungsfällen, die unterschiedliche, verteilte Applikationen darstellen, eine Reihe
von Versuchen inklusive Laufzeitmessungen durchgeführt. Die anschließende Analyse und
Auswertung der Messergebnisse zeigt, dass ZMTP nicht das gewünschte Skalierungsver-
halten aufweist, da im Allgemeinen keine effiziente Laufzeitverbesserung durch Skalierung
erzielt wird. Dies lässt sich auf den hohen Kommunikationsoverhead zurückzuführen, der
die Beschleunigung der Berechnung durch Parallelisierung generell einschränkt. Aufgrund
der niedrigen Skalierbarkeit des Protokolls im Bezug auf die beiden untersuchten Anwen-
dungsfälle, kann ZMTP für diese Applikationen nicht effizient eingesetzt werden, um verteiltes
Rechnen in Constrained Environments zu realisieren.

ix

Contents

1. Introduction 1

2. Related work 5

3. Background information on constrained environments 9
3.1. Constrained devices . 9

3.1.1. Definition and classification . 9
3.1.2. The IoT protocol stack . 11
3.1.3. Fields of application . 13
3.1.4. Challenges . 13

3.2. The RIOT operating system . 14
3.2.1. Overview and features . 14
3.2.2. Structure . 15
3.2.3. The GNRC network stack . 16
3.2.4. GNRC TCP . 17

3.3. The ZeroMQ Message Transport Protocol . 21
3.3.1. ZeroMQ . 21
3.3.2. ZMTP overview . 22

4. Experimental approach 29
4.1. General methodology . 29

4.1.1. Conceptual Design . 29
4.1.2. Problem space definition . 30

4.2. Measurands . 31
4.2.1. Execution time . 31
4.2.2. Power consumption . 32

4.3. Representative use cases . 33
4.3.1. Use case 1 - Prime number count . 35
4.3.2. Use case 2 - Word and line count . 37

4.4. Setups . 39
4.4.1. Test environment . 39
4.4.2. Test configurations and scaling scenarios 40

4.5. Test procedure . 44

5. Evaluation and scaling conclusions 45
5.1. Measurement accuracy and standard deviation 45
5.2. Measurement results and observations . 48

5.2.1. Execution time results . 48
5.2.2. Power consumption results . 64

5.3. Potential causes . 64

xi

Contents

5.4. Consequent scaling conclusions . 67

6. General conclusion and outlook 69

List of Figures 71

List of Tables 73

List of Listings 75

Bibliography 77

Appendix 81
A. Plots of the remaining scenarios . 81
B. Excerpt of raw measurement data . 87

xii

1. Introduction

The Internet of Things (IoT) gained a lot of importance and attention over the past few
years and there is a clear trend towards a tighter and more widespread interconnection
among numerous embedded devices, reaching from smart monitoring devices to pervasive
wearables and everyday objects, that are exchanging information over the internet in order
to provide certain services. The internet already constitutes an indispensable part of our
daily lives, but its role is changing due to the progressive emergence and dissemination of the
Internet of Things, which is even referred to as the next technological revolution, as stated in
[GBMP13]. This assertion is being supported by the fact that the number of interconnected
devices used in the consumer and business sector reached nearly 6.4 billion in 2016, while it
is estimated to exceed a threshold of 20.7 billion by 2020, according to Gartner1.

Although the range of devices that are being deployed into the internet is immense and
therefore the network architecture is composed of heterogeneous nodes, many of these em-
bedded devices exhibit more or less severe resource constraints. According to the authors
of [HBPT16], these constraints refer to hardware resources like memory capacity, compu-
tational power and energy supply. For years, the internet was characterized by stationary
high-performance nodes such as servers and personal computers forming fast and reliable
networks. But with the rise of low-end embedded devices, fundamentally different network
infrastructures are created, which mainly comprise constrained nodes with low processing
power, as described in [Bru16]. The interconnection between those constrained devices cre-
ates heterogeneous constrained environments, such as Wireless Sensor Networks (WSNs),
where nodes generally communicate via low-power wireless transmission technologies. Fol-
lowing [BEK14], this results in unreliable, lossy networks with low throughput, which im-
pose limitations on the applicability of constrained environments and lead to newly emerging
demands and challenges. As derived from [LKH+18], novel technologies needed to be devel-
oped, for example new wireless communication technologies, IoT-tailored operating systems
and protocol standards that enable the extension of the conventional internet with respect
to embedded devices. These advancements were made in order to address the new chal-
lenges and requirements arising from the comprehensive deployment of constrained environ-
ments.

According to [MW16] and [Iwa16], the limited performance of constrained devices is ex-
pected to last, since Moore’s law is no longer feasible in the future. As a rule of thumb,
Moore’s law generally implies that processors get smaller, cheaper, as well as more and more
powerful, but due to the physical boundaries of the micro-controllers which are deployed
on constrained devices, it is anticipated that this law does not apply to these kinds of de-
vices, so their processing power will probably not increase significantly in the next few years.
As a result of the continuous resource scarcity, which imposes restrictions on executing cer-

1https://www.gartner.com/newsroom/id/3165317

1

1. Introduction

tain computation-intensive tasks, and with the constantly growing number of interconnected
devices in mind, the need for distributed computing in constrained environments is increas-
ing. In this way, constrained nodes could work together and thus jointly reach a particular
goal.

The ZeroMQ Message Transport Protocol (ZMTP) is a transport layer protocol that defines
the messaging between two peers and is based upon TCP and IPC. As such, it presents an
appropriate protocol to enable distributed computing in terms of peer-to-peer networking,
but so far, it was rarely used in constrained environments. In order to deploy ZMTP on
constrained nodes, a protocol port for the RIOT operating system will serve as the basis
for analyzing the scalability of this specific protocol in terms of distributed applications.
The purpose of this thesis is therefore to ascertain the scaling behavior of the ZeroMQ
Message Transport Protocol in constrained environments, which will be accomplished by
an experimental approach with two representative use cases as scientific methodology. By
varying the numbers of workers and the total input size within several distinct scenarios,
strong and weak scaling will be covered in the course of this thesis. During the experiments,
runtime measurements will be performed, whereby the execution time will be measured as
the primary value and the power consumption will be monitored as a secondary measurand.
All measurements will be analyzed and evaluated afterwards in order to be able to draw
resilient scaling conclusions from the results. If possible, these conclusions shall also include
a generalization predication.

Structure of the thesis

The remainder of this thesis is structured as follows. The next chapter, namely Chapter 2,
covers related work on distributed computing in constrained environments by reviewing
previously published literature and approaches proposed by different authors, while pointing
out the differences of those approaches compared to the work done in the course of this
thesis.

Chapter 3 provides useful background information on constrained environments especially
focusing on common IoT technologies that were used within the experimental approach
of this thesis. It includes a way to classify constrained devices, introduces new protocol
standards designed particularly for constrained environments and an IoT-tailored operating
system. Additionally, it comprises an overview of the ZeroMQ Message Transport Protocol
and the port of this protocol for the RIOT operating system.

In Chapter 4, the experimental approach that is used for this thesis in order to assess the
scaling behavior of ZMTP in constrained environments is presented in detail. It covers the
general methodology, the representative use cases that are developed for the experiments,
as well as the measured values that are obtained though the runtime measurements and
investigated afterwards. Important test setups like the test environment and different test
configurations that are defined for the series of experiments are described, whereby these
test configurations form the scaling scenarios of interest.

The subsequent chapter, namely Chapter 5, presents the results of the conducted measure-
ments including graphical depictions, and also outlines the analysis and evaluation of the

2

measured values. Furthermore, potential causes of the observations and conclusions that can
be drawn from the results are part of this chapter.

As the final chapter of this thesis, Chapter 6 summarizes the findings of this thesis and
frames a general conclusion. Additionally, it provides an outlook regarding future work on
the topic.

3

2. Related work

This chapter examines related work on distributed computing in constrained environments
in order to give an overview of the current state of the art and classify the approach used
within this thesis in the context of existing research efforts. This is done by reviewing
previously published literature dealing with the same topic or having a similar objective and
subsequently identifying the differences of the introduced approaches compared to the work
accomplished in the course of this thesis. As mentioned in Chapter 1, the need for distributed
computing mainly arises from the limited processing power, memory capacity and energy
supply of constrained devices. In general, there are three main approaches to distributed
computing that can be applied to constrained environments. They can be classified into cloud
computing, fog computing and peer-to-peer networking resulting in in-network computing
as stated in [PMN+18].

Cloud computing Various papers propose the integration of the cloud computing paradigm
in the Internet of Things, see [ZLH+13], [AKAH14] or [BdDPP14]. As described by the
authors of [PMN+18], cloud computing allows for complex computations to be processed
by centralized remote servers, thereby shifting the resource-intensive computational burden
from constrained nodes to powerful remote hubs via the internet. Constrained nodes are
thus able to dispense tasks, which they cannot efficiently process on-site, to more powerful
nodes that are provided by the cloud on demand. The authors of [BdDPP16] also suggest
the usage of cloud systems within the IoT, thereby calling this new computing paradigm
the CloudIoT. Their principal reason for integrating cloud-based models into the Internet
of Things is the fact that cloud computing offers “virtually unlimited capabilities in terms
of storage and processing power”[BdDPP16], which facilitates the compensation of the lim-
ited computational and memory capacities of constrained devices through high-performance
cloud servers. Furthermore, this paper identifies even more complementary properties of
the IoT and the cloud, while stating that the combination of both technologies can yield
several benefits. For instance, following [BdDPP16], the IoT suffers from a lack of interop-
erability, reliability, efficiency and availability, whereas these properties can be provided by
cloud systems and by building cloud-based distributed computing systems within the IoT,
such deficiencies can be remedied. According to the previously mentioned paper, the new
computing paradigm, that incorporates cloud computing in IoT scenarios, fosters a series of
large-scale applications and provides novel smart services, such as wide-area environmental
monitoring. On the downside, the CloudIoT approach involves several considerable chal-
lenges, that are also identified by Botta et al. in [BdDPP16]. They comprise security and
privacy concerns, which results from potentially untrusted cloud providers, as well as the
challenging heterogeneity of IoT devices and technologies. But the most notable issues of
such distributed cloud computing systems are the amount of latency they impose on service
delivery, and the increase of network traffic, which can collectively lead to long delays in

5

2. Related work

service delivery. Since many IoT applications must satisfy strong performance requirements
and demand real-time services, this might represent an undesirable trade-off.

Fog computing In order to reduce the latency in cloud-based IoT systems, several pa-
pers like [AH14], [SM16] or [DBH15] suggest an extension of such systems through fog
computing, which constitutes another distributed computing paradigm. As stated by the
authors of [MKB18], the combination of cloud-based systems with fog computing enables
the computation facilities to be located closer to the IoT devices, in contrast to approaches
exclusively using the cloud computing paradigm. This can be traced back to the fact that
computation-intensive tasks are mainly shifted to the edges of a network in fog computing-
based architectures, such as gateway routers or switches as opposed to remote cloud servers.
In this way, response latency for service requests within real-time applications is improved,
since the amount of network hops is reduced and only the most complex computations are
executed within the cloud. Even though conventional networking devices are not as power-
ful as cloud servers, such edge nodes still exhibit significantly more resources and therefore
higher processing capabilities than constrained nodes, as required for the computation of
complex tasks. For this reason, they can be used to realize offloading techniques within a
network in order to disburden constrained nodes. Furthermore, the authors argue that fog
computing can create an intermediate layer between constrained network nodes and cloud
servers, thereby bridging the the gap between low-level IoT devices and high-level cloud com-
puting nodes. By using the cloud computing paradigm leveraging a fog computing-backed
IoT infrastructure, “large geographical distributions of Cloud-based services”[MKB18] can
be built. However, fog computing presents a rather centralized approach as well, since “data
still needs to reach a centralized collection point”[PMN+18] and thus latency is improved,
indeed, but not minimized. Additionally, the authors of [MKB18] identified further issues
of fog computing, for instance structural challenges of edge devices resulting from the vital
coordination between the processing of computation-intensive tasks and the usual network-
ing activities like routing or packet forwarding. Apart from this, security aspects have to be
considered in fog computing infrastructures, since edge devices are susceptible to security
attacks and by implementing special security-ensuring mechanisms, the desired Quality of
Service (QoS) in real-time applications might not be fully met.

Peer-to-peer networking Although cloud and fog computing systems integrated into the
IoT present considerable approaches, they exhibit key technical challenges and suffer from
several deficiencies, most notably in terms of service latency, and therefore impose unde-
sirable trade-offs. At the same time, they disregard the collective computation capability
constrained devices can potentially provide by working together within a network in or-
der to jointly complete computation-intensive tasks, as proposed in [PMN+18], [WLMQ16]
or [APP13]. Furthermore, as the number of constrained devices rapidly grows and thus
a denser deployment of such devices is achieved, a cooperation of nodes operating in con-
strained networks offers a reasonable potential. Following this peer-to-peer networking ap-
proach, resource-intensive tasks can be distributed among the constrained nodes within a
network and so data is only processed on site, instead of shifting the computations to cen-
tralized nodes like it is the case with cloud and fog computing. Therefore, peer-to-peer
networking in constrained environments represents a more decentralized approach. The au-

6

thors of [PMN+18] also state that the distribution of energy consumption is more even and
more efficient within such networks in contrast to fog computing infrastructures, thereby
saving resources, e.g. in case the constrained nodes are battery-powered. Concerning fog
computing, especially the “nodes that are directly connected to the gateway will be neces-
sarily involved in the relaying of all the messages directed to the gateway itself”[PMN+18],
which might lead to the so-called energy hole effect. Additionally, the proximity of the co-
operating nodes performing in-network computations can reduce the latency in contrast to
cloud or fog computing, since the number of hops and the network traffic is minimized. As a
result, peer-to-peer networking approaches are potentially capable of realizing applications
with real-time demands, but the actual performance also depends on the scalability of the
specific implementation of this approach, so that the network is also capable of handling
high workloads.

In this sense, the ZeroMQ Message Transport Protocol represents a way to enable distributed
in-network computing in constrained environments by providing a transport layer protocol
targeted at peer-to-peer communication. By using a port of this protocol, which is tailored
to the RIOT operating system, this computing paradigm can be deployed in constrained
environments. In order to be able to judge whether ZMTP is suitable and efficiently usable
for this specific purpose or not, the scaling behavior of the protocol is investigated and
consequently evaluated within this thesis to assess the scalability of the ZMTP port in terms
of distributed applications.

7

3. Background information on constrained
environments

This chapter covers background information on constrained environments with special regard
to the technologies used within this thesis. Section 3.1 focuses on constrained devices by
first classifying them into different categories and then introducing protocol standards for
constrained-node networks. In Section 3.2, the RIOT operating system is detailed, since
the ZMTP port that is used in the course of this thesis is tailored to this operating system
for IoT devices. Finally, Section 3.3 presents the ZeroMQ Message Transport Protocol
itself, especially in terms of the design of the protocol in general and the ZMTP port for
RIOT.

3.1. Constrained devices

The following sections provide an introduction to constrained environments, whereby Sec-
tion 3.1.1 proposes a way to categorize constrained devices with respect to their resource
characteristics, while the IoT protocol stack as used in constrained environments is depicted
in Section 3.1.2. Section 3.1.3 describes a few fields of application for constrained devices,
whereas Section 3.1.4 outlines challenges that need to be addressed in constrained environ-
ments.

3.1.1. Definition and classification

The Internet of Things comprises a large number of heterogeneous devices, ranging from
sensors and actuators to various micro-controllers with different architectures. In order to
be able to make a distinction between all these different coexisting devices, they are classi-
fied into two categories, depending on their characteristics concerning the level of resource
scarcity, as proposed by the authors of [HBPT16], whereby these resource constraints refer to
computational power, energy and memory capacity. On the one hand, there are high-end IoT
devices, such as smartphones or Raspberry Pis, which are constrained to a certain extent, but
still able to run common operating systems like Linux, since they possess sufficient hardware
resources. On the other hand, more constrained devices called low-end embedded devices ex-
ist, e.g. Arduino boards or STM32 Nucleo-64 development boards. According to [BGH+18],
low-end IoT devices are based on a single-core micro-controller, which comprises a CPU and
possesses Random Access Memory (RAM) and Read-Only Memory (ROM) with a size of
only a few kilobytes.

The category of low-end devices can be divided up even further to get a finer graduation and
therefore an even more precise classification. In RFC 7228 [BEK14], the Internet Engineering

9

3. Background information on constrained environments

Task Force (IETF) proposes a classification standard for constrained devices, which includes
three subcategories that differ in terms of memory capabilities. Each subcategory identifies
a specific group of devices that all have more or less the same storage capacity, concerning
the ROM/Flash and RAM. In this way, devices with similar memory characteristics can be
aggregated into one of three classes, namely class 0, class 1 or class 2, as can be seen in
Table 3.1. Within this table, the memory capacities of each class are defined with respect
to the data size and the code size they offer. Following [SPKS12], the limited storage
capabilities are caused by and depend on the underlying micro-controller architecture used
for the embedded devices, which is either an 8-bit, 16-bit or 32-bit architecture.

As described in [HBPT16] and [BEK14], class 0 constrained devices are mainly sensor-like
motes and impose severe memory limitations, so usually they offer only a small data set
and are not capable of running proper operating systems. Class 1 defines devices that are
able to implement light-weight IoT-tailored network stacks and run reprogrammable and
hardware-independent applications on top, which facilitates the integration of such devices
into an IP network. Therefore, they have to provide a reasonable set of software primitives,
that are generally implemented by an operating system. Such operating systems need to be
optimized for constrained environments by meeting specific demands, in order to be suitable
and applicable in such scenarios. The RIOT operating system represents such an operating
system and is described in Section 3.2. Lastly, class 2 devices are not as restricted and
thus might possibly support conventional networking protocols, but using protocols that are
aligned to IoT requirements can result in advantages concerning the available memory space
for applications.

Name Data size (e.g. RAM) Code size (e.g. Flash)

Class 0 << 10 kB << 100 kB
Class 1 ∼ 10 kB ∼ 100 kB
Class 2 ∼ 50 kB ∼ 250 kB

Table 3.1.: Classification of constrained IoT devices as defined in RFC 7228 [BEK14]

By interconnecting low-end IoT devices, highly dynamic constrained-node networks can be
created, such as Low-Power and Lossy Networks (LLNs) or Low-Power Wireless Personal
Area Networks (LoWPANs), within which the nodes typically communicate via low-power
radio standards like IEEE 802.15.4 instead of Ethernet or Wi-Fi, as stated in [BEK14]. This
imposes even more restrictions on the constrained environments in terms of bandwidth and
reliability.

The focus of this thesis is primarily on low-end constrained devices, so the wide-ranging field
of heterogeneous IoT devices is narrowed down to these very resource constrained devices,
because “IoT devices will get smaller, cheaper, and more energy-efficient, instead of providing
significantly more memory or CPU power. Therefore, in the foreseeable future, low-end IoT
devices with a few kilobytes of memory, such as Class 1 and Class 2 devices, are likely
to remain predominant in the IoT”[HBPT16]. Furthermore, high-end devices do not face
such a strict resource scarcity and thus do not desperately need new alternative operating
systems, while they are even capable of implementing existing networking standards without
any modifications, as mentioned in [BEK14].

10

3.1. Constrained devices

3.1.2. The IoT protocol stack

Since the constraints and specific requirements of IoT devices imposes restrictions on the
applicability of traditional network protocol standards in the context of the Internet of
Things, the need for a new protocol stack emerged. Therefore, the IETF developed an IoT-
tailored protocol suite that encompasses adapted and standardized communication protocols,
as presented in [SYY+13].

Figure 3.1 gives an overview of the cleanly layered IETF IoT protocol stack, consisting of
six different layers, namely Application, Transport, Network, Adaptation, Link and Physi-
cal Layer, each of which is built on top of one another. Compared to the TCP/IP stack,
that comprises four layers in total, the IoT protocol stack includes similar layers, but also
implements some novel protocol standards, that are not present in the traditional stack,
as explained below. In contrast to the corresponding standards defined by the TCP/IP
stack, these new protocols are more suitable for the resource-constrained devices operating
in constrained environments. In general, the IETF protocol stack for the IoT “tries to be
as compatible as possible to the traditional TCP/IP protocol suite used in the conventional
Internet”[Len16], but at the same time, a lot of effort was put into enabling internet con-
nectivity, while providing high energy efficiency and reliability for the resource-constrained
devices, as mentioned in [PAV+13]. The individual protocols of each layer of the IoT protocol
suite, as shown in Figure 3.1, are described below, starting with the lower layers.

CoAP

UDP

IPv6, RPL

6LoWPAN

IEEE 802.15.4 MAC

IEEE 802.15.4 PHY

Application Layer

Transport Layer

Network Layer

Adaptation Layer

Link Layer

Physical Layer

HTTP

TCP / UDP

IPv4 / IPv6

Application Layer

Transport Layer

Network Layer

IEEE 802.3 / IEEE 802.11 Network Access Layer

IoT protocol stack TCP/IP protocol stack

Figure 3.1.: Comparison between the IoT and TCP/IP protocol stack derived from [LB16]

IEEE 802.15.4 According to [SYY+13], IEEE 802.15.4 is a wireless communication stan-
dard based on radio transmission and is targeted at low-power and low-data-rate wireless
personal area networks (WPANs). It specifies the physical layer, as well as the link layer of
the IoT protocol stack. The data rate of IEEE 802.15.4, which operates within the 2.4 GHz
frequency band, is limited to a maximum of 250 kbit/s. On the contrary, IEEE 802.3 Ether-
net or IEEE 802.11 Wi-Fi are able to transmit several Mbit or Gbit per second [BHW+12],
so IEEE 802.15.4 exhibits a clear trade-off between energy efficiency and bandwidth. Fur-
thermore, RFC 4944 [MKHC07] states that IEEE 802.15.4 only has a maximum packet size
of 127 bytes, while IPv6 provides a Maximum Transmission Unit (MTU) size of 1,280 bytes

11

3. Background information on constrained environments

for IPv6 packets transmitted over IEEE 802.15.4, causing the need for a fragmentation and
reassembly adaptation layer directly above the link layer, which is realized through 6LoW-
PAN.

6LoWPAN As specified in RFC 4919 [KMS07] and illustrated in Figure 3.1, IPv6 over
Low-Power Wireless Personal Area Network (6LoWPAN) is a network protocol that forms
an intermediate adaptation layer in between the IP and the data link layer in terms of packet
fragmentation and header compression. Despite the frame size constraints of IEEE 802.15.4,
that limits the packet size to only 127 bytes, 6LoWPAN defines an encapsulation mecha-
nism, which is described in RFC 4944 [MKHC07] and in [SYY+13]. It is able to fragment
data packets for lower layers and to reassemble them for upper layers in order to provide a
minimum MTU of 1,280 bytes as required by IPv6. In addition, it optimizes IPv6 transport
over IEEE 802.15.4 networks by reducing header overheads by means of header compres-
sion.These overheads are usually caused by the MAC header, the link-layer security header,
the IPv6 header and the UDP header, which in turn are responsible for a payload size of
only 81 bytes for IP packets in the worst case when no header compression is used.

IPv6 Sticking with IPv6 as network layer protocol for the IoT protocol suite provides
two main advantages, as argued by [Len16]. On the one hand, due to its 128 bit long
addresses, IPv6 provides a large address space of 2128 different IP addresses, which represents
an important benefit for the usage in the context of IoT, since the number of devices that are
being deployed into the Internet of Things is assumed to steadily grow immensely. Therefore,
IPv6 is able to withstand the vast amount of nodes by providing enough IP addresses without
getting depleted — in contrast to IPv4 — so each of these nodes can be identified and
addressed uniquely. On the other hand, the usage of IPv6 ensures that the new protocol
stack is compatible with the TCP/IP stack and thus facilitates interconnectivity.

RPL A second component of the network layer is the IPv6 Routing Protocol for Low-power
and Lossy networks (RPL) as defined in RFC 6550 [WTB+12]. This protocol is based on
the distance-vector algorithm and therefore the network is created as a Destination-Oriented
Directed Acyclic Graph (DODAG) by gathering and distributing information about link
costs and node attributes, among others. Following [Len16], a DODAG is characterized
by directed edges without cycles including one or more central control points and facilitates
quick multi-hop routing within LLNs. According to [PAV+13] and [SYY+13], this is achieved
by its capability of dynamically adapting the network topology and selecting paths based on
different link and node metrics by means of the so-called Objective Function.

UDP Referring to [PAV+13] and [BHW+12], the User Datagram Protocol (UPD) consti-
tutes the main transport layer protocol of the IoT stack, since TCP requires more hardware
resources and is more complex than UDP. Thus, TCP is considered to be less suitable as
transport over low-power and lossy networks. In contrast to TCP, UDP is connectionless,
but, in turn, it able to transmit messages between two endpoints with a significantly lower
overhead than TCP. The downside of UPD is that there is no guarantee for proper packet
delivery, which implies a trade-off between reliability and energy efficiency.

12

3.1. Constrained devices

CoAP At the application layer, the IoT protocol suite defines the Constrained Application
Protocol (CoAP) as opposed to the Hypertext Transfer Protocol (HTTP), which represents
the corresponding protocol of the TCP/IP stack. CoAP is a web transfer protocol optimized
for constrained nodes, as specified in RFC 7252 [SHB14]. It enables seamless interoperability
between existing internet applications and the IoT stack by providing a subset of REpresen-
tational State Transfer (REST) operations, such as GET, PUT, POST or DELETE, as used
by HTTP [SYY+13]. Additionally, it was developed with regard to the restrictions imposed
by constrained nodes and therefore it is aimed at producing low overhead and guarantee-
ing less complexity than HTTP. “Unlike HTTP, CoAP is an asynchronous request/response
protocol over a datagram oriented transport such as UDP”[PAV+13]. Internally, CoAP is
split into two different layers, namely a message layer, which is located directly above the
transport layer and responsible for reliability, as well as a request/response layer, located
between the message layer and the application layer, supporting the RESTful capabilities,
see [PAV+13].

3.1.3. Fields of application

Constrained-node networks open up a wide range of new opportunities in various application
domains. They paved the way for building smart environments in terms of home automation
systems that can be controlled remotely in order to save energy, intelligent healthcare ap-
plications such as ubiquitous health monitoring devices, smart factories in which industrial
machines are being monitored, or traffic management systems enabling efficient transporta-
tion, as described in [YAH+17] and [BEK14]. Following the authors of [GBMP13], there are
also several application possibilities for personal usage, especially regarding consumer elec-
tronics that provide certain services to individuals on a small scale, such as smart watches.
On the other hand, smart grids represent an example for large-scale applications using con-
strained environments. According to [PS17], cloud computing systems can also be integrated
into constrained networks, whereby fog computing might play a major role in bridging the
gap between low-level constrained devices and high-level cloud computing nodes, as men-
tioned in Chapter 2. So in general, the fields of application are very diverse and application
possibilities are hardly limited.

3.1.4. Challenges

Even though the usage of constrained environments provides seemingly endless opportuni-
ties, there is a number of challenges they have to face, that still remain unsolved to a certain
extent. First of all, sensing devices generate large amounts of data, which need to be stored,
managed and processed, so data mining and analysis mechanisms encompassing compressive
sensing or data fusion are required, as proposed by [SYY+13] and [PS17]. Another challenge
is guaranteeing interoperability among the enormous range of devices with heterogeneous
capabilities and constraints, as well as the seamless integration thereof into the existing inter-
net, which consists of less constrained nodes that implement traditional protocol standards,
as argued in [YAH+17]. Although the IETF tried to establish a resource-aware, standard-
ized protocol suite for the Internet of Things, which should be compliant with the traditional
TCP/IP stack, the coexistence of multiple communication technologies and standards men-

13

3. Background information on constrained environments

tioned in [SYY+13] makes it hard to interconnect all those distinct devices over the Internet.
Besides these issues, the authors of [LL15] state that constrained networks also have to deal
with security concerns. Therefore, proven security mechanisms have to be adapted with
respect to the particular demands of constrained devices in order to provide confidentiality
and authentication, and to protect from different kinds of possible threats [LB16]. In con-
clusion, some of these challenges are not fully overcome yet and therefore still need to be
solved.

3.2. The RIOT operating system

Since RIOT represents the operating system (OS) that is used in the course of this thesis,
only this OS is presented in detail. Section 3.2.1 provides an overview and introduces the
key features of RIOT, while its internal structure is outlined in Section 3.2.2. RIOT’s default
communication stack, which is called the GNRC network stack, is covered in Section 3.2.3.
FInally, the TCP implementation for this IP stack, referred to as GNRC TCP, is thoroughly
described in Section 3.2.4.

3.2.1. Overview and features

In recent years, the need for operating systems which can be deployed on embedded and
thus constrained devices has increased as a result of the growing complexity of software used
on such hardware, as claimed by [LKH+18]. Therefore, operating systems that are being
used in the field of IoT have to meet specific requirements, unlike common operating systems
for internet hosts. RIOT OS is an open source operating system that was developed from
scratch with regard to meeting these particular demands that involve real-time behavior, high
energy efficiency, a low memory footprint and modularity2. According to [BGH+18], RIOT
focuses on low-end IoT devices and supports a large number of diverse sensors, actuators and
different micro-controller architectures, either 8-bit, 16-bit or 32-bit, which in turn ensures
interconnectivity and interoperability among such heterogeneous devices. Its micro-kernel
architecture enables multi-threading based on a preemptive, tick-less, fixed priority scheduler
and provides support for efficient Inter-Process Communication (IPC). The kernel’s powerful
IPC Application Programming Interface (API) can be used for blocking and non-blocking,
as well as synchronous and asynchronous messaging, as described in [LKH+18]. In order to
guarantee reliability and real-time behavior, RIOT only permits static memory allocation
in the kernel, but dynamic memory allocation is possible for the use in applications, as
mentioned in [BHG+13].

The slogan “the friendly OS for the Internet of Things”3 refers to RIOT as being developer,
resource and IoT friendly. Developer friendliness is provided in terms of facilitating standard
C or C++ programming, as well as supplying numerous system libraries with hardware-
independent accessibility, various data structures and a native port. This native port makes
it possible to compile RIOT applications for Linux or Mac OS and then run them as a
UNIX process without deploying them on real embedded hardware2. Furthermore, [BGH+18]

2https://github.com/RIOT-OS/RIOT/wiki/Introduction
3https://www.riot-os.org/

14

3.2. The RIOT operating system

argues that RIOT’s modular architecture simplifies the integration of new components or
stacks and fosters arbitrary configurations for a wide range of use cases, as its modules can
be randomly combined. Due to its unified APIs, the cross-platform code is highly portable
and code duplication is minimized. Referring to [BHG+13], the low resource consumption
points out to the fact that RIOT itself only accounts for a minimum of 1.5 kB of RAM for the
data segment and 5 kB of ROM for the code segment, while it allows for maximum energy
efficiency at the same time due to built-in energy saving mechanisms. The IoT friendliness
is proven by its support for all common IoT standards, such as IPv6, 6LoWPAN, RPL, and
so on3. Additionally, RIOT offers multiple IP protocol stacks such as lwIP, emb6 or the
GNRC network stack (see Section 3.2.3). The source code, which is distributed under the
LGPLv2.1 license, is freely available on GitHub4 and continuously developed and maintained
by a worldwide grass-roots community.

Besides RIOT, Contiki or TinyOS represent alternative operating systems for the Internet
of Things. Table 3.2 shows the differences between these three open source IoT operating
systems and also compares them to Linux. According to this table, RIOT supports most
features, in particular, its real-time capabilities are remarkable, while its memory footprint
remains rather low. But since Table 3.2 only represents a general feature comparison, several
studies have been conducted in order to achieve a more in-depth comparison among such
operating systems, e.g. by benchmarking different IoT networking architectures and evalu-
ating their communication performance, including lwIP, emb6 and RIOT’s default network
stack GNRC, see [LKH+18], or by thoroughly analyzing their technical and non-technical
properties, as described in [HBPT16].

OS Min RAM Min ROM C Support C++ Support Multithreading MCU w/o MMU Modularity Real-Time

Contiki < 2kB < 30kB partial no partial yes partial partial
TinyOS < 1kB < 4kB no no partial yes no no
Linux ∼ 1MB ∼ 1MB yes yes yes no partial partial

RIOT OS ∼ 1.5kB ∼ 5kB yes yes yes yes yes yes

Table 3.2.: Comparison between Contiki, TinyOS, Linux and RIOT OS based on [BHG+13]

3.2.2. Structure

According to [BGH+18] and the RIOT documentation5, which together form the basis of
this section, RIOT is composed of eight building blocks. Figure 3.2 gives an overview of
RIOT’s software structure, that also resembles the code base structure of the RIOT reposi-
tory available on GitHub.

The key component of this structure is called core, since this represents the subdirectory
where all the kernel-related code resides. It mainly comprises the scheduler, the IPC and the
thread management. The cpu and boards elements include the platform-specific code such
as peripheral configuration and pin-mapping, or CPU-specific power management and in-
terrupt handling implementations. The periph component contains all the code for RIOT’s
peripheral driver interface, which enables unified access to micro-controller peripherals like
Serial Peripheral Interface (SPI), General Purpose Input/Output (GPIO) or Universal Asyn-
chronous Receiver Transmitter (UART). Furthermore, the drivers subdirectory implements

4https://github.com/RIOT-OS/RIOT
5https://www.riot-os.org/api/

15

3. Background information on constrained environments

pkg sys sys/net

core (kernel) drivers

periph

cpu boards

Application

Hardware

hardware-independent

hardware-dependent

Figure 3.2.: Overview of RIOT’s structural elements premised on [BGH+18]

external device drivers for sensors, actuators or network interfaces, independent of the un-
derlying board and CPU. System libraries that do not belong to the kernel or the hardware
abstraction can be found in the sys building block, e.g. data structures, Posix implemen-
tations and the RIOT shell. It also includes the sys/net subdirectory, which in turn holds
all the code used for networking, such as the IPv6 or the 6LoWPAN library. The last com-
ponent is called pkg and incorporates third-party libraries that can be seamlessly and easily
integrated into RIOT applications at build-time by fetching the code from a remote source
and applying patches if necessary. In addition to these elements, the RIOT code base also
encompasses other subdirectories like examples, tests, makefiles, doc, as well as dist,
which provides different tools such as a serial terminal application and various scripts for
flashing, code checking, etc.

3.2.3. The GNRC network stack

While RIOT OS offers various communication stacks, the so-called Generic (GNRC) network
stack is the default one, which represents a modular and configurable IP protocol stack6. It
provides full-featured networking by implementing all the functionalities that are required in
the field of IoT networking, as detailed in [Len16] and [LKH+18]. These features comprise
high modularity, a network interface API with multi-interface support, well-abstracted APIs
with clean protocol separation and the buffering of multiple network packets.

Figure 3.3 displays GNRC’s networking architecture with all its components. The cleanly
layered structure allows for high flexibility concerning the interchangeability and customiz-
able combination of the different building blocks. In this way, an application only has to
include the modules that are actually needed and therefore the degree of freedom during ap-
plication development is enhanced. Besides its full-fledged IPv6 implementation (gnrc_ipv6)
with 6LoWPAN extensions (gnrc_sixlowpan), GNRC also offers UDP (gnrc_udp) and TCP
(gnrc_tcp) support. The different protocol layers can communicate via GNRC’s commu-
nication interface netapi, which makes use of the kernel’s IPC API in order to enable

6http://riot-os.org/api/group net gnrc.html

16

3.2. The RIOT operating system

interaction between the various threads of the modules, e.g. when a packet is passed up or
down the stack. The gray boxes in Figure 3.3 indicate that these GNRC modules are run-
ning in their own thread. Southbound, GNRC provides unified access to network interfaces
through the generic network device driver API netdev, which is achieved by abstracting
all available device drivers. Northbound, the GNRC network stack can be accessed from
the application layer by the user programming interface sock. To sum it up, the GNRC
network stack supports all standard protocol specifications of the IoT network stack men-
tioned in Section 3.1.2, either by directly implementing them, as it is the case with GNRC
IPv6, 6LoWPAN, UDP and RPL, or by enabling the integration of any CoAP library to the
networking subsystem using third-party packages such as libcoap and microcoap.

Application / Library

gnrc_sock

sock

gnrc_udp gnrc_tcp

netapi netapi

gnrc_ipv6

netapi

netapi netapi

gnrc_sixlowpan

netapi

MACMAC

Driver Driver

netapi

netapi

netdevnetdev

Figure 3.3.: The GNRC networking architecture based on [LKH+18]

3.2.4. GNRC TCP

The following paragraphs about RIOT’s implementation of the Transmission Control Proto-
col (TCP) for the GNRC network stack are based upon [Bru16]. Even though both UDP and
TCP are core transport protocols on the Internet, the initial version of the GNRC network
stack only provided UDP support. A subsequent additional TCP implementation for RIOT’s
default IP stack, named GNRC TCP, expanded RIOT’s applicability in the context of IoT,
since TCP is the most commonly used transport protocol on the internet and thus many
protocols rely on TCP. By supplying TCP capabilities within the default network stack, such
protocols can be ported to RIOT, thereby easing the integration of devices running RIOT
OS into existing networks that are based on TCP communication.

17

3. Background information on constrained environments

As specified in RFC 793, TCP is a “connection-oriented, end-to-end reliable protocol de-
signed to fit into a layered hierarchy of protocols”[Pos81]. RIOT’s TCP implementation for
the GNRC network stack is tailored to the particular requirements and constraints of IoT sce-
narios. Its design goals comprise high memory efficiency, the exclusive use of static memory
allocation, optional TCP support, a feature set optimized for the Internet of Things and the
compatibility with other TCP implementations. Since a low memory footprint constitutes
the most important goal, trade-offs could not be prevented. A trade-off worth mentioning
here is the limitation of network throughput to a single TCP packet at a time if the size of the
packet equals the predefined Maximum Segment Size (MSS), as outlined below. The use of
static memory allocation only ensures deterministic and real-time behavior during runtime,
but also imposes some restrictions on the implementation, which results in the impossibility
of GNRC TCP being an exact reimplementation of the BSD socket API. Due to the high
modularity of the GNRC network stack, it was a comprehensible goal to integrate the TCP
capabilities as an optional module of the stack (see Figure 3.3). The general feature set
of GNRC TCP does not reflect a full-fledged TCP implementation because all the features
were analyzed and evaluated in terms of suitability and applicability in IoT scenarios and
therefore TCP extensions such as Selective Acknowledgment options (SACK) or congestion
control algorithms were omitted, mainly on account of memory requirement and complexity
reduction. Even though GNRC TCP is not fully featured, it is still compatible with other
TCP implementation, even with full-fledged ones, in order to guarantee interconnectivity
with different TCP implementations. “TCP operations rely on a few basic concepts, namely
basic data transfer, reliability, flow control, multiplexing and connection handling”[Bru16].
GNRC TCP realizes these concepts by implementing the following principles.

Transmission Control Block (TCB) The TCB is the most important data structure of
GNRC TCP because it holds all the information about a certain connection including the
state of the connection, the address family, the local and peer IP addresses and port numbers,
fields for the sequence and acknowledge number mechanisms, the MSS, retransmission timer
definitions and other information used for connection handling and data exchange between
two peers. Each peer has its own TCB for every connection, both of them are being filled
with the relevant information during the connection establishment. Since the IP addresses
and port numbers are stored inside the TCB, a pair of TCBs uniquely identifies a TCP
connection — similar to a pair of BSD sockets — and multiplexing between applications is
possible due to the binding of ports to processes.

Connection establishment and termination Before data can be exchanged between two
peers, a connection must be established using a 3-Way-Handshake mechanism in order to
make sure the connection initialization is carried out correctly. The procedure of a 3-Way-
Handshake is demonstrated in Figure 3.4, including the sequence and acknowledgement
number mechanism described in the next paragraph. Usually, one node issues a passive open,
which involves listening for incoming requests on a certain port. Another node attempts to
initiate a connection to the peer by performing an active open, specifying the peer’s port
number as destination port. This is done by sending a TCP packet with a SYN flag to
the peer. If the peer accepts the connection, he sends back a segment containing a SYN
and an ACK flag, which in turn has to be acknowledged by the initiating node before the

18

3.2. The RIOT operating system

connection is marked as established. After the exchange of data, the connection must be
terminated properly, thereby freeing the previously used resources. Both peers have to
indicate that they are willing to close the connection by sending a FIN-flagged packet to
their counterpart. Additionally, the reception of these packets has to be confirmed by the
dispatch of an ACK-flagged packet by both connection partners.

Initiator Listener

SYN - SEQ: 6000

SYN, ACK - SEQ: 9000, ACK: 6001

ACK - SEQ: 6001, ACK: 9001

Figure 3.4.: Sequence diagram of a TCP 3-Way-Handshake for connection establishment

Data transfer and sequence numbers TCP packets carry data as byte streams, which can
be transmitted in both directions between two connected peers. The size of the segments that
can be sent within a single TCP segment is limited by the MSS, which is stored inside the
TCB and communicated during the connection establishment. Each byte of data sent over
a TCP connection is associated with a sequence number and every TCP packet is associated
with the sequence number of its first payload octet within the segment. The sequence number
of the last payload byte within the packet is calculated by the packet’s sequence number
plus the payload size minus one. Therefore, every received segment can be acknowledged
by the peer through sending back an ACK-flagged packet that contains the corresponding
acknowledgement number, either with or without additional data. Acknowledgements can
be carried out in a cumulative fashion, so the acknowledgement number x indicates that all
bytes with a sequence number lower than x have been received correctly. For instance, if
a peer sends a packet with a sequence number of 6,000 that contains 50 bytes of data, the
corresponding acknowledgement number for this segment would be 6,050, since it has to be
bigger than the sequence number of the last data byte within the packet, which would be
6,049 in this case. Figure 3.4 also shows how the sequence and acknowledgement number
mechanism works for the connection establishment, where no payload data is being sent by
either peer. The consecutive sequence and acknowledgement number spaces are defined by
multiple variables inside the TCB. For each segment that is being sent, a retransmission timer
is started. If the timer expires and the corresponding packet has not been acknowledged
yet, it is considered lost and thus resent. In combination, these mechanisms provide the
required reliability of a TCP connection, including the detection of missing segments or
duplicates.

19

3. Background information on constrained environments

Header format Figure 3.5 outlines the format of a TCP header. According to this Figure,
all the TCP-specific control information is contained in the TCP header of a packet, including
source and destination port information, the sequence and acknowledgement number, a data
offset field, reserved bits for future use, control bits for flags like SYN or ACK, a field for
the window size, the checksum used for error detection, an urgent pointer, an options field
and padding, followed by the actual payload. The minimum header size is 20 bytes, which
is the case when no options are set, while the maximum size is 60 bytes, since options can
account for up to 40 bytes.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Source Port Destination Port

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Sequence Number

Acknowledgement Number

Data
Offset

Reserved
U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Window

Checksum Urgent Pointer

Options (variable length) Padding

Payload

Figure 3.5.: TCP header format based upon [Bru16]

Window management The window management is responsible for the flow control of the
connection in such a way that the amount of data, which can be sent to a peer before the
sender has to wait for the acknowledgement of these packets, depends on the window size of
the receiver. The size of the window is closely intertwined with the currently available receive
buffer size and influenced by the MSS. It is communicated with every acknowledgement and
indicates the amount of data that can be stored in the receive buffer at this point in time.
A typical value for the MSS is 1,220 bytes, because it mirrors the default IPv6 Maximum
Transmission Unit (MTU) of 1,280 bytes subtracted by the IPv6 header size of 40 bytes and
the minimum TCP header size of 20 bytes. In common TCP implementations, the window
size and therefore also the receive buffer size are multiples of the MSS in order to facilitate
a higher throughput. GNRC TCP, on the contrary, implements a default receive buffer and
window size of 1,220 bytes, which equals the configured MSS. This default configuration lim-
its the TCP throughput to only a single packet at a time. The upside of this implementation
is a further reduction of memory consumption, which is directly affected by the size of the
receive buffer, and since memory savings represent the most important design goal, this is
considered an acceptable trade-off of the GNRC TCP implementation.

20

3.3. The ZeroMQ Message Transport Protocol

TCP Finite State Machine Especially during the connection establishment and termina-
tion, several state changes take place. They are caused by either user calls on the application
layer, the reception of a packet, or by timeouts. The Finite State Machine (FSM) defines
the different states of a connection, namely LISTEN, SYN-SENT, SYN-RECEIVED, ESTABLISHED,
FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK, TIME-WAIT and CLOSED, as well
as the specific events that trigger changes between them. Since the events that lead to a
transition of states can occur within multiple threads simultaneously, a mutex is being used
as synchronization mechanism. State changes in response to errors are not covered in this
simplified FSM version.

In summary, the GNRC TCP implementation for RIOT’s default stack provides basic TCP
functionality with a reduced set of features that are optimized for the Internet of Things, but
still compatible with other, potentially fully featured TCP implementations. Nevertheless,
GNRC TCP exhibits some trade-offs concerning throughput, which can be attributed to the
most important design goal of low memory consumption.

3.3. The ZeroMQ Message Transport Protocol

In the following sections, ZeroMQ and the associated ZeroMQ Message Transport Proto-
col are presented, including their key aspects and especially focusing the protocol design of
ZMTP. Furthermore, the protocol port for RIOT OS that enables deploying distributed ap-
plications in constrained environments is introduced. While Section 3.3.1 focuses on ZeroMQ
in general, Section 3.3.2 deals with ZMTP in particular, since it represents the protocol under
investigation regarding scalability.

3.3.1. ZeroMQ

The terms ØMQ, 0MQ, or zmq can be used interchangeably and all refer to ZeroMQ, a
messaging library that was designed for the use in distributed or parallel applications, as
detailed by Pieter Hintjens in his book [Hin13a], which serves as the basis for this section.
The main goals of ZeroMQ are ensuring simplicity and scalability, as well as guaranteeing
high-performance messaging capabilities. The zero in ZeroMQ stands for several other design
goals such as zero broker, zero latency, zero administration, zero cost and zero waste.

The ZeroMQ API provides sockets for a quick and efficient way of exchanging messages
between nodes, whereby messages are being transported as blobs of data, with a size ranging
from zero to several gigabytes. These sockets work together in pairs and can have different
socket types, which form ZeroMQ’s so-called messaging patters. They cannot be combined
arbitrarily, because only two matching socket types can form a messaging pattern. Table 3.3
shows the valid socket type combinations.

There are four built-in core patterns, namely request-reply, pub-sub, pipeline and exclusive
pair. All of the semantics of these patterns are specified within the ZeroMQ RFC project7.
The request-reply pattern, defined in ZeroMQ RFC 28 [Hin13d], is based on the traditional

7https://rfc.zeromq.org/

21

3. Background information on constrained environments

client-server model occurring in service-oriented architectures and is used for task distribu-
tion or remote procedure calls. The servers provide certain services and the clients function
as service requesters. REQ and REP are the socket types that implement this pattern and
communicate within a synchronous request-reply dialog, while the counterparts belonging to
this pattern, DEALER and ROUTER, enable a nonblocking asynchronous request-response
dialog between nodes. As specified in ZeroMQ RFC 29 [Hin14b], the publish-subscribe pat-
tern defines PUB and SUB as socket types and typically acts as a one-way data distribution
pattern, where the publishers publish data and the subscribers are filtering all the incoming
data, depending on the application’s specific requirements. The third pattern, pipeline, is
described in ZeroMQ RFC 30 [Hin13c] and requires the PUSH and PULL socket types. It
constitutes a fan-out/fan-in pattern, which can be applied to realize parallel task distribu-
tion and collection, similar to the divide and conquer paradigm. The exclusive pair pattern
is used to connect two threads within a process and the corresponding socket type for this
pattern is called PAIR, as presented in ZeroMQ RFC 31 [Hin13b].

REQ REP DEALER ROUTER PUB SUB PUSH PULL PAIR

REQ X X

REP X X

DEALER X X X

ROUTER X X X

PUB X

SUB X

PUSH X

PULL X

PAIR X

Table 3.3.: Valid socket type combinations derived from [Hin14a]

Messages are routed and queued according to the specified messaging pattern, because the
semantics of the sockets are defined by the individual patterns. With ZeroMQ, messages can
be transferred via TCP, inproc, IPC or UDP in unicast and multicast modes. Depending on
the transport, ZeroMQ nodes are mapped to threads, processes or peers within a network,
whereby 1-to-N, N-to-1 or N-to-N connections can be established.

ZeroMQ’s original core engine is called libzmq, which was written in C++, but many other
alternative engines are available, in order to support a variety of different programming
languages and therefore facilitating language-independent connection of code. All the source
codes of the various engines can be found on GitHub8 as free and open source software.
libzmq is from iMatix and licenced under LGPLv3 open source9.

3.3.2. ZMTP overview

This section is based upon RFC 23 [Hin14a] of the ZeroMQ RFC project, which contains
the specification of the ZeroMQ Message Transport Protocol. ZMTP is a peer-to-peer trans-
port layer protocol that is implemented by ZeroMQ’s core engine libzmq and many of its

8https://github.com/zeromq/libzmq
9http://zeromq.org/docs:features

22

3.3. The ZeroMQ Message Transport Protocol

reimplementations, so it constitutes the main protocol used by ZeroMQ. ZMTP defines the
messaging between two peers by encapsulating messages and specifying how to read and
write frames on a connection. Additionally, it provides extensible security mechanisms with
different safety levels.

Using ZMTP, nodes can communicate via TCP or IPC, depending on the application’s use
case. While libzmq is the core engine of ZeroMQ, ZMTP can also be seen as an alternative
engine designed for the specific needs of constrained hardware, which is why it is also called
“The protocol of things”10. It is implemented as a native C stack and enables two peers
to communicate with each other just using ZMTP endpoints. The protocol intends to fix
deficiencies that come along with TCP, for example the nonexistence of delimiters in a
stream of octets or the impossibility of adding metadata to a frame. These problems are
addressed and solved by a message framing mechanism, which defines that each ZMTP frame
is composed of a flags field for metadata, a size field and a body.

Design of the protocol

In general, the protocol comprises three main stages: the connection establishment, the
transfer of messages and the connection termination, similar to the specification of a TCP
connection sequence. As can be seen in lines 4 and 5 of Listing 3.1, which shows the Aug-
mented Backus-Naur Form (ABNF) grammar that defines the connection establishment
phase of the protocol, a ZMTP connection consists of a greeting, a handshake, and traf-
fic. While the greeting and the handshake belong to the connection establishment, traffic
constitutes the actual communication between peers.

Connection establishment During the greeting, which is defined in lines 7-26 of Listing 3.1,
the two peers communicate the protocol details by exchanging their signature (lines 10-11),
as well as their version number (lines 13-15), and negotiating a security mechanism (lines 17-
20). Additionally, a peer can specify whether it acts as a server (lines 22-23). The subsequent
security handshake as described in lines 28-30 is performed by transmitting at least one com-
mand, e.g. the READY command as part of the NULL security mechanism. The different
security mechanisms, namely NULL, PLAIN and CURVE, are defined as extension proto-
cols and provide varying levels of authentication and confidentiality. The mechanism used
also determines the commands that are being exchanged during the connection establishment
handshake. The NULL security mechanism, which is the default one, neither offers authenti-
cation nor confidentiality, while the PLAIN mechanism, defined as ZeroMQ RFC 24 [Hin13f],
implements a username-password authentication for each client that wants to connect to a
server. In contrast, the CURVE mechanism provides full authentication and confidentiality
in order to meet high security requirements, as specified in ZeroMQ RFC 25 [Hin13e].

Transfer of messages The actual communication between two nodes is performed in the
data transfer phase, also called traffic, which is defined by the formal grammar presented in
Listing 3.2. In this phase of the protocol, both peers are able to send and receive discrete
messages (see lines 14-18) or more commands (see lines 4-12) intermixed. Apart from the

10http://zmtp.org/

23

3. Background information on constrained environments

Listing 3.1: ABNF grammar of a ZMTP connection establishment as defined in [Hin14a]

1 ; The p ro to co l c o n s i s t s o f ze ro or more connect i ons
2 zmtp = * connect ion
3

4 ; A connect ion i s a gree t ing , a handshake , and t r a f f i c
5 connect ion = g r e e t i n g handshake t r a f f i c
6

7 ; The g r e e t i n g announces the p ro to co l d e t a i l s
8 g r e e t i n g = s i gna tu r e ve r s i on mechanism as−s e r v e r f i l l e r
9

10 s i gna tu r e = %xFF padding %x7F
11 padding = 8OCTET ; Not s i g n i f i c a n t
12

13 ve r s i on = vers ion−major ver s ion−minor
14 vers ion−major = %x03
15 vers ion−minor = %x00
16

17 ; The mechanism i s a nu l l padded s t r i n g
18 mechanism = 20mechanism−char
19 mechanism−char = ”A”−”Z” | DIGIT
20 | ”−” | ” ” | ” .” | ”+” | %x0
21

22 ; I s the peer ac t ing as s e r v e r ?
23 as−s e r v e r = %x00 | %x01
24

25 ; The f i l l e r extends the g r e e t i n g to 64 o c t e t s
26 f i l l e r = 31%x00 ; 31 zero o c t e t s
27

28 ; The handshake c o n s i s t s o f at l e a s t one command
29 ; The ac tua l grammar depends on the s e c u r i t y mechanism
30 handshake = 1*command

64 octet-sized greeting, all data exchange is carried out by reading and writing frames that
contain either a command or a message. As presented in Figure 3.6, each frame is composed
of three fields: one field for flags, one for the size and one for the body. Inside the flags field,
which has a size of one byte, different flags can be defined by setting the corresponding bit
from 0 to 1. The MORE flag (bit 0) signals that there are more frames to follow, the LONG
flag (bit 1) indicates whether it is a short frame with a body ranging between 0 and 255 octets
or a long frame with a body of maximum 263 − 1 octets. As a third option, a COMMAND
flag (bit 2) can be set, specifying that the frame is carrying a command instead of a message,
while the five remaining bits are reserved for future use and have to be set to zero.

The size field only contains the size of the data in bytes and either consists of one octet in case
of a short frame or eight octets in case of a long frame. Lastly, the body holds the actual
application data of a message or a printable command name and command data, within
as many octets as specified by the size field. Regarding the NULL security mechanism,
the only commands are READY and ERROR. The current version of the ZMTP protocol
implementation, namely version 3.0, defines that upon dispatch of a message or command,
each frame is fragmented into its three parts by the sender and then each field of the frame
is sent as a separate TCP packet. On reception of the three packets containing the flags, the
size and the body, the receiver reassembles the individual parts into a complete frame. This

24

3.3. The ZeroMQ Message Transport Protocol

Listing 3.2: ABNF grammar of ZMTP traffic as specified in [Hin14a]

1 ; T r a f f i c c o n s i s t s o f commands and messages intermixed
2 t r a f f i c = *(command | message)
3

4 ; A command i s a s i n g l e long or shor t frame
5 command = command−s i z e command−body
6 command−s i z e = %x04 short−s i z e | %x06 long−s i z e
7 short−s i z e = OCTET ; Body i s 0 to 255 o c t e t s
8 long−s i z e = 8OCTET ; Body i s 0 to 2ˆ63−1 o c t e t s
9 command−body = command−name command−data

10 command−name = OCTET 1*255command−name−char
11 command−name−char = ALPHA
12 command−data = *OCTET
13

14 ; A message i s one or more frames
15 message = *message−more message−l a s t
16 message−more = (%x01 short−s i z e | %x03 long−s i z e) message−body
17 message−l a s t = (%x00 short−s i z e | %x02 long−s i z e) message−body
18 message−body = *OCTET

mechanism is used to signalize the receiver whether the frame size is contained in a single
octet or encoded in eight octets, which can be determined through the LONG flag, and to
indicate how much memory needs to be allocated for the upcoming data by the preceding
size field.

Flags

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Size Body

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 3.6.: The structure of a ZMTP short frame containing two octets of data

Connection termination Finally, the last stage of the protocol is the connection termi-
nation, where both peers close the connection, so no more data can be transferred. The
connection can be closed anytime by each peer, but there is no formal grammar specification
for this closing stage of the protocol.

Metadata The messaging patterns and corresponding socket types that were mentioned
before can be specified by connection metadata entries as part of the security handshake. The
ABNF grammar of the NULL security mechanism handshake is also defined by the ZMTP
specification of the ZeroMQ RFC 23 [Hin14a] and presented in Listing 3.3. Metadata is
communicated as key-value pairs (see lines 3-7), called property (line 4) in the listing above.
The key is represented by the property name of the metadata (lines 5-6), e.g. Socket-Type
in case of the messaging patterns, while the value (line 7) includes of one of the socket types
such as REQ or REP. In this way, each peer can send its own socket type and also verify
the socket type received from the other peer according to the valid combinations as noted
above in Table 3.3.

25

3. Background information on constrained environments

Listing 3.3: ABNF grammar of the NULL security mechanism as specified in [Hin14a]

1 nu l l = ready *message | e r r o r
2 ready = command−s i z e %d5 ”READY” metadata
3 metadata = *property
4 property = name value
5 name = OCTET 1*255name−char
6 name−char = ALPHA | DIGIT | ”−” | ” ” | ” .” | ”+”
7 value = 4OCTET *OCTET ; S i z e in network byte order
8 e r r o r = command−s i z e %d5 ”ERROR” error−reason
9 e r ror−reason = OCTET 0*255VCHAR

ZMTP port for RIOT OS

Since the ZeroMQ Message Transport Protocol was not implemented for RIOT OS yet, the
first step was to port this protocol to RIOT as preparatory work in order to use it for further
work on distributed computing in the context of IoT. Thus, ZMTP was partially ported to
RIOT as part of a practical university course11 and then served as the basis for this thesis,
more particularly, the use case programs for the experimental approach were built upon this
protocol port, as described in the subsequent chapter.

The partial ZMTP port was defined as a new package called libzmtp and integrated into
RIOT’s third-party package system within the RIOT/pkg directory. The source and header
files of the port can be found on GitHub12, while the libzmtp package folder itself only
contains two Makefiles, which specify the URL of the remote repository where the code
should be fetched from, as well as the destination folder where the cloned files should be
stored locally. The original protocol supports TCP and IPC, but since it was ported with
regard to enabling distributed computing on constrained devices, the RIOT port only comes
with TCP support, so it does not provide ZMTP’s full functionality and is therefore only a
partial port. It is built upon RIOT’s GNRC TCP implementation for the GNRC network
stack and the initial version of the protocol used for the port is version 3.0, which implements
the NULL security mechanism by default, so the same applies to the port. Additionally,
backwards interoperability is currently not supported, since version 3.0 of ZMTP does not
provide this feature either, so the RIOT port will reject older versions of the protocol, just
like the original protocol does. Since ZMTP is based on TCP, a prerequisite for porting
this protocol to RIOT OS was a functioning TCP implementation on RIOT. As mentioned
before, GNRC TCP is not an exact reimplementation of the BSD API, because RIOT does
not support the usage of file descriptors, so in order to enable the usage of ZMTP on RIOT,
all the function calls from the BSD socket API needed to be abstracted by adding GNRC
TCP-specific code.

Regarding the file structure of the ZMTP port, Figure 3.7 depicts the dependencies be-
tween the different source and header files that are part of the port. The zmtp_channel.c

file represents the main class and acts as the starting point of the protocol, since it im-
plements all the user function calls, which in turn trigger functions of other classes such as

11Theresa Müller, Practical Course IoT at LMU Munich, summer term 2018, course website:
http://www.mnm-team.org/teaching/Praktika/2018ss/iot/

12https://github.com/muellerthe/libzmtp

26

3.3. The ZeroMQ Message Transport Protocol

zmtp_endpoint.c or zmtp_msg.c. It provides functionality for establishing a connection be-
tween two nodes, sending and receiving messages, as well as closing a connection, which mir-
rors the sequence of a TCP connection. The two wrapper classes zmtp_channel_wrapper.c
and zmtp_tcp_endpoint_wrapper.c were additionally added to the initial file structure of
ZMTP in order to be able to abstract the BSD socket API calls of the original protocol.

zmtp_classes.h

zmtp_channel.c

zmtp_endpoint.c

zmtp_tcp_endpoint.c

zmtp_dealer.c

zmtp_channel_wrapper.c zmtp_tcp_endpoint_wrapper.c

zmtp_channel.h zmtp_endpoint.h zmtp_tcp_endpoint.h

zmtp_dealer.h

zmtp.h

zmtp_channel_wrapper.h zmtp_tcp_endpoint_wrapper.h

zmtp_msg.c

#include
zmtp_msg.h

header files

source files

Figure 3.7.: Dependency graph of ZMTP source and header files

27

4. Experimental approach

The following sections focus on the experimental approach that is used to evaluate the
scalability of ZMTP in constrained environments with respect to distributed computing
applications. While Section 4.1 details the general methodology of this approach, Section 4.2
introduces the selected measurands for the series of experiments. Furthermore, Section 4.3
presents the two use case applications, which are developed specifically for the purpose of
this thesis, whereas the test setups of the experiments are detailed in Section 4.4. The
final section, namely Section 4.5, describes the applied test procedure of the experimental
approach.

4.1. General methodology

In order to give an overview of the methodology used within this thesis, the conceptual
design of the approach that enables the evaluation of ZMTP by conducting experiments
and performing measurements at runtime are described in Section 4.1.1. Additionally, the
problem space, which is associated with the runtime performance of distributed computing
applications, is defined in Section 4.1.2.

4.1.1. Conceptual Design

Since the objective of this thesis is to assess the scalability of the ZeroMQ Message Transfer
Protocol in constrained environments, a series of experiments based on two different use cases
is conducted in order to analyze the scaling behavior of the protocol and draw conclusions
from the runtime measurement results of the underlying applications.

Figure 4.1 shows the different steps of the experimental approach, which is used as method-
ology because it constitutes a scientific test and verification procedure that is considered
best to investigate and evaluate ZMTP in terms of its scaling behavior. As a first step,
the measurands for the runtime measurements which are executed during the experiments
are determined. Afterwards, two test applications built upon ZMTP are developed, both of
which represent disparate use cases focusing on distributed computing and therefore serve
as the basis for the experimentation. Subsequently, different test configurations, simulating
the scaling of the protocol by covering strong and weak scaling, are defined for both use case
applications. These configurations are then tested within a particular test environment by
means of a series of experiments, while performing measurements of the previously selected
measurands during runtime and under realistic steady state conditions. Afterwards, the re-
sults of the measurements are analyzed, evaluated and on the basis of these results, resilient
assertions about the scaling behavior of ZMTP are derived.

29

4. Experimental approach

The first four aspects of the experimental approach as outlined in Figure 4.1 are detailed in
the following sections, whereas the result analysis and evaluation, as well as the conclusions
that can be drawn from the results, are covered by the next chapter, see Chapter 5.

use case development test configuration definition

experiment conduct

measurand selection

analysis and evaluationconclusion establishment

Figure 4.1.: Methodology of the experimental approach

In general, this methodology represents an attempt to determine whether the protocol shows
the expected and desired scaling behavior, that is a speedup due to scaling, when increasing
the number of computing units, or if a drop in performance can be identified at some point.
If possible, more general predications are deduced from the resulting scaling conclusions in
order to point out to implications for a broader context, but this is also part of the subsequent
chapters.

4.1.2. Problem space definition

The problem space is defined by multiple linearly independent dimensions, each of which in-
fluences the runtime performance of a distributed computing system deployed in constrained
environments to a certain extent. As can be seen in Table 4.1, there are various influencing
factors, e.g. the application program itself or the associated total input size that defines the
overall workload. Regarding the network infrastructure, the number of workers has a big
effect on the runtime, because this determines among how many computing units the total
input size is split and thus influences the workload per node. But also the underlying hard-
ware of the nodes within a network can be responsible for fluctuations, since the hardware is
characterized by the available resources in terms of computing power, memory capacity and
power supply. Another factor is the spatial arrangement and therefore the actual distance
between the nodes of a network, because this parameter can influence the interconnect as
well as the radio interference between the nodes. The communication protocol that is being
used also needs to be considered, since different standards can have different impacts on the
runtime of a system, for instance using a protocol that is based on TCP, like it is the case
with ZMTP, versus a protocol that uses UDP as transport layer protocol, thereby imposing
less communication overhead as compared to TCP. The transmission technology, e.g. Ether-
net, Wi-Fi or IEEE 802.15.4, which is defined by the used hardware, also plays an important
role regarding the performance, because it directly interferes with the available data rate and
thus causes more or less severe restrictions on bandwidth, transmission speed and through-
put. Furthermore, the operating system running on the computation nodes might limit or
enhance the performance of the system as well, with regard to constraints possibly imposed
on protocol implementations by the underlying OS design. Of course, there are even more
factors that influence the runtime of a distributed computing system, so Table 4.1 is not
necessarily complete, but provides an excerpt that is useful for the experiment design.

30

4.2. Measurands

Dimension Altered during experiments Value

Application yes Use case program
Number of workers yes varying

Total input size yes varying

Hardware no IoT-LAB M3 nodes
Spatial arrangement no adjacent nodes

Communication protocol no ZMTP
Transmission technology no IEEE 802.15.4

Operating system no RIOT OS

Table 4.1.: Partial problem space definition by means of dimensions

All of the aforementioned dimensions can be altered and the combination of a specific value
for each dimension forms a certain configuration for a distributed computing system. Re-
ferring to the series of experiments that are conducted as part of this thesis, some of these
dimensions are individually adjusted during the experiments in order to assess the effect of
the alternations on the total runtime, while others remain constant. Table 4.1 represents all
the dimensions and outlines whether they are adjusted in the course of the experimentation
or not. Additionally, it shows the corresponding values that are chosen specifically for the
purpose of the thesis. There are only three dimensions that are varied, namely the applica-
tion, the number of nodes and the total input size, because variations of these parameters
reflect strong and weak scaling by means of different use cases and the focus of the experi-
ments is on the scalability of ZMTP. Narrowing the adjusted dimensions to only three limits
the number of required experiments, and further measurements of other dimensions would
go beyond the scope of this thesis.

While the application can be altered concerning different use case programs, values for
the number of nodes and the total input size can range arbitrarily. The specific values
and combinations between the three dimensions that are varied during the experiments are
described in Section 4.4.2.

4.2. Measurands

Before the use case programs can be developed, the measurands for the experiments and
associated runtime measurements, that form the basis for drawing resilient scaling conclu-
sions, need to be determined. The two selected measured quantities, namely execution time
(see Section 4.2.1) and power consumption (see Section 4.2.2) are presented in the following
sections, which also cover how they are being measured during the experiments.

4.2.1. Execution time

The execution time marks the primary variable that is being measured during the experi-
ments because the resulting values enable the identification of speedups or drops in perfor-
mance due to scaling. The data acquisition is accomplished by function calls from RIOT’s
xtimer API, to be more specific, the static uint32_t xtimer_now_usec(void) function is

31

4. Experimental approach

used (see Listing 4.1), which yields the current system time since the start in microseconds.
In order to obtain the actual execution time of a code fragment, the difference between
two measured values for the system time needs to be computed by subtracting the system
time when starting the measurement from the system time when ending the measurement.
Listing 4.1 demonstrates the implementation of this procedure, which is integrated into the
use case programs as demonstrated in Listing 4.2 of Section 4.3. Within each program,
several execution time measurements are performed, one for the overall execution time of
the program and further ones for measuring the execution time of only some parts of the
application.

Listing 4.1: Function calls needed for the execution time measurements

1 /* Get current system time f o r execu t i on time at s t a r t o f measurements */
2 const u in t 32 t t ime s t a r t = xt imer now usec () ;
3

4 /* Code to be measured */
5

6 /* Get current system time f o r execu t i on time at end o f measurements */
7 const u in t 32 t t ime end = xtimer now usec () ;
8

9 /* Compute o v e r a l l e xecu t i on time */
10 const u in t 32 t exec t ime = time end − t ime s t a r t ;

4.2.2. Power consumption

Besides the execution time measurements, the power consumption of each node as a sec-
ondary measurand is monitored during the experiments in order to determine differences
between each node’s energy footprint for varying workloads. As opposed to the execution
time, measured values for the power consumption of a node are provided by a tool of the
IoT-LAB testbed, which represents the test environment used for the experiments as de-
scribed in Section 4.4.1. This tool allows for monitoring every node participating in an
experiment by defining a monitoring profile, which enables measuring the current (in am-
pere), voltage (in volt) and power consumption (in watt) of each node separately during
the experiment. For each monitoring profile, the configurable sampling period needs to be
specified by setting values for conversion times (CT) and averaging mode (AV). The sample
rate or periodic measure (PM) is computed by the formula PM = CT · AV · 2. Depending
on the sampling period and especially on the number of averages, the resulting signals might
be filtered through noise reduction, so the measurement accuracy can be influenced by these
settings13. Regarding the monitoring profile used for the experiments, the conversion time
value is set to 8,244 µs, while the averaging mode is set to 16, which leads to a slightly
filtered signal. As a result, the power consumption is measured every 264 ms. The mea-
sured values per node obtained by the tool are stored in an .oml file, that can be plotted
by means of a python script, which is also provided by the IoT-LAB testbed, generating a
graph representing a node’s power consumption.

13https://www.iot-lab.info/tutorials/monitoring-consumption-m3/

32

4.3. Representative use cases

4.3. Representative use cases

This section describes the two representative use cases that are developed specifically for
the purpose of this thesis and used for the series of experiments and corresponding runtime
measurements. The use cases comprise two distributed applications, namely a program to
compute the amount of prime numbers within a given interval, as presented in Section 4.3.1,
and one to determine the number of words and lines of a certain text segment, see Sec-
tion 4.3.2. Both applications have in common that they are based on a master-worker model
as demonstrated in Figure 4.2, so there is always one master node that distributes the work-
load among a predefined number of worker nodes. Additionally, the master node acts as a
data sink by collecting all the partial results from the workers after they are finished with
processing the input, followed by combining the received results to get an overall result.

master

worker 3

master

worker 2worker 1 worker n...

Figure 4.2.: Master-worker model

This communication pattern is also reflected in the topology of the nodes involved in a
use case. A star topology is chosen as logical topology for both applications, which is also
illustrated in Figure 4.3. In this way, the master node only communicates with the worker
nodes, but there is no communication among the worker nodes themselves. Furthermore,
the whole communication between the master node and the worker nodes is realized through
ZMTP.

For the prime number count use case, the total numeric interval, in which the primes shall be
determined, is divided among the workers, whereas a text section is split among the workers
in case of the word and line count use case. As stated above, the communication channels
between the master node and the worker nodes are established via ZMTP and for each
worker, the master needs to create a new thread for handling the ZMTP connection with
this particular worker node. For instance, if there are 8 workers in a given experiment, then
the master has to create 8 new threads in order to be able to handle all the different ZMTP
connections properly. Since a master node always needs to be present within the network,
each experiment consists of n+ 1 nodes, whereby n represents the number of workers.

Both applications are developed for RIOT OS and for each use case, two programs are
needed, one for the master node and one for the worker nodes, so in total four programs are
designed. As mentioned in Section 4.2.1, the use case programs include function calls from

33

4. Experimental approach

master

worker 2

worker 5

worker 3

worker 4

worker 1

 . . .

Figure 4.3.: Logical topology of the nodes

the RIOT API to realize the execution time measurements, whereby each of them outputs
multiple execution time measurements, namely a measured value for the overall execution
time of the master or worker program, respectively, and one or more measured values for
the time needed to execute only specific parts of the program. Listing 4.2 constitutes a
generalized template that shows how two values for the execution time are measured within
the program code.

In case of the master program, the further measurements comprise the separate execution
time of each connection handling thread, only excluding the ZMTP connection establishment
and termination as well as the IPC that takes place between the connection handling threads
and the main thread in order to put the partial results of the individual workers together
and generate an overall result. Regarding the word and line count use case, it additionally
excludes the time used to compute the array of text passages, which are later sent to the
workers, within the main thread. This kind of computation is not necessary in the prime
number count use case. As a result, if n workers are involved in an experiment, the master
program generates n + 1 measured values for the execution time, whereby n values mirror
the execution times of the separate connection handling threads and one value represents
the overall execution time of the master program.

As for the worker program, that completely runs within the main thread since each worker
only needs to maintain one connection, the ZMTP connection establishment and termination
are not part of the second measurement as well, so it encompasses the input the worker
receives from the master node, the algorithm computing the results, and the dispatch of
these results to the master. Thus, two measured values per worker are generated, which
also makes it possible to calculate the time required for the connection establishment and
termination for each worker by taking the difference between those two values.

The following sections detail the individual design and also the specific workflow of each
test case separately, starting with the prime number count application as the first use case,
followed by the word and line count program as the second use case.

34

4.3. Representative use cases

Listing 4.2: Integration of execution time measurements in the use case programs

1 /* Dec lara t ion and i n i t i a l i z a t i o n o f v a r i a b l e s */
2

3 /* Get current system time f o r o v e r a l l e xecu t i on time at s t a r t o f
measurements */

4 const u in t 32 t t ime s t a r t 1 = xtimer now usec () ;
5

6 /* Code f o r connect ion e s t a b l i s hmen t e t c . */
7

8 /* Get current system time f o r p a r t i a l e xecu t i on time at s t a r t o f
measurements */

9 const u in t 32 t t ime s t a r t 2 = xtimer now usec () ;
10

11 /* Code to be measured wi th in p a r t i a l e xecu t i on time */
12

13 /* Get current system time f o r p a r t i a l e xecu t i on time at end o f
measurements */

14 const u in t 32 t t ime end 2 = xtimer now usec () ;
15

16 /* Code f o r connect ion terminat ion e t c . */
17

18 /* Get current system time f o r o v e r a l l e xecu t i on time at end o f
measurements */

19 const u in t 32 t t ime end 1 = xtimer now usec () ;
20

21 /* Compute o v e r a l l e xecu t i on time */
22 const u in t 32 t exec t ime 1 = time end 1 − t ime s t a r t 1 ;
23

24 /* Compute p a r t i a l e xecu t i on time */
25 const u in t 32 t exec t ime 2 = time end 2 − t ime s t a r t 2 ;

4.3.1. Use case 1 - Prime number count

When starting the master program, the measurement for the overall execution time is trig-
gered right away and the threads that are required to handle the different ZMTP connections
with the workers are created within the main thread. This number depends on the prede-
fined number of workers used for a specific test configuration, as described in Section 4.4.2.
The main thread then just waits for IPC messages from the connection handling threads
containing the partial results as computed by the workers. This is done by calling a blocking
receive method of RIOT’s IPC API.

Each of the connection handling threads executes the same code, whereby the workflow that
includes the communication between one connection handling thread of the master and its
connected worker during the computation of prime numbers in a certain interval is shown in
Figure 4.4. This workflow also constitutes the part of the program whose execution time is
measured within a separate measurement, on both the master and the worker side, excluding
the connection establishment and termination in both cases, as well as the dispatch of results
to the main thread in case of the master thread measurements. In the following, the term
master thread refers to one of the connection handling threads the master maintains in order
to communicate with several workers.

35

4. Experimental approach

Master Thread Worker

2. send start of interval

1. connection establishment 1. connection establishment

3. end of interval

4. compute first prime number

5. send first prime

7. compute next prime number

8. send next prime
.
.
.

6. increment prime counter

9. increment prime counter
.
.
.

.

.

.
10. send "DONE" message

12. send value of resulting prime
counter to the main thread (IPC)

11. connection termination 11. connection termination

Figure 4.4.: Partial workflow of the prime number count use case

Assuming that the ZMTP connection between a master thread and a worker is established
properly (see Figure 4.4: step 1), the master thread determines the numeric interval that is
associated with its connected worker and then sends the start and the end of the interval to
the worker by transmitting two messages, each containing one interval boundary (see Fig-
ure 4.4: step 2-3). So for instance, if the worker has to compute the primes within an interval
from 1,001 to 2,000, then the first packets contains “1,001” as data and the second one holds
“2,000” as payload. Upon reception of the two numbers, the worker starts with computing
the first prime number within the given interval and as soon as it is found, he sends the
prime back to the master thread before continuing with further calculations (see Figure 4.4:
step 4-5). For each prime number the master thread receives from the worker, a prime
counter related to the worker is incremented (see Figure 4.4: step 6). The procedure of
calculating the next prime number, sending it to the master thread and incrementing the
prime counter is repeated (see Figure 4.4: step 7-9) until the whole interval is processed and
all primes are determined by the worker. In order to indicate that the worker is finished
with processing the whole interval, he sends a message containing “DONE” to the master
thread (see Figure 4.4: step 10). After receiving this message and subsequently closing the
ZMTP connection (see Figure 4.4: step 11), the master thread dispatches an IPC message
to the main thread, including the resulting prime counter that corresponds to the interval
processed by the connected worker (see Figure 4.4: step 12).

As a last step for the computation, the master’s main thread collects and adds up all the
partial results received from the different connection handling threads and then triggers
the end of the overall execution time measurement. The application is finished when both

36

4.3. Representative use cases

the master and the worker programs printed the measured values of the execution time
measurements and the corresponding metadata to the console. Due to the transmission of
every prime number in a separate packet, which constitutes an intentional design decision,
this use case produces a lot of network traffic, however, the payload per packet that is
transferred from one node to another only includes one number at a time, thus minimizing
the payload and also the packet size.

4.3.2. Use case 2 - Word and line count

Similar to the prime number count use case, the measurement for the overall execution
time of the master program is triggered upon start, but unlike the first use case, an array
containing the individual text passages needs to be generated by splitting the total text
segment into multiple parts that can be divided among the workers. The division of the
overall text segment into array fields depends on the number of workers and the number
of text passages per worker, as defined by the test configurations in Section 4.4.2. This
computation is carried out by the main thread, followed by the creation of the connection
handling threads within the main thread in order to ensure that the array holds the proper
text passages before the connection handling threads try to access specific fields of the array
and send them to the workers. The execution time of this computation is only part of
the master program’s overall execution time measurement, but it is not included in the
measurements carried out for each of the threads’ individual execution times.

Like before, the terms master thread and connection handling thread are used interchange-
ably in the following. Figure 4.5 outlines the steps that are required to process the text
passages associated with a certain worker. As in the first use case, a ZMTP connection
needs to be established between one of the master threads and a worker (see Figure 4.4:
step 1). Afterwards, the master thread is able to initiate the word and line count computa-
tion by sending the first text passage to the connected worker (see Figure 4.4: step 2). The
worker then processes the passage by counting the words and lines (see Figure 4.4: step 3)
and sends the results back to the master thread in two separate packets (see Figure 4.4:
step 4-5). Upon reception, the master thread adds the received results to the word and line
counters that he maintains specifically for the connected worker (see Figure 4.4: step 6-7).
Subsequently, the master thread dispatches the next text passage assigned to the worker
(see Figure 4.4: step 8), which again processes the passage and sends the results back to the
master thread (see Figure 4.4: step 9-11). The master thread then updates the word and line
counter accordingly (see Figure 4.4: step 12-13), before the ZMTP connection is terminated
(see Figure 4.4: step 14). Similar to the first use case, it sends the resulting word and line
counter to the main thread via IPC for further calculations (see Figure 4.4: step 15), as
soon as all the associated text passages are processed. In this example, the worker needs to
process two text passages, but depending on the test configuration, step 8-13 of Figure 4.4
might be repeated an arbitrary amount of times or omitted completely, as specified by the
particular test configuration.

Just like in the implementation of the first use case, the master’s main thread finally acts a
data sink by totaling the partial results received from the connection handling threads and
also stops the overall execution time measurement of the master program before printing
the measured values together with the corresponding metadata to the console.

37

4. Experimental approach

Master Thread Worker

2. send first text passage

1. connection establishment 1. connection establishment

3. process first text passage

4. send word count

9. process next text passage

5. send line count

6. add result to word counter

7. add result to line counter

15. send values of resulting word and
line counter to the main thread (IPC)

14. connection termination 14. connection termination

8. send next text passage

10. send word count

11. send line count

12. add result to word counter

13. add result to line counter

Figure 4.5.: Partial workflow of the word and line count use case

The word and line count use case differs from the prime number count use case in such a
way that the input, which is sent to the workers, consists of a whole text passage rather than
only two separate numbers. Additionally, on the worker side, there are only two results per
input that need to be sent back to the master node, namely the number of words and the
number of lines counted within the text, as compared to the first use case, where the workers
send each prime number back to the master individually instead of aggregating the result.
In this way, the word and line count use case produces less network traffic in terms of the
number of packets transmitted from the worker nodes to the master node, but in order to
provide the text passages to the workers, the master threads need to dispatch them through
the network resulting in generally bigger payload and thus packet sizes as opposed to the
prime number count use case.

38

4.4. Setups

4.4. Setups

All experiments and associated measurements are conducted by means of a consistent set-
ting in order to ensure steady state conditions. Therefore, the test environment that was
used in the course of this thesis is presented in Section 4.4.1. Furthermore, the predefined
test configurations as needed for the measurements and the associated scaling scenarios are
introduced in Section 4.4.2.

4.4.1. Test environment

All the experiments, that have to be conducted as part of this thesis, are deployed on the
FIT IoT-LAB, which represents a large-scale experimental testbed for IoT applications. As
introduced by the authors of [ABF+15] and described on the official IoT-LAB website14,
this testbed provides open access to a remote testing environment that encompasses a large
number of heterogeneous low-power network nodes. In total, it comprises 1,791 wireless
nodes which are located at multiple sites in France, namely Grenoble, Lille, Saclay, Stras-
bourg, Paris and Lyon, and form low-power wireless sensor networks. This enables users to
develop and test their applications on real physical hardware and under realistic conditions
by running experiments on previously selected nodes. The IoT-LAB offers static and mobile
nodes, that are fully-programmable and can be arbitrarily allocated, since all nodes of the
IoT-LAB, which are spread across the six testbed sites, are interconnected through a global
networking backbone.

Each IoT-LAB node is composed of three different components, an Open Node (ON), a
Gateway (GW) and a Control Node (CN). During an experiment, the user has full access
to the memory of the open node, which represents a programmable low-power device, so
any firmware can be uploaded and flashed onto the ON. The real-time access to the nodes
is granted by a web portal, as well as by Command-Line Interface (CLI) tools that can be
accessed via the Secure Shell (SSH). The serial port of the ON and also the one of the CN
are connected to the gateway, which in turn provides a wired connection to the backbone
and thus to the back-end servers of the IoT-LAB. Together with the gateway, the control
node is capable of monitoring the open node in terms of consumption and other measured
values obtained from sensors. In the course of this thesis, these monitoring capabilities are
used for measuring the power consumption of the individual nodes during the experiments,
as described in Section 4.2.2. Furthermore, the CN selects the power supply, namely battery
or Power-over-Ethernet (PoE).

In order to provide a variety of IoT hardware, the IoT-LAB offers three different types of
nodes, which are characterized by the open node they operate. The available open nodes,
namely WSN430, M3 and A8 open nodes, differ in their processor architectures and wireless
chips. WSN430 open nodes are based on ultra-low-power micro-controller units (MCUs) with
only 48 kB of Flash memory and 10kB of RAM, while A8 open nodes rather constitute high
performance IoT-LAB nodes that are capable of running high-level operating systems such
as Linux, so they can execute applications typically deployed on smartphones or tablets. On
the contrary, M3 open nodes can be categorized somewhere in between the WSN430 and the

14https://www.iot-lab.info/

39

4. Experimental approach

A8 in terms of memory capacity and applicability, since they operate 32-bit ARM Cortex-M3
MCUs with up to 64 kB of RAM and up to 512 kB of Flash memory. Compared to WSN430
and A8 nodes, M3 open nodes exhibit the most appropriate properties and are considered to
be most suitable for the purpose of this thesis, that is assessing the scalability of ZMTP in
constrained environments. Figure 4.6 represents an M3 ON operating an STM32F103REY
micro-controller as well as an AT86RF231 radio interface and various sensors, e.g. pressure
or temperature sensors. Like most of the WSN430 and A8 open nodes, M3 open nodes
communicate within the 2.4 GHz frequency band, since they use the IEEE 802.15.4 wireless
transmission standard, which facilitates the intercommunication between them.

Figure 4.6.: An IoT-LAB node operating an M3 open node15

To sum it up, the IoT-LAB offers an open-access scientific testbed with a large number of
heterogeneous nodes that can be arbitrarily selected, managed, reprogrammed and monitored
by the user during an experiment and therefore it improves the analysis, evaluation and
reproducibility of experiments and their results, while mirroring real-world conditions. For
those reasons, it is considered a suitable physical infrastructure and test environment for the
purpose of conducting experiments including measurements performed at runtime as part of
this thesis.

4.4.2. Test configurations and scaling scenarios

Compared to the definition of the term “configuration” in Section 4.1.2, which refers to a
configuration that defines a whole distributed computing systems in terms of specific values
for each problem space dimension described before, a test configuration specifies the selection
of certain values regarding only a subset of these problem space dimensions. Since solely the
application itself, the total input size and the number of workers are varied during the ex-
periments, while the other dimensional values remain constant, a test configuration consists
of values for exactly those three dimensions. Combinations of different test configurations,
in turn, form several scaling scenarios for the experimental approach. A scenario is defined
by a set of test configurations with distinct properties in order to reflect various types of

15https://www.iot-lab.info/hardware/

40

4.4. Setups

scaling. Each block within the tables described below represents one or more scaling scenar-
ios consisting of multiple test configurations. With respect to the experiments performed
within this thesis, the only possible values for the application are the two use case programs
introduced in Section 4.3. The selected values for the other dimensions are detailed in the
following.

Prime number count use case As shown in Table 4.2, which outlines all the test config-
urations involved in the scaling scenarios of the prime number use case (see Section 4.3.1),
the input size and the number of workers are varied as follows.

In terms of the scenarios that focus on varying the total input size, the total interval of
numbers, in which the primes shall be computed within a specific scenario, is continuously
expanded. Therefore, it contains either 1,000, 2,000, 3,000, 4,000 or 10,000 numbers, while
the interval itself always starts from 1,001. The complete interval is then divided among
a constant number of workers, either 1, 2, 4, 8 or 10, as illustrated in the first five blocks
of Table 4.2. The reason for choosing 1,001 as the lower interval boundary is that the
primes within this interval are more evenly spread compared to the interval from 1 to 1,000,
thus fostering a fairer distribution of work among the workers, since the complexity of the
individual intervals does not differ as much.

Furthermore, the prime number count use case encompasses several strong scaling scenarios.
Within each strong scaling scenario, the total input size is fixed, while the number of workers
is increased. With respect to the prime number count use case, the number of workers is
scaled between 1 and 10, to be more specific, the individual values are 1, 2, 4, 8 and 10,
while the overall interval remains the same within each scenario. The scenarios in which
only the number of workers are varied can be composed of individual test configurations of
the other scenarios, resulting in five different test scenarios, whereby the specific input sizes
represent intervals of 1,000, 2,000, 3,000, 4,000 or 10,000 numbers, respectively. For reasons
of space, the penultimate block of Table 4.2 aggregates exactly these five scenarios reflecting
strong scaling.

The last block of Table 4.2 summarizes the two weak scaling scenarios of the prime number
count use case. These scenarios are characterized by an increasing total input size, while
the number of workers is also scaled by the same factor, so both of these dimensions are
varied. The number of workers represents either 1, 2, 4 or 8 within both scenarios, thereby
representing a growth rate of two, whereas the values for the input size differ among the two
weak scaling scenarios. The first one starts with a total interval size of 1,000, so with a scaling
factor of two, the values for the input size of the remaining test configurations are 2,000,
4,000 and 8,000, respectively. On the contrary, the second scenario defines either 2,000,
4,000, 8,000 or 16,000 as total input size, depending on the specific test configuration. Some
of test configurations of these scenarios are equal to the ones of other scenarios, but they
also include new ones that are not used in any other scenario apart from these ones.

The complete scenarios with their associated test configurations are illustrated in the tables
of the subsequent chapter, where they are compared to each other on the basis of the resulting
measured values derived from the experiments.

41

4. Experimental approach

Application Workers Total input size

Prime number count 1 1,000 numbers
Prime number count 1 2,000 numbers
Prime number count 1 3,000 numbers
Prime number count 1 4,000 numbers
Prime number count 1 10,000 numbers

Prime number count 2 1,000 numbers
Prime number count 2 2,000 numbers
Prime number count 2 3,000 numbers
Prime number count 2 4,000 numbers
Prime number count 2 10,000 numbers

Prime number count 4 1,000 numbers
Prime number count 4 2,000 numbers
Prime number count 4 3,000 numbers
Prime number count 4 4,000 numbers
Prime number count 4 10,000 numbers

Prime number count 8 1,000 numbers
Prime number count 8 2,000 numbers
Prime number count 8 3,000 numbers
Prime number count 8 4,000 numbers
Prime number count 8 10,000 numbers

Prime number count 10 1,000 numbers
Prime number count 10 2,000 numbers
Prime number count 10 3,000 numbers
Prime number count 10 4,000 numbers
Prime number count 10 10,000 numbers

Prime number count 1 1,000 — 2,000 — 3,000 — 4,000 — 10,000 numbers
Prime number count 2 1,000 — 2,000 — 3,000 — 4,000 — 10,000 numbers
Prime number count 4 1,000 — 2,000 — 3,000 — 4,000 — 10,000 numbers
Prime number count 8 1,000 — 2,000 — 3,000 — 4,000 — 10,000 numbers
Prime number count 10 1,000 — 2,000 — 3,000 — 4,000 — 10,000 numbers

Prime number count 1 1,000 — 2,000 numbers
Prime number count 2 2,000 — 4,000 numbers
Prime number count 4 4,000 — 8,000 numbers
Prime number count 8 8,000 — 16,000 numbers

Table 4.2.: Scenarios and associated test configurations for the prime number count use case

Word and line count use case Regarding the second use case (see Section 4.3.2), the input
refers to the text section that needs to be processed in total by dividing it into multiple
text passages which are individually assigned to the workers. Within this use case, not the
total size of the text segment itself is altered, but rather the number of text passages every
worker receives, so either the passage associated to a certain worker is sent as a whole or it
is further split into smaller passages that are sent to the worker separately, one at a time
and only when he is finished with the previous text passage. This procedure is used because
the current design of the word and line count use case does not allow for an arbitrarily big

42

4.4. Setups

text size, since this would exceed the memory capacity of the constrained nodes. As a result,
weak scaling scenarios cannot be realized within this use case. Therefore, the total input
size for all test configurations is constant and simulated by a text passage with 1,345 words
divided into 117 lines.

As for the varying text passage allocation scenarios, the number of text passages per worker
ranges from 1 to 4, increased in linear steps with a growth rate of one. Depending on the
specific scenario, the number of workers is constantly set to 1, 2, 4, 8 or 10, respectively.
The resulting scenarios are represented by the first five blocks of Table 4.3.

Additionally, the word and line count use case includes strong scaling scenarios similar to the
prime number count use case. The values for the number of workers used in the scenarios
of the first use case also apply to the word and line count application, so the number of
workers ranges between 1, 2, 4, 8 and 10. Within each of these scenarios, the text section
representing the total input size also covers 1,345 words and 117 lines and is split into either
1, 2, 3 or 4 individual passages per worker, which leads to four scenarios that are again
aggregated into one block, namely the last block of Table 4.3. Similar to the first use case,
these four scenarios are combinations of test configurations from other scenarios.

Application Workers Total input size

Word and line count 1 1,345 words : 1 passage/worker
Word and line count 1 1,345 words : 2 passages/worker
Word and line count 1 1,345 words : 3 passages/worker
Word and line count 1 1,345 words : 4 passages/worker

Word and line count 2 1,345 words : 1 passage/worker
Word and line count 2 1,345 words : 2 passages/worker
Word and line count 2 1,345 words : 3 passages/worker
Word and line count 2 1,345 words : 4 passages/worker

Word and line count 4 1,345 words : 1 passage/worker
Word and line count 4 1,345 words : 2 passages/worker
Word and line count 4 1,345 words : 3 passages/worker
Word and line count 4 1,345 words : 4 passages/worker

Word and line count 8 1,345 words : 1 passage/worker
Word and line count 8 1,345 words : 2 passages/worker
Word and line count 8 1,345 words : 3 passages/worker
Word and line count 8 1,345 words : 4 passages/worker

Word and line count 10 1,345 words : 1 passage/worker
Word and line count 10 1,345 words : 2 passages/worker
Word and line count 10 1,345 words : 3 passages/worker
Word and line count 10 1,345 words : 4 passages/worker

Word and line count 1 1,345 words : 1 — 2 — 3 — 4 passages/worker
Word and line count 2 1,345 words : 1 — 2 — 3 — 4 passages/worker
Word and line count 4 1,345 words : 1 — 2 — 3 — 4 passages/worker
Word and line count 8 1,345 words : 1 — 2 — 3 — 4 passages/worker
Word and line count 10 1,345 words : 1 — 2 — 3 — 4 passages/worker

Table 4.3.: Scenarios and associated test configurations for the word and line count use case

43

4. Experimental approach

In summary, three dimensions are considered in the scaling scenarios of the two use cases,
namely the application, the number of workers and the input. Table 4.2 and Table 4.3
therefore summarize the resulting scenarios, that encompass multiple test configurations
characterized by their corresponding dimensional values as used for the experiments. For
each application, the number of workers is increased by multiple steps and the input is varied
as defined by the separate scenarios, which leads to 21 different test scenarios in total, 12 for
the prime number count use case and 9 for the word and line count use case. In this way, the
impact and scaling behavior of strong and weak scaling, among others, can be determined
and evaluated as part of the subsequent chapter.

4.5. Test procedure

As mentioned in Section 4.4.1, all the experiments conducted in the course of this thesis are
deployed on nodes of the IoT-LAB testbed. All the nodes required for the experiments are
reserved at the IoT-LAB site in Grenoble, whereby the m3-1 node serves as the master node
in every experiment that is submitted to the testbed. The adjacent nodes, namely m3-2, m3-
3, m3-4, and so on, are then used as worker nodes. In this way, the spatial arrangement of the
nodes is the same for all experiments, only the number of reserved nodes differs depending on
the test configurations. Additionally, this procedure only requires the recompilation of the
master program when starting with another test configuration, whereas the worker program
does not need to be changed at all, since the number of workers and the total input size are
defined in the master program of each application and the IP address of the master node,
which is specified in the makefile of the worker program, remains the same during the whole
series of experiments. The compiled Executable and Linkable Format (ELF) binaries can
then be uploaded on the web portal of the testbed, where they are automatically flashed
onto the assigned nodes.

Each individual test configuration was repeated five times in a row by using the “reset”
feature of the IoT-LAB web portal, so all nodes involved in an experiment can be reset at
the same time. Therefore, each experiment submitted to the testbed through the web portal
represents a series of five repetitions of the same configuration, so five measured values
can be obtained for each measurement of a test configuration. Both use cases together
comprise 48 disparate test configurations, whereby the prime number count use case makes
up 28 thereof, while the word and line count use case accounts for 20, since some of the test
configurations can be used for more than one scenario. As a result, 240 runs split among
48 experiments have to be carried out in total.

In order to aggregate the various measured values for the execution time measurements that
are printed to the nodes’ consoles together with the corresponding metadata at the end of
each run, the serial aggregator tool of the IoT-LAB is used. This tool enables the aggregation
of the output of all nodes participating in an experiment via SSH by accessing the serial
links of the nodes all at once.

During the course of the experiments, the resulting measured values for the execution time
as obtained by repeated measurements of test configurations are collected and aggregated
into multiple files for further processing. The concrete measurement results are presented,
analyzed and evaluated in the following chapter.

44

5. Evaluation and scaling conclusions

This chapter covers the evaluation and consequent scaling conclusions that can be derived
from the measurement results of the experiments. As already mentioned, the primary goal
of this thesis is to assess the scalability of ZMTP in constrained environments, whereby an
experimental approach based on two different use cases is chosen as methodology, enabling
to determine whether the protocol shows the expected and desired scaling behavior or not.
The desired scaling behavior in terms of strong scaling would be a speedup in performance
when increasing the number of workers within different scenarios, while keeping the total
input size fixed. Regarding weak scaling, the desired behavior would be the processing of a
total input size that is n times bigger in the same amount of time since the number of workers
is also increased by n, so the same growth rate is used to scale both dimensions.

In order to evaluate the scaling efficiency of the ZeroMQ Message Transport Protocol, a
profound and qualitative analysis of the measurement data produced by the series of exper-
iments is conducted, which consequently results in conclusions about the scalability of the
protocol drawn from the elaborated findings. Section 5.1 generally deals with the measure-
ment accuracy as well as the calculation of the standard deviation of measured values, while
Section 5.2 outlines the measurement results and includes observations made on the basis of
these results. Additionally, Section 5.3 identifies potential causes for the observed behavior
of ZMTP and Section 5.4 introduces the consequent scaling conclusions.

5.1. Measurement accuracy and standard deviation

Before the results of the runtime measurements are presented and evaluated, the measure-
ment accuracy needs to be considered individually and also in conjunction with the standard
deviation of measurements.

In general, measurements should not influence one another, but due to the design and the
chosen measurands of the use cases, this is inevitable, since the overall runtime of each node
and also the measured execution time values of only parts of the application are variables
of interest and thus all of them are needed in order to allow for an in-depth analysis of the
measured values. As a result of the execution time measurements being realized through two
function calls, each measured value for the total execution time of a node is slightly influenced
by other function calls required for further measurements because they reside within the code
that is observed through this overall measurement. Depending on the number of workers,
which is equal to the number of connection handling threads created by the master, the
influence on the total execution time of the master node increases with a higher number
of workers because each connection handling thread performs his own measurement, so the
amount of measurements might differ between separate test configurations. The impact

45

5. Evaluation and scaling conclusions

on the overall execution time of a worker node is constant, since the worker program only
contains two execution time measurements in total, no matter which test configuration is
considered. In this way, the time required for the two function calls delivering the current
system time plus the calculation of the resulting measured value for each execution time
measurement is included in the overall execution time measurements, but since these function
calls and computations are rather simple ones and therefore do not take a significant amount
of time, they can be omitted.

Concerning the authenticity of the experiments and associated measurements, the choice
of test environment is decisive. For this reason, the IoT-LAB testbed is used for all ex-
periments because it comprises a large number of nodes, thereby enabling the deployment
of applications on real physical hardware and mirroring real-life steady state conditions, as
mentioned in Chapter 4. When multiple nodes are communicating with each other in a wire-
less environment, radio interference can occur, possibly resulting in different values for the
radio signal power measured by the Received Signal Strength Indication (RSSI). Since the
IoT-LAB provides numerous nodes that can be split among various users conducting their
experiments at the same time, realistic radio interference is being caused. Therefore, this re-
mote testbed is considered a suitable test infrastructure implying an ideal trade-off between
a managed or controlled setting and realistic conditions. Additionally, the reproducibility of
the experiments is improved by using the IoT-LAB, since all the experiments are performed
on the same nodes and only stationary nodes are used, so the spatial arrangement of these
nodes is not altered and the experiments can be accurately replicated.

On the downside, environmental influences caused by the testbed might have impacts on
the runtime measurements. For instance, radio interference can have negative effects on the
runtime. The IoT-LAB site in Grenoble operates 640 nodes in total, whereby 384 thereof are
M3 open nodes as used for the experiments and 256 are A8 open nodes16, so all of them realize
wireless radio communication through the IEEE 802.15.4 radio transmission standard and
within the 2.4 GHz frequency band by including an AT86RF231 radio interface. Depending
on how many nodes are actively used in other experiments while measuring the runtime of
one’s own experimental setup, the radio interference can fluctuate. As a result, the end-to-
end latency might be affected and can thus differ between multiple nodes and also between
individual experimental runs. Furthermore, adjacent nodes involved in the same experiment
could potentially even influence each other.

Standard deviation

With respect to the reliability of the measurement results, the standard deviation is calcu-
lated for the five different measured values of each test configuration in order to determine the
amount of discrepancies between repeated measurements. According to [BA96], measured
values resulting from several repeated measurements on the same subject are not necessarily
constant. Instead, a series of measurements has varying results due to a measurement error.
Regarding the experiments conducted within this thesis, the term “subject” refers to a cer-
tain test configuration. By assuming that all measured values of the same test configuration
are normally distributed, the size of the measurement error for repeated measurements can

16https://www.iot-lab.info/deployment/grenoble/

46

5.1. Measurement accuracy and standard deviation

be assessed through the sample standard deviation. The sample standard deviation is then
defined as the square root of the variance of the measured values.

Before the standard deviation is computed, potential outliers of single measurements within
a series of experiments can be detected and consequently eliminated, since such outliers
might significantly influence the average runtime and also the sample standard deviation
calculated from multiple repetitions of the same test configuration. Within this thesis, each
measured value is considered an important part of the result and therefore the procedure
of detecting and removing individual outliers is not part of this work. As a result, outliers
that are not eliminated might cause high values for the sample standard deviation of a test
configuration.

Since the measurements constitute only samples of a larger population of measurements, the
sample standard deviation is applied instead of the population standard deviation. In order
to determine the sample standard deviation of the measured values derived from repeated
measurements, R is chosen for the statistical computations17. As stated in [BHL+12], the
following formula defines how the sample standard deviation for temporarily consecutive
measurements of the same test configuration is calculated, which resembles the sd(x) func-
tion in R, whereby n represents the number of measurements, xi the measured value for
measurement i and x̄ the mean measured value.

sd(x) =

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2

If the resulting value of the sample standard deviation, which represents an estimate of the
standard deviation of the whole population, is low, then this points out to the fact that the
individual measured values are located rather close to their mean as a general rule. On the
contrary, a high standard deviation refers to the measured values being more distributed in
a wider range of measured values.

The value of the sample standard deviation calculated by the formula above has the same unit
as the measured values used for the computation thereof, so for instance, when determining
the standard deviation of repeated execution time measurements, then the resulting value
is also specified in minutes. Since the associated test configurations usually differ in their
means, a relative standard deviation is required to accurately compare the results among
test configurations with various means. The relative standard deviation, which is also called
the coefficient of variation (CV), is defined as the quotient of the sample standard deviation
to the mean, as stated in [Abd10]. This formula yields a decimal number that can then be
multiplied by 100 in order to assess the relative standard deviation in percent, indicating
the scattering of the measured values relative to the mean.

In the following sections, the sample standard deviation as well as the coefficient of variation
are determined for all test configurations of the prime number count and the word and line
count use case.

17https://www.r-project.org/

47

5. Evaluation and scaling conclusions

5.2. Measurement results and observations

This section presents the results of the runtime measurements conducted during the se-
ries of experiments by thoroughly assessing the measured values and deriving observations
thereof. The focus of this section is on the measured values for the execution time, which
are investigated in Section 5.2.1, while the power consumption measurements are covered in
Section 5.2.2. The following sections mainly introduce the observations that can be derived
from the measurement results, while possible explanations and potential causes for these
findings are elaborated in Section 5.3, since many of them apply to both use cases and can
thus be aggregated into a single section.

5.2.1. Execution time results

The results of the execution time measurements for both use cases are presented in tables
and also plotted using R for the statistical computations and for generating multiple graphs
to visualize the results. In the following, these results are analyzed and discussed, with
respect to the scaling behavior of ZMTP in distributed applications. While the tables to-
gether include all scenarios of each use case, not every scenario is additionally represented
graphically for reasons of space, since most of the plots look similar. Therefore, only some of
them are selected and included in the following. The remaining plots that are not contained
in the following can be found in the appendix, along with some excerpts of the raw measured
values (see Appendix A). In the remainder of this thesis, the total runtime of the application
refers to the overall execution time measured by the master node.

Prime number count use case

First, the measurement results of the prime number count use case are presented and ana-
lyzed. Within this use case, the total input size as specified in the tables refers to the amount
of numbers that are contained in the overall interval that needs to be processed by all the
workers together, while this interval is equally split among the specified number of workers.
For instance, a total input size of 1,000 means that the workers together have to process an
interval of 1,000 numbers and determine the primes within this interval.

The various scenarios of this use case can be divided into categories, depending on the
dimensions that are being scaled within each of these scenarios, resulting in three categories,
namely varying input size, strong scaling and weak scaling. Before the measured values
are plotted, the sample standard deviation and the coefficient of variation of the repeated
measurements for each individual test configuration are calculated. This approach also allows
for including error bars derived from the sample standard deviation inside the plots.

Varying input size scenarios As for the repeated measurements of each test configuration
included in the varying input size scenarios, Table 5.1 shows the average overall execution
time of the master program in minutes, which is associated with the mean total runtime of
the application. Furthermore, it comprises the corresponding sample standard deviation in
minutes, as well as the coefficient of variation in percent. Within each of these scenarios,

48

5.2. Measurement results and observations

the total input size is increased for a fixed number of workers, so the overall number interval
grows and therefore the workload per worker is raised accordingly.

As mentioned in Chapter 4, five temporarily consecutive measurements of each test con-
figuration are performed, whose resulting measured values are taken into account for the
calculations. All values within this table — as well as the values of the subsequent tables —
are rounded to two decimal places.

Workers Total input size Mean runtime Stand. deviation CV

1 1,000 numbers 4.79 min 0.14 min 2.85 %
1 2,000 numbers 7.74 min 0.11 min 1.43 %
1 3,000 numbers 10.82 min 0.37 min 3.39 %
1 4,000 numbers 13.83 min 0.24 min 1.70 %
1 10,000 numbers 28.99 min 0.45 min 1.57 %

2 1,000 numbers 3.08 min 0.11 min 3.62 %
2 2,000 numbers 4.83 min 0.14 min 2.84 %
2 3,000 numbers 6.40 min 0.21 min 3.29 %
2 4,000 numbers 8.04 min 0.23 min 2.87 %
2 10,000 numbers 16.93 min 0.57 min 3.37 %

4 1,000 numbers 2.39 min 0.11 min 4.63 %
4 2,000 numbers 3.25 min 0.07 min 2.17 %
4 3,000 numbers 4.14 min 0.09 min 2.21 %
4 4,000 numbers 5.24 min 0.29 min 5.54 %
4 10,000 numbers 9.99 min 0.36 min 3.59 %

8 1,000 numbers 2.34 min 0.21 min 9.13 %
8 2,000 numbers 3.03 min 0.25 min 8.40 %
8 3,000 numbers 3.68 min 0.16 min 4.38 %
8 4,000 numbers 4.07 min 0.19 min 4.63 %
8 10,000 numbers 7.27 min 0.44 min 6.03 %

10 1,000 numbers 2.30 min 0.08 min 3.39 %
10 2,000 numbers 2.92 min 0.17 min 5.87 %
10 3,000 numbers 3.49 min 0.12 min 3.35 %
10 4,000 numbers 3.97 min 0.18 min 4.61 %
10 10,000 numbers 7.40 min 0.36 min 4.88 %

Table 5.1.: Varying input size scenarios based on the prime number count use case including
mean runtime, sample standard deviation and coefficient of variation (CV)

Regarding the sample standard deviations of the test configurations within each scenario,
the value for the test configuration involving 10,000 as total input size is always the highest
one in each of the scenarios, but the concrete values of the sample standard deviations can
only be interpreted in relation to the corresponding mean. Since the means differs among
the test configurations, the sample standard deviations cannot be directly compared to each
other. Therefore, the relative standard deviation is primarily considered in the remainder of
this thesis. One of the observations that can be deduced from Table 5.1 is that all the values
for the coefficient of variation, denoted as CV inside the table, are relatively low for all test
configurations, whereby 1.43 % and 9.13 % represent the lowest respectively highest value

49

5. Evaluation and scaling conclusions

within this table. This indicates that the individual measured values for the total execution
time within these test configurations are not widely spread out over a large range of values,
but rather located close to the mean, so none of them includes significant outliers that are
not in line with the remaining measured values. So generally, the measurements of these
test configurations are relatively reliable.

Within each scenario, the coefficients of variation, which refer to the relative standard de-
viation, do not differ significantly among the associated test configurations. The second
scenario encompasses the smallest range with values between 2.84 % and 3.62 % for the
coefficients of variation, whereas the fourth scenario covers the largest range of CVs with
values between 4.38 % and 9.13 %. But in general, no solid patterns in terms of a continu-
ous increase or decrease of the coefficients of variation can be identified in Table 5.1, neither
within nor among the scenarios. Potential causes of fluctuations between measurements and
among standard deviations are further explained in Section 5.3. Concerning the mean run-
time, a continuous increase can be observed within each of the scenarios in Table 5.1, which
indicates that the average overall execution time rises with a bigger input size. This reflects
the expected behavior, since the workload per worker is raised from one test configuration
to another.

In order to facilitate a better traceability of the observations made in terms of the mean run-
time and the corresponding standard deviations, the results of two scenarios are additionally
illustrated by means of two plots, whereby the second scenario, which involves two workers,
is outlined in Figure 5.1a and the last scenario, which contains ten workers, is presented in
Figure 5.1b. Both figures are based on Table 5.1 and demonstrate how the average over-
all execution time changes — visualized by the orange/gray line inside each plot — when
increasing the workload per worker realized through varying the total input size, while the
number of workers stays constant. The black error bars within the graphs reflect the sample
standard deviations of Table 5.1, but the size of the different error bars cannot be contrasted
among the plots because the ranges of the y axes differ, which is also indicated by the size
of the grid tiles.

0

5

10

15

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Input size

M
ea

n
ru

nt
im

e
in

 m
in

Use case: Prime number count − Number of workers: 2

(a) Scenario: 2 workers

0

2

4

6

8

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Input size

M
ea

n
ru

nt
im

e
in

 m
in

Use case: Prime number count − Number of workers: 10

(b) Scenario: 10 workers

Figure 5.1.: Plots of two different varying input size scenarios based on the prime number count use
case including error bars

50

5.2. Measurement results and observations

As expected, the execution time continuously increases on average with a larger total input
size, but raising the input size by a certain rate does not result in a multiplication of the
runtime by the same rate, which can be deduced from the two plots, but also from the table
above. The reason for this behavior is that the total execution time is mainly composed of the
computation itself, as well as the time needed for the connection establishment, termination
and the actual communication between the master node and the worker nodes. When
doubling the total input size, the interval in which the primes are calculated is doubled,
so the computational burden is duplicated and the amount of communication between the
master and the worker nodes increases because more primes have to be dispatched to the
master node. As a result, these two parts of the total execution take longer than before,
but the time required for starting and ending the connections should remain constant, which
is why the total runtime results in a value less than twice as much when the input size
is doubled. This effect is intensified when using a larger growth rate, e.g. regarding the
scenario with two workers as presented in Figure 5.1a, the mean runtime for 1,000 numbers
as total input size is around 3 minutes, while it takes nearly 17 minutes to complete an
input of 10,000 numbers, instead of requiring the tenfold amount of time. When looking at
the scenario displayed in Figure 5.1b, which comprises ten workers, it takes 2.3 minutes on
average to process an input of 1,000 numbers, whereas 7.4 minutes are needed for a tenfold
higher input size. As mentioned before, only the plots of two scenarios are presented here,
since the diagrams of the remaining scenarios look similar, so they are omitted here for
reasons of space, but can be found in the appendix.

In summary, the lines of both graphs are nearly straight and rising steadily, thereby indicat-
ing a continuous increase of the average overall execution time when raising the total input
size, while the number of workers remains constant.

Strong scaling scenarios Similar to the varying input size scenarios, the scenarios simulat-
ing strong scaling are presented in a table with the associated test configurations and their
mean runtime, sample standard deviation as well as the coefficient of variation. Table 5.2
presents exactly these values measured and calculated for the scenarios where the total input
size is fixed and only the number of workers is increased. The goal of strong scaling is to
process the same overall input in a smaller amount of time due to a larger number of workers,
whereby the optimum would be a linear speedup. In case of a linear speedup, the execution
is performed n times faster when n workers are involved, as compared to the total runtime
it takes if only one worker is responsible for the computation, which represents the reference
value. The speedup S of a fixed problem size N and a specific number of workers W can
then be calculated by means of the average total execution time T . The resulting formula18

is then defined as follows.

S(N,W) =
T (N, 1)

T (N,W)

Typically, the actual value of S(N,W) is smaller than W , since an equivalence to W indicates
a linear speedup and because of Amdahl’s law this cannot be achieved19. According to

18https://www.archer.ac.uk/training/course-material/2016/12/mpi scaling manc/Slides/Scaling.pdf
19https://www.cac.cornell.edu/education/training/StampedeJan2015/Scalability.pdf

51

5. Evaluation and scaling conclusions

Amdahl’s law, a program can be divided into two kinds of categories, namely sequential
sections of the program and potentially parallel sections18. The serial fractions cannot be
parallelized, so no speedup can be accomplished for those parts of the program, which is
why a linear speedup of the total runtime is hardly possible. Nevertheless, the goal of strong
scaling is to get as close to a linear speedup as possible. Therefore, Table 5.2 additionally
includes the calculated values for the speedup of the different test configurations.

Workers Total input size Mean runtime Speedup Stand. dev. CV

1 1,000 numbers 4.79 min — 0.14 min 2.85 %
2 1,000 numbers 3.08 min 1.56 0.11 min 3.62 %
4 1,000 numbers 2.39 min 2.00 0.11 min 4.63 %
8 1,000 numbers 2.34 min 2.05 0.21 min 9.13 %
10 1,000 numbers 2.30 min 2.09 0.08 min 3.39 %

1 2,000 numbers 7.74 min — 0.11 min 1.43 %
2 2,000 numbers 4.84 min 1.60 0.14 min 2.84 %
4 2,000 numbers 3.25 min 2.38 0.07 min 2.17 %
8 2,000 numbers 3.03 min 2.56 0.26 min 8.41 %
10 2,000 numbers 2.92 min 2.65 0.17 min 5.87 %

1 3,000 numbers 10.82 min — 0.37 min 3.39 %
2 3,000 numbers 6.40 min 1.69 0.21 min 3.29 %
4 3,000 numbers 4.14 min 2.62 0.09 min 2.21 %
8 3,000 numbers 3.68 min 2.94 0.16 min 4.38 %
10 3,000 numbers 3.49 min 3.10 0.12 min 3.35 %

1 4,000 numbers 13.83 min — 0.24 min 1.70 %
2 4,000 numbers 8.04 min 1.72 0.23 min 2.87 %
4 4,000 numbers 5.24 min 2.64 0.29 min 5.54 %
8 4,000 numbers 4.07 min 3.40 0.19 min 4.63 %
10 4,000 numbers 3.97 min 3.48 0.18 min 4.61 %

1 10,000 numbers 28.99 min — 0.45 min 1.57 %
2 10,000 numbers 16.93 min 1.71 0.57 min 3.37 %
4 10,000 numbers 9.99 min 2.90 0.36 min 3.59 %
8 10,000 numbers 7.27 min 3.99 0.44 min 6.03 %
10 10,000 numbers 7.40 min 3.92 0.36 min 4.88 %

Table 5.2.: Strong scaling scenarios based on the prime number count use case includ-
ing mean runtime, speedup, sample standard deviation and coefficient of vari-
ation (CV)

Except for the last scenario, the calculated values for the speedup generally increase within
each scenario as the number of workers is raised, which represents a desired behavior as
explained above. This observation can be traced back to the fact that the mean runtime
continuously decreases within these scenarios. Additionally, it can be observed that the
speedup values grow in relation to a higher total input size, so they are usually closer to
their optimum as the total input size increases. In general, this finding indicates that ZMTP
probably scales better in case of a higher total input size as opposed to a smaller one. For
example, the maximum speedup of the first scenario, which defines a total input size of 1,000

52

5.2. Measurement results and observations

numbers, only amounts to 2.09 in case of ten workers, whereas the scenario specifying 10,000
as input size exhibits a maximum speedup of 3.99, which is the case when eight workers are
involved. The speedup of 3.99 constitutes the maximum speedup value of the whole table, so
this value marks the saturation point of the prime number count use case within the strong
scaling scenarios. From there on, a slight drop in performance can be identified when looking
at the speedup, which only amounts to 3.92, and the mean runtime of the test configuration
defining the same total input size, but split among ten workers instead of eight. The reason
for this behavior is probably the outweighing overhead, as further detailed in conjunction
with the plots belonging to these scenarios.

However, many of the speedup values are far below their optimum in general, especially
regarding the test configurations with eight or ten workers. For instance, when looking at
the first scenario of Table 5.2, the speedup in case of eight workers is 2.05, whereby the
optimum would be 8. In terms of ten workers, the speedup is 2.09, which is significantly
lower than the optimum of 10. Furthermore, these two values do not differ much, which
is an observation that can be applied to most scenarios, so the values for the speedup
with a scenario do not reveal significant differences and are therefore rather far from a
linear speedup, which would be the ideal case. This indicates that the overall interval
is not processed significantly faster if more workers are included. Therefore, the actual
scaling behavior with respect to the speedup in strong scaling scenarios does not meet the
expectations, since an continuously efficient performance improvement due to an increased
number of workers cannot be observed. Explanations for this behavior are subsequently
discussed on the basis of the plots that are provided within this section.

Concerning the coefficient of variation, abbreviated with CV in Table 5.2, which enables
comparisons among the different test configurations, all values are rather low. Even though
the coefficients of variation within each of the scenarios differ slightly more than the ones of
the varying input size scenarios as presented Table 5.1 in general, these differences are still
not very substantial. This observation can be traced back to the fact that the third scenario,
which represents the one with the smallest range, includes relative standard deviations be-
tween 2.21 % and 4.38 %, whereas the second scenario constitutes the one with the biggest
range by encompassing values between 1.43 % and 8.41 %. Similar to the varying input size
scenarios, the strong scaling scenarios do not reveal any patterns with respect to a continuous
increase or decrease of the coefficients of variation within or between scenarios.

The measurement results of two strong scenarios are additionally visualized by plots based
on Table 5.2, in a similar manner to the varying input size scenarios discussed earlier.
Figure 5.2a shows the graph resulting from the scenario which encompasses a total input
size of 1,000, whereas the scenario representing a total input size of 10,000 is illustrated
in Figure 5.2b. By inspecting these two figures, it becomes clear that the protocol does
not always scale as desired in case of the prime number count use case, since the mean
total execution time from one test configuration to another does not decrease as expected,
especially regarding the test configurations comprising eight or ten workers.

For instance, when increasing the number from four to eight workers, the mean runtime
nearly remains the same in the scenario depicted in Figure 5.2a, even though the number of
workers is doubled. As for the scenario shown in Figure 5.2b, the average runtime decrease
when eight workers are involved as opposed to four, but not as much as desired, which is
also reflected by a speedup of 3.99, while the optimum would be 8.

53

5. Evaluation and scaling conclusions

These observations are also strengthened by the above statements about the speedup. In
the scenario displayed in Figure 5.2a, the overall execution time on average nearly stagnates
if four or more workers are involved. The exact values for the mean runtime can also be
seen in Table 5.2, which states that it takes 2.39 minutes on average in case of four workers,
2.34 minutes in case of eight workers and 2.30 minutes in case of ten workers, so there is no
significant performance improvement between these three test configurations. Likewise the
speedups of these three test configurations do not differ as much as expected and are far
below their optimum values as stated above. Regarding the scenario depicted in Figure 5.2b,
the average execution time is still decreasing from four to eight workers, but not from eight
to ten, rather it actually increases slightly. An increase in execution time as the number of
workers is raised is exactly the opposite of the desired scaling behavior.

0

1

2

3

4

5

6

2 4 6 8 10

Number of workers

M
ea

n
ru

nt
im

e
in

 m
in

Use case: Prime number count − Input size: 1,000

(a) Scenario: 1,000 as total input size

0

5

10

15

20

25

30

2 4 6 8 10

Number of workers

M
ea

n
ru

nt
im

e
in

 m
in

Use case: Prime number count − Input size: 10,000

(b) Scenario: 10,000 as total input size

Figure 5.2.: Plots of two different strong scaling scenarios based on the prime number count use case
including error bars

In order to exemplify this behavior, Figures 5.3a, 5.3b, 5.4a and 5.4b demonstrate the differ-
ences between selected test configurations in terms of multiple execution time measurements.
The mean runtime, as measured by the master node, is indicated by the leftmost bar within
each plot and colored in orange/medium gray, while the average execution time required for
each worker to process the assigned interval is visualized by the blue/dark gray fraction of
the remaining bars, and the time it takes to establish and terminate a connection measured
at each worker node is represented by the light gray fraction of the same bars. These two
fractions of the remaining bars within each plot together form the total execution time of
the worker nodes associated with the individual intervals. Therefore, the plots encompass
the mean total runtime of the application, as well as the measured values of each worker
node on average. A legend defining the color scheme is also included in the plots.

The first pair of plots encompasses two test configurations with a total input size of 1,000
and eight respectively ten workers, thereby mirroring the last two test configurations of
the first scenario in Table 5.2. On the contrary, the second pair of plots outlines the test
configurations defining 10,000 as total input size and also eight respectively ten workers,
which represent the last two test configurations of the fifth scenario in Table 5.2.

54

5.2. Measurement results and observations

0

2

4

6

8

1001 − 2000

1001 − 1125

1126 − 1250

1251 − 1375

1376 − 1500

1501 − 1625

1626 − 1750

1751 − 1875

1876 − 2000

Interval

E
xe

cu
tio

n
tim

e
in

 m
in

Total runtime Interval processing time Conn. establishment + termination

Use case: Prime number count − Input size: 1,000 − Number of workers: 8

(a) Number of workers: 8

0

2

4

6

8

1001 − 2000

1001 − 1100

1101 − 1200

1201 − 1300

1301 − 1400

1401 − 1500

1501 − 1600

1601 − 1700

1701 − 1800

1801 − 1900

1901 − 2000

Interval

E
xe

cu
tio

n
tim

e
in

 m
in

Total runtime Interval processing time Conn. establishment + termination

Use case: Prime number count − Input size: 1,000 − Number of workers: 10

(b) Number of workers: 10

Figure 5.3.: Plots of two different test configurations based on the prime number count use case
defining 1,000 as input size including error bars

0

2

4

6

8

1001 − 11000

1001 − 2250

2251 − 3500

3501 − 4750

4751 − 6000

6001 − 7250

7251 − 8500

8501 − 9750

9751 − 11000

Interval

E
xe

cu
tio

n
tim

e
in

 m
in

Total runtime Interval processing time Conn. establishment + termination

Use case: Prime number count − Input size: 10,000 − Number of workers: 8

(a) Number of workers: 8

0

2

4

6

8

1001 − 11000

1001 − 2000

2001 − 3000

3001 − 4000

4001 − 5000

5001 − 6000

6001 − 7000

7001 − 8000

8001 − 9000

9001 − 10000

10001 − 11000

Interval

E
xe

cu
tio

n
tim

e
in

 m
in

Total runtime Interval processing time Conn. establishment + termination

Use case: Prime number count − Input size: 10,000 − Number of workers: 10

(b) Number of workers: 10

Figure 5.4.: Plots of two different test configurations based on the prime number count use case
defining 10,000 as input size including error bars

When investigating Figure 5.3a in more detail, it becomes clear that the connection estab-
lishment and termination part vastly exceeds the computational part, so for each worker it
takes significantly more time to start and end the connection with the master than to actu-
ally process the associated interval. This behavior is even more intensified in Figure 5.3b,
which also points out that the decrease of processing time in case of ten workers as compared
to eight workers cannot balance the increased time required for the connection establishment
and termination resulting from a larger number of workers. Referring back to Amdahl’s law,
the whole communication between the peers including connection establishment, termina-
tion and data exchange constitutes the serial fraction of the program and since there is no
speedup for the serial parts, the total speedup is fundamentally limited by this fraction.

55

5. Evaluation and scaling conclusions

Additionally, the sequential component makes up for a bigger proportion of the total execu-
tion time the more workers are involved, since the communication overhead increases with
a higher number of workers. Possible reasons for this behavior can be found in Section 5.3.
These observations can also be applied to Figure 5.4a and 5.4b, whereby the computational
part is not exceeded by the connection handling part in case of 10,000 numbers as total input
size in comparison with 1,000 numbers, rather it is significantly higher. But nevertheless,
the mean total execution time is slightly increasing instead of decreasing between those two
test configurations due to the rising time required for the connection start and end, even
though the processing of the intervals takes less time per node on average.

To sum it up, these four plots provide an explanation for the low speedup, especially re-
garding the test configurations comprising eight and ten workers. With respect to Amdahl’s
law, the serial part of the program is too predominant and even increases as the number of
workers grows. As a result, strong scaling in terms of the prime number count use case can
only be realized efficiently on a very small scale, e.g. if the workload is divided among two or
four workers, but the more workers are involved, the more the values for the speedup differ
from their optimum, mainly caused by the vast protocol overhead.

Weak scaling scenarios As for the mean runtime, corresponding standard deviation and
coefficient of variation of each individual test configuration, Table 5.3 outlines all the resulting
values in case of the weak scaling scenarios based on the prime number count use case. Weak
scaling implies that the number of workers and also the total input size is varied by means
of the same factor, so both of these dimensions are scaled in the following scenarios. In
this way, the amount of work that needs to be processed by each worker remains the same
within the test configurations of each scenario. Ideally, the goal of weak scaling is to keep
the time required for the execution of the application on a steady level within a scenario,
thus resulting in a constant overall execution time. With regard to these weak scenarios, the
growth rate equals two, so the number of workers and the input size is always doubled from
one test configuration to another.

Workers Total input size Mean runtime Stand. deviation CV

1 1,000 numbers 4.79 min 0.14 min 2.85 %
2 2,000 numbers 4.84 min 0.14 min 2.84 %
4 4,000 numbers 5.24 min 0.29 min 5.54 %
8 8,000 numbers 6.06 min 0.31 min 5.04 %

1 2,000 numbers 7.74 min 0.11 min 1.43 %
2 4,000 numbers 8.04 min 0.23 min 2.87 %
4 8,000 numbers 8.51 min 0.21 min 2.47 %
8 16,000 numbers 9.76 min 0.16 min 1.63 %

Table 5.3.: Weak scaling scenarios based on the prime number count use case including mean
runtime, sample standard deviation and coefficient of variation (CV)

When investigating the calculated values presented in Table 5.3, a slight difference in the
coefficients of variation can be observed between the two scenarios. While all values for
the relative standard deviation are generally low, the second scenario includes three of the
four smallest coefficients of variation and therefore comprises values that only range between

56

5.2. Measurement results and observations

1.43 % and 2.87 %. On the contrary, the first scenario encompasses coefficients of variation
ranging from 2.84 % to 5.54 %, so the values of this scenario are comparatively higher.
Additionally, the CV values differ more within the first scenario as compared to the ones
belonging to the second scenario. However, since these differences are not very significant in
general, they may simply result from varying environmental influences during the different
measurements, as further described in Section 5.3.

Since there are only two weak scaling scenarios, both of them are graphically visualized. The
two scenarios are plotted in Figure 5.5a and 5.5b, whereby none of them shows the desired
behavior, that is a constant total execution time on average as displayed by the dashed gray
line within each graph. Furthermore, as can be seen in Figure 5.5b, the graph of the second
scenario drifts even further away from the reference line representing the ideal behavior, in
contrast to the first scenario depicted in Figure 5.5a. A possible reason for the increasing total
execution might be that the time required for the connection establishment and termination
as well as for the data exchange increases with a larger number of workers and a bigger total
input size, so the serial fraction of the application does not remain constant. This effect is
even intensified in the second scenario as compared to the first one.

0

2

4

6

8

10

2 4 6 8

Worker input ratio

M
ea

n
ru

nt
im

e
in

 m
in

Use case: Prime number count − Weak scaling scenario: 1

(a) Weak scaling scenario: 1

0

2

4

6

8

10

2 4 6 8

Worker input ratio

M
ea

n
ru

nt
im

e
in

 m
in

Use case: Prime number count − Weak scaling scenario: 2

(b) Weak scaling scenario: 2

Figure 5.5.: Plots of both weak scaling scenarios based on the prime number count use case including
error bars

In order to illustrate this behavior in more detail, Figure 5.6a and Figure 5.6b present further
diagrams. For this demonstration, the first interval that needs to be processed by a worker
within each test configuration of a scenario is chosen. This interval never changes within a
given scenario since the workload that needs to be processed by each worker stays constant
among the different test configurations as defined by weak scaling, while the number of
workers and the total input size are increased by the same factor. Regarding the first weak
scaling scenario, the first interval of each test configuration is the one from 1,001 to 2,000,
thereby encompassing 1,000 numbers. In case of the second scenario, the interval from
1,001 to 3,000 constitutes the selected one, which contains 2,000 numbers in total. Both
of these intervals are computed by one worker node in every single test configuration of
each scenario, so the measured values of the time required to process this interval in every
test configuration can be compared. This comparison is illustrated in Figure 5.6a for the

57

5. Evaluation and scaling conclusions

first scenario and in Figure 5.6b for the second scenario. Ideally, the processing time of
the interval remains constant within a scenario, but when contrasting the mean measured
values of the different test configurations as indicated by the blue/dark gray fractions of
the bars in Figure 5.6a and 5.6b, a continuous increase in processing time can be observed
in both plots. So even though the exact same interval needs to be processed in every test
configuration, it takes longer the more workers are involved in total, which goes hand in hand
with a bigger overall input size. Since the processing time includes the separate transmission
of the calculated primes to the master and since the overall amount of primes grows with
a bigger input size, more messages need to be dispatched to the master in general when
the input size is increased. At the same time, as the number of workers grows as well, it
also takes slightly more time for each worker to establish and terminate the connection to
the master, as indicated in the plots by the light gray fraction of each bar. Therefore, the
serial fraction of the application increases from one test configuration to another, resulting
in a higher overall execution time of the worker program and thus representing an undesired
scaling behavior in terms of weak scaling. Section 5.3 provides further explanations for this
rise of the serial component.

0

2

4

6

8

10

1 2 4 8

Number of workers

E
xe

cu
tio

n
tim

e
in

 m
in

Interval processing time Conn. establishment + termination

Use case: Prime number count − Weak scaling scenario: 1 − Interval: 1,001 − 2,000

(a) Scenario: 1 — Interval: 1,001 - 2,000

0

2

4

6

8

10

1 2 4 8

Number of workers

E
xe

cu
tio

n
tim

e
in

 m
in

Interval processing time Conn. establishment + termination

Use case: Prime number count − Weak scaling scenario: 2 − Interval: 1,001 − 3,000

(b) Scenario: 2 — Interval: 1,001 - 3,000

Figure 5.6.: Plots focusing on two specific intervals of different test configurations from the weak
scaling scenarios based on the prime number count use case including error bars

According to Gustafson’s law, larger problems are needed for a larger number of workers since
they usually scale better20. This can be traced back to the fact that the serial component
generally becomes less important in case of larger problems and therefore does not dominate
anymore in proportion to the parallel fraction of the application. Regarding the prime
number use case, this would mean that the amount of work processed by each worker must
be increased by heightening the total input size in order to maintain the scaling and to
achieve a desired scaling behavior, but this would require additional measurements.

In summary, the actual measured values do not match the ideal case due to the predominance
of the serial fraction, which represents an undesired behavior of the protocol in terms of the
weak scaling scenarios based on the prime number count use case.

20https://www.archer.ac.uk/training/course-material/2016/12/mpi scaling manc/Slides/Scaling.pdf

58

5.2. Measurement results and observations

Word and line count use case

In the following, the measurement results of the word and line count use case are outlined
and examined with respect to the scalability of ZMTP. The input that corresponds to this
use case is represented by a text section which comprises 1,345 words split among 117 lines.
Due to the scarce memory capacity of the constrained nodes involved in the measurements,
it is not possible to significantly increase the input size of 1,345 words with the current design
of the use case. Therefore, the total input size is fixed for all scenarios of the word and line
count use case, so meaningful weak scaling scenarios cannot be realized.

The scenarios associated with this use case are divided into two categories. The first cat-
egory comprises the scenarios where the number of text passages per worker is altered, so
the workers always have to process roughly the same text, but depending on the specific
test configuration the individual input per worker might be further split into two or more
text passages which are processed separately. On the contrary, the second category defines
strong scaling scenarios, so the number of workers is increased from one test configuration to
another, while the total input size always remains constant. Similar to the first use case, the
results are presented in tables composed of the mean runtime per test configuration and the
associated sample standard deviation, as well as the coefficient of variation. Additionally,
some of the scenarios are visualized through plots.

Varying text allocation scenarios Each of the five blocks in Table 5.4 represents a scenario,
where the number of text passages per worker differs between the individual test configura-
tions, while the number of workers is fixed within a scenario, but still varies among different
ones. When examining each scenario separately, the values for the coefficients of variation
usually do not differ much, except for the fourth use case, which specifies eight workers and
whose values range between 9.64 % and 19.31 %. The relative standard deviation of 19.31 %
also represents the highest value of all test configurations in the table and is probably caused
by one or more outliers.

On the contrary, when the scenarios of Table 5.4 are not only inspected separate from
each other, the most apparent finding that can be derived from this table is the notable
discrepancy between the coefficients of variation compared among scenarios. In general,
the values of the scenarios comprising fewer workers are lower than the ones of the scenarios
involving a larger number of workers. For instance, the coefficients of variation range between
1.25 % and 3.10 % within the scenario specifying only one worker, namely the first one, while
the last scenario, which is the one with the largest number of workers, includes values between
10.47 % and 14.47 %. So the coefficients of variation generally increase as the number of
workers grows. Possible explanations for this interrelation are covered in connection to the
plots that belong to these scenarios, whereas general potential causes of the fluctuations in
coefficients of variation are identified in Section 5.3.

As derived from Table 5.4, it usually takes slightly more time on average to process the
complete text section when the input, that is assigned to a certain worker, is further split
into four parts as compared to when it is processed as a whole, whereby the first scenario
is the only one not following this pattern. The reason for this behavior is probably the
fact that more messages have to be sent between the master and the worker in case of four

59

5. Evaluation and scaling conclusions

Workers Text allocation Mean runtime Stand. deviation CV

1 1 pass. per worker 1.48 min 0.02 min 1.25 %
1 2 pass. per worker 1.47 min 0.05 min 3.10 %
1 3 pass. per worker 1.51 min 0.03 min 2.15 %
1 4 pass. per worker 1.46 min 0.03 min 1.96 %

2 1 pass. per worker 1.36 min 0.02 min 1.77 %
2 2 pass. per worker 1.39 min 0.07 min 4.66 %
2 3 pass. per worker 1.43 min 0.06 min 3.91 %
2 4 pass. per worker 1.44 min 0.04 min 2.88 %

4 1 pass. per worker 1.42 min 0.04 min 2.84 %
4 2 pass. per worker 1.55 min 0.07 min 4.47 %
4 3 pass. per worker 1.57 min 0.08 min 4.84 %
4 4 pass. per worker 1.67 min 0.07 min 4.33 %

8 1 pass. per worker 2.07 min 0.28 min 13.72 %
8 2 pass. per worker 2.09 min 0.40 min 19.31 %
8 3 pass. per worker 2.04 min 0.23 min 11.30 %
8 4 pass. per worker 2.15 min 0.21 min 9.64 %

10 1 pass. per worker 2.00 min 0.29 min 14.47 %
10 2 pass. per worker 2.12 min 0.29 min 13.88 %
10 3 pass. per worker 2.12 min 0.22 min 10.47 %
10 4 pass. per worker 2.16 min 0.23 min 10.62 %

Table 5.4.: Varying text allocation scenarios based on the word and line count use case includ-
ing mean runtime, sample standard deviation and coefficient of variation (CV)

text passages per worker, because the individual text passages are being sent to workers
separately and the partial results of each text passage also need to be dispatched to the
master individually before the next text passage can be processed by a worker. However,
in general, the calculated values of the average runtime do not differ as much within each
single scenario. This observation is also reflected in the plots presented in Figure 5.7a and
5.7b.

Figure 5.7a illustrates the second scenario of Table 5.4 including two workers, while Fig-
ure 5.7a displays the last scenario of this table, thus involving ten workers. Since both
diagrams present the same range of values on their y axis, the mean runtime can be directly
compared to each other among the figures. When contrasting these two plots, it becomes
clear that the average overall execution time is generally higher in case of ten workers as
opposed to two worker, which is examined more precisely in the strong scaling scenarios of
this use case.

To sum it up, the mean total execution time does not increase significantly when the input
per worker is divided into more than one text passage, which represents a desired behavior of
the investigated protocol, but the coefficients of variation notably differ among the scenarios,
depending on how many workers are involved, which is investigated in more detail in the
following section focusing on strong scaling scenarios.

60

5.2. Measurement results and observations

0

1

2

3

1 2 3 4

Passages per Worker

M
ea

n
ru

nt
im

e
in

 m
in

Use case: Word and line count − Number of workers: 2

(a) Scenario: 2 workers

0

1

2

3

1 2 3 4

Passages per Worker

M
ea

n
ru

nt
im

e
in

 m
in

Use case: Word and line count − Number of workers: 10

(b) Scenario: 10 workers

Figure 5.7.: Plots of two different varying text passage allocation scenarios based on the word and
line count use case including error bars

Strong scaling scenarios In terms of the strong scaling scenarios, the resulting values of the
mean runtime, the sample standard deviation and the coefficient of variation are displayed in
Table 5.5. Just like the strong scaling scenarios of the prime number count use case, the ones
of the word and line count use case additionally include the calculated speedups associated
with the different test configurations which are computed by the same formula.

Considering the calculated values in Table 5.5, the assumption that the number of workers
influences the coefficients of variation as observed in the varying text allocation scenarios of
the word and line count use case is strengthened by these values. As stated above, the coeffi-
cient of variation is generally higher in case of a larger number of workers. This observation
can also be made in terms of the strong scaling scenarios presented in Table 5.5. When
comparing the relative standard deviations within each of the scenarios, the resulting values
are usually higher if more workers, namely eight or ten, are involved in a test configuration
and lower if only one, two or four workers are participating in the experiment. This indicates
that the measured values of the repeated measurements are spread in a wider range of values
in case of eight or more workers.

Similar observations can also be made about the average total execution time, which is
comparatively higher for test configurations that encompass more workers, so running the
application takes longer for a larger number of worker as compared to only a few workers.
This means, that the average total runtime increases in general when the total text section
is split among more workers, which directly contradicts the goal of strong scaling and thus
represents an undesired behavior. But these observations only apply to the test configura-
tions including two or more workers, since the mean runtime decreases when scaling from
one to two workers, but from then one, it continuously rises. When looking at the speedup,
the calculated values are rather usually decreasing instead of increasing within the scenarios,
while they are far below their optimum and many of them reflect a “negative” speedup, that
is a value lower than one. Therefore, the protocol apparently does not scale as expected in
terms of the strong scaling scenarios of this use case.

61

5. Evaluation and scaling conclusions

Workers Text allocation Mean runt. Speedup Stand. dev. CV

1 1 pass. per worker 1.48 min — 0.02 min 1.25 %
2 1 pass. per worker 1.36 min 1.09 0.02 min 1.77 %
4 1 pass. per worker 1.42 min 1.05 0.04 min 2.84 %
8 1 pass. per worker 2.07 min 0.72 0.28 min 13.72 %
10 1 pass. per worker 2.00 min 0.74 0.29 min 14.47 %

1 2 pass. per worker 1.47 min — 0.05 min 3.10 %
2 2 pass. per worker 1.39 min 1.06 0.07 min 4.66 %
4 2 pass. per worker 1.55 min 0.95 0.07 min 4.47 %
8 2 pass. per worker 2.09 min 0.71 0.40 min 19.31 %
10 2 pass. per worker 2.12 min 0.69 0.29 min 13.88 %

1 3 pass. per worker 1.51 min — 0.03 min 2.15 %
2 3 pass. per worker 1.43 min 1.06 0.06 min 3.91 %
4 3 pass. per worker 1.57 min 0.96 0.08 min 4.84 %
8 3 pass. per worker 2.04 min 0.74 0.23 min 11.30 %
10 3 pass. per worker 2.12 min 0.72 0.22 min 10.47 %

1 4 pass. per worker 1.46 min — 0.03 min 1.96 %
2 4 pass. per worker 1.44 min 1.02 0.04 min 2.88 %
4 4 pass. per worker 1.67 min 0.87 0.07 min 4.33 %
8 4 pass. per worker 2.15 min 0.68 0.21 min 9.64 %
10 4 pass. per worker 2.16 min 0.68 0.23 min 10.62 %

Table 5.5.: Strong scaling scenarios based on the word and line count use case including mean
runtime, speedup, sample standard deviation and coefficient of variation (CV)

While the plot of the second scenario is illustrated in Figure 5.8a, Figure 5.8b represents the
graph resulting from the third scenario of Table 5.5. These two diagrams exemplify how the
average overall execution time slightly decreases from one to two workers, but subsequently
rises from then on and even surpasses the mean runtime measured when only one worker is
involved in processing the complete text segment. Therefore, the assertions about the mean
runtime made above are strengthened by these plots. Furthermore, the observed behavior
represents the exact opposite of what is considered the desired behavior, that is processing a
fixed workload in less time due to more workers, so in general, the protocol does not efficiently
scale for these scenarios. A possible reason for this behavior might be that the overhead
outweighs in contrast to the performance improvement achieved by more parallelization,
which is further explained in the following.

In order to ascertain possible reasons for the observations established above, further plots are
required. Figure 5.9a and Figure 5.9b therefore show the plots of two different test configura-
tions including the mean runtime measured by the master node (orange/medium gray bar),
as well as the average execution time required to process the interval associated with each
single worker (blue/dark gray fraction of the bars) and the time needed for the connection
establishment and termination (light gray fraction of the bars), both of which are measured
by each worker node separately. Therefore, the color scheme of the bar charts contained in
the the prime number count use case can also be applied to these plots, which represent the
second respectively the fifth test configuration of the first scenario of Table 5.5.

62

5.2. Measurement results and observations

0

1

2

3

2 4 6 8 10

Number of workers

M
ea

n
ru

nt
im

e
in

 m
in

Use case: Word and line count − Passages per worker: 2

(a) Scenario: 2 passages per worker

0

1

2

3

2 4 6 8 10

Number of workers

M
ea

n
ru

nt
im

e
in

 m
in

Use case: Word and line count − Passages per worker: 3

(b) Scenario: 3 passages per worker

Figure 5.8.: Plots of two different strong scaling scenarios based on the word and line count use case
including error bars

0

1

2

1 − 1345

1 − 679

680 − 1345

Text interval

E
xe

cu
tio

n
tim

e
in

 m
in

Total runtime Interval processing time Conn. establishment + termination

Use case: Word and line count − Number of workers: 2 − Passages per worker: 1

(a) Number of workers: 2

0

1

2

1 − 1345

1 − 132

133 − 273

274 − 401

402 − 535

536 − 680

681 − 823

824 − 970

971 − 1103

1104 − 1228

1229 − 1345

Text interval

E
xe

cu
tio

n
tim

e
in

 m
in

Total runtime Interval processing time Conn. establishment + termination

Use case: Word and line count − Number of workers: 10 − Passages per worker: 1

(b) Number of workers: 10

Figure 5.9.: Plots of two different test configurations defining one passage per worker based on the
word and count use case including error bars

What can be clearly seen in both plots illustrated in Figure 5.9a and 5.9b, is that the
time required for the connection establishment and termination on average for each worker
node surpasses the actual processing time of the individual text passage many times over.
This effect is even more dominant in Figure 5.9b where ten workers are involved in the
computation as compared to only two workers. These observations indicate that the total
input size of this use case is way too small, so the measurements mainly determine the
overhead caused by the ZeroMQ Message Transport Protocol.

As already analyzed in the prime number count use case, the communication overhead per
worker grows with an increasing number of workers, so the serial fraction of the application
significantly rises and causes a higher total execution time. Referring to Amdahl’s law,

63

5. Evaluation and scaling conclusions

the sequential part of the application is too significant, whereas the computational part
that can be parallelized is not complex enough as a result of the small overall input size.
Hence, the performance improvement gained by the division of the total input among more
workers is defeated by the rising communication overhead. The domination of the serial
component in contrast to the parallel one might be remedied by adding extra complexity to
the computational part or by considerably increasing the input size within the word and line
count use case as suggested by Gustafson’s law21. Additionally, this measure is indispensable
since mainly the protocol overhead is assessed by the conducted measurements due to the
small input size. Referring back to the resource scarcity of the IoT-LAB M3 open nodes,
as used for the series of experiments, which restricts a considerable increase of the input
size, a bigger overall text section cannot be realized with the current design of this use
case. However, streaming data might represent an alternative approach that could possibly
remedy the limitation of the input size due to the low memory capacity of the nodes, but
implementing this approach and conducting measurements thereof is out of the scope of this
thesis.

In summary, the findings clearly contradict the goal of processing a fixed workload in less
time due to a larger number of workers, so ZMTP does not meet the expectations regarding
the strong scaling scenarios of the word and line count use case, since it exhibits an undesired
scaling behavior.

5.2.2. Power consumption results

Besides the execution time measurements, the power consumption of each IoT-LAB node
was measured as a second value during the experiments, but the measurement results did not
reveal any significant differences between the various test configurations, or even among dis-
parate scenarios, so no solid conclusions about a varying energy footprint of the constrained
nodes can be drawn from these measured values. This applies to the values obtained from
the master node, as well as the ones acquired for each of the worker nodes. Therefore, the
power consumption results are not discussed in more detail in the course of this thesis and
are not taken into account in the remaining part of the evaluation.

5.3. Potential causes

While the previous section presents the measurement results and covers findings result-
ing from investigating the measured values (see Section 5.2), potential causes that might
explain the observations and findings described above are identified and analyzed in the
following.

In general, the values calculated for the coefficients of variation are rather low, but some
discrepancies within or among different scenarios can be observed, so reasons for these fluc-
tuations have to be established. Most of the comparatively high values of the coefficients
of variation, which is also being referred to as the relative standard deviation, are mainly

21https://www.archer.ac.uk/training/course-material/2016/12/mpi scaling manc/Slides/Scaling.pdf

64

5.3. Potential causes

caused by outliers that are not in line with the remaining values of the repeated measure-
ments. As mentioned in Section 5.1, no outliers are eliminated in the course of this thesis,
which can result in a wide range of measured values within repetitions of the same test
configuration. Concerning the experiments conducted by means of the IoT-LAB, variations
in measured values can be caused by environmental influences, such as network latency or
radio interference within the testbed, which can fluctuate between measurements, as stated
in Section 5.1, since they usually vary over time. Depending on how many other nodes are
actively communicating apart from the nodes involved in one’s own experiment, the network
load can differ and thus the communication between the master node and the worker nodes
as part of the measurements might take longer than usual. However, this behavior reflects re-
alistic conditions, instead of representing an artificially constructed, fully controlled setting,
so it is considered an acceptable trade-off caused by the test environment.

With respect to the observed scaling behavior derived from the execution time measurements
in case of strong scaling, which is examined for both use cases in Section 5.2, Amdahl’s law
prevails. The overall speedup of an application is limited by the serial component and in
terms of the two use cases assessed within this thesis, the serial fraction is too predominant
and thus generally impedes efficient scaling with a high speedup in strong scaling scenarios.
According to Gustafson’s law, larger problems are required in order to maintain scaling,
otherwise the predominance of the serial fraction increases as the parallel fraction is split
among a larger number of workers, but the results of the weak scaling scenarios of the
first use case did not meet the expectations either. This can also be traced back to the fact
that the communication overhead of ZMTP during the connection establishment, connection
termination and also the actual data exchange phase, rises as the number of workers grows
and thus outweighs the performance improvement achieved by more parallelization.

The cause of this undesired scaling behavior can probably be attributed to three different
factors, whereby the first one resides in RIOT’s threading model. Since the ZMTP port that
is used for evaluating the protocol in terms of constrained environments is a protocol port for
RIOT OS, and ZMTP requires one thread per connection on the master side, the strategy of
the underlying threading model is essential. As previously described in Section 3.2.1, RIOT
enables multi-threading by implementing a preemptive, tick-less, fixed priority scheduler
inside the kernel, that differs from many other operating systems. Due to the tick-less prop-
erty of the scheduler, threads are not switched on a continuous basis with periodic timers in
order to simulate parallel execution, but instead, context switches are initiated (1) preemp-
tively, through interrupts realized by the Interrupt Service Routine (ISR), (2) voluntarily,
by calling the thread_yield() or the thread_sleep() function, or (3) implicitly, through
function calls unblocking a higher prioritized thread22. This scheduling strategy was cho-
sen “to minimize occurrences of thread switching”[BHW+12] within the RIOT operating
system.

Regarding the fixed priorities of threads, “a higher priority means that the scheduler will
run this thread whenever it becomes runnable instead of a thread with a lower priority. In
case of equal priorities, the threads are scheduled in a semi-cooperative fashion. That means
that unless an interrupt happens, threads with the same priority will only switch due to
voluntary or implicit context switches.”22 According to [BGH+18], this scheduling policy
is called run-to-completion, so when applying this approach to the use case programs of

22https://riot-os.org/api/group core sched.html

65

5. Evaluation and scaling conclusions

the experiments, all the other connection handling threads of the master program have to
wait until the actively running one is either interrupted or switches context voluntarily or
implicitly. Therefore, the connection establishment and termination, as well as the actual
communication between each worker and the corresponding connection handling thread of
the master, is carried out sequentially without imitating concurrent execution. As a result,
the more workers are involved in a certain test configuration, the longer it takes to establish
and terminate all the connections and to realize data exchange between the peers, which is
why the serial fraction of the application grows as the number of workers increases.

Additionally, due to the protocol specifications of ZMTP and the underlying GNRC TCP
implementation it is based on, the general communication overhead is significantly high and
the delay of messages is rather long. Referring back to Section 3.2.4, the default configu-
ration of GNRC TCP, which defines a receive buffer and window size equal to the MSS of
1,220 bytes, leads to a limited amount of TCP packets that can be transmitted at the same
time. Hence, RIOT’s TCP implementation is characterized by a low throughput, so only a
single MSS sized packet can be transferred at a time and needs to be acknowledged before the
next packet can be dispatched. According to [Bru16], this represents an acceptable trade-off
to the detriment of data throughput, since memory saving constitutes the most important
design goal of the GNRC TCP implementation.

Furthermore, the ZeroMQ Message Transport Protocol generally adds additional delay as a
result of the vast protocol overhead it produces. As mentioned in Section 3.3.2, each field of
a ZMTP message frame, namely the flags, the size and the body field, is sent as a separate
TCP packet, so for every ZMTP message that needs to be dispatched after the connection
is established, three TCP packets are required, resulting in high network traffic, while only
one packet can be dispatched at a time. All of these segments need to be acknowledged as
well, which delays the transmission of packets during the actual communication even more.
Regarding the connection establishment, it takes comparatively long to set up a connection
between two ZMTP peers because of the numerous TCP segments that need to be exchanged
during the greeting and handshake before data can be sent, including the signature, version
number and security mechanism used, and also as a consequence of the low throughput
imposed by the GNRC TCP implementation.

In summary, all of the described factors are collectively responsible for the undesired scaling
behavior of ZMTP in terms of the two use cases examined within this thesis. Since the delay,
caused by the low throughput of GNRC TCP, is exacerbated by the communication overhead
of ZMTP, the serial fractions of the applications are too predominant. These fractions do
not remain constant, additionally by reason of RIOT’s scheduling strategy, which restricts
the scalability of the protocol even further. A larger number of workers generally causes a
bigger overhead thus raising the serial fraction because establishing and terminating all the
connections with the workers takes more time as compared to test configurations involving
less workers. This behavior applies to the strong as well as the weak scaling scenarios, since
both types of scaling include a varying number of workers. Within the prime number use
case, each prime number calculated by a worker is sent back to the master, so a larger input
size in case of weak scaling consequently leads to more communication overhead in the data
exchange phase, because more messages have to be delivered and each additional message
is split into three sequentially sent packets, whereby the serial fraction is increased even
further. Therefore, a performance improvement cannot be efficiently realized.

66

5.4. Consequent scaling conclusions

5.4. Consequent scaling conclusions

The last section of this chapter sums up the observations established in Section 5.2 and
presents conclusions that can be drawn from these results in terms of the scalability of ZMTP
in constrained environments, thereby completing the evaluation of the measurements.

As a first step, observations and implications thereof that fit more than one kind of scaling
scenarios or even more than one use case have to be identified. In general, the ZMTP port for
RIOT tends to reveal an undesired overall scaling behavior, especially regarding the strong
scaling scenarios of both use cases and also the weak scaling scenarios of the prime number
count use case. However, the results of the measurements conducted for the word and line
count use case exhibit that this use case almost solely measures the communication overhead
and therefore does not scale with respect to strong scaling. But still, the measured values
show that the overhead during the connection establishment, the actual communication and
the connection termination increases on average when the number of workers is raised.

The prime number count use case, on the contrary, does not efficiently scale as well, neither
regarding weak scaling nor strong scaling, due to the vast communication overhead and
the consequent predominance of the serial fraction of the application. Hence, this overhead
constitutes a performance bottleneck and thus significantly limits an overall improvement
in performance as explained in Section 5.3. Although a speedup can be observed within the
strong scaling scenarios, it is not high enough for many of the test configurations and nearly
stagnates at some point in most cases, which represents an undesired scaling behavior and
indicates that the decrease of processing time due to more parallelization cannot balance or
even surpass the growing communication overhead. Usually, it is easier to achieve satisfactory
results for weak scaling23, but the mean measured values of these scenarios do not meet the
expectations likewise. Referring back to Gustafson’s law, this behavior can possibly be
remedied when a very large input size is used, as mentioned during the analysis of the strong
scaling scenarios of each use cases, but focusing on the current measurement results, it can
be concluded that the investigated protocol port generally reveals a rather weak scalability
with respect to the prime number count use case.

Nevertheless, the scenarios of both use cases represent scaling on a rather small scale, con-
ducting measurements with ten workers at most, but including more test configurations or
scenarios would go beyond the scope of this thesis. Therefore, the conclusions above can only
be definitely applied to the examined scaling scenarios, but the measurement results indicate
that the serial overhead produced by the protocol is generally too high and increases too
rapidly, so with regard to these use cases, scaling can probably not be maintained efficiently
on a larger scale either.

In summary, even though ZMTP represents a promising approach to realize distributed
computing in constrained networks, the measurement results and the consequent evaluation
thereof indicate that the RIOT port of this protocol is generally not suitable for this purpose
because of an insufficient performance improvement in terms of both use cases.

23https://www.archer.ac.uk/training/course-material/2016/12/mpi scaling manc/Slides/Scaling.pdf

67

6. General conclusion and outlook

The final chapter sums up the results of this thesis, includes a general conclusion derived
from the elaborated findings and gives an outlook concerning recommendations for future
work on the topic.

Within this thesis, the ZeroMQ Message Transport Protocol was introduced as a way of re-
alizing distributed computing on constrained nodes by using a port of the protocol tailored
to the RIOT operating system. In general, the primary goal of the thesis was to ascertain
the scalability of ZMTP in constrained environments on the basis of two different use cases,
which constitute representative distributed computing applications. In order to achieve the
intended aim, an experimental approach was chosen as scientific methodology. Therefore,
a series of experiments was conducted by means of the use cases developed particularly for
the purpose of this thesis. During the experiments, runtime measurements were performed,
whereby the execution time represented the primary measurand, while the power consump-
tion was monitored as a secondary measurand. The series of experiments covered strong and
weak scaling scenarios by executing numerous test configurations that differed in terms of
their total input size or the number of workers they specified. All experiments were carried
out on the IoT-LAB testbed and for each test configuration, five temporarily consecutive
runs were executed to provide multiple values obtained from repeated measurements.

Since the measurement results of the power consumption monitoring did not reveal any sig-
nificant differences, neither among various nodes involved in an experiment nor between the
measured values for distinct test configurations, these results were omitted in the subsequent
steps of the analysis and evaluation. Hence, only the measured values for the execution time
were processed in order to better visualize them through tables, including the calculated
values of the standard deviations, and to plot them in graphs. This procedure allowed for
an easier analysis of the measurement results and additionally eased the traceability of the
observations derived from the measured values. The elaborated findings of the different sce-
narios were then aggregated and evaluated, so solid conclusions about the scalability of the
ZMTP port could consequently be drawn with respect to the two use cases that were tested
during the experiments.

The evaluation revealed that a vast overhead caused by the protocol limits the performance
improvements as intended by the parallelization of the computation through distributing the
workload among a number of workers. This overhead, which is present during the connection
establishment and termination, as well as during the actual communication, was therefore
identified as a performance bottleneck of the protocol port. As a result, the investigation of
the measured values exhibited a generally rather weak scalability of ZMTP.

However, it cannot be automatically concluded that the two considered use cases do not
scale at all as a consequence, even in the event of minor modifications regarding their design
as stated in Section 5.2. In terms of the prime number count use case, such changes can

69

6. General conclusion and outlook

comprise the definition of a bigger total input size, whereby the workload per node would be
increased since the overall interval, that needs to be processed by the workers, is expanded.
Furthermore, a small restructuration of the workflow could be realized, which should reduce
the amount of communication between the master and the worker nodes during the actual
computation by determining the number of primes of the assigned number interval on the
worker side and then sending only this single result back to the master by the time the interval
is completely processed, instead of dispatching each detected prime number separately.

Concerning the word and line count use case, the total input size cannot be adjusted as
easily due to the memory scarcity of the IoT-LAB M3 open nodes, so an alternative ap-
proach to providing the input for this application, such as streaming data, would have to be
implemented, as mentioned previously. Compared to the first use case, these changes would
require more effort. All these modifications might lead to an improved scaling behavior that
approaches the desired one despite the vast communication overhead. Especially the prime
number count use case seems to be promising, since this application already showed better
results than the word and line count use case within the current measurements. But up until
now, these are just assumptions which have to be checked by conducting further experiments
and corresponding runtime measurements as part of future work on this topic.

Regarding the general conformance of the observed scaling behavior with other use cases, that
are distinct from the ones examined within this thesis, a profound and resilient generalization
predication is hard to deduce. One the one hand, the poor scalability of ZMTP in terms
of strong and weak scaling that could be derived from the measurement results indicates
that this specific protocol is generally not suitable for the purpose of realizing distributed
computing in constrained environments on account of the overhead it causes, so the usage
of ZMTP does not constitute a universal solution which can be efficiently applied to any use
case with respect to its scaling behavior. On the other hand, the findings and conclusions
about the scalability of the protocol are only confirmed for the corresponding use cases, since
the measurements could only be performed for those two applications due to the limited time.
Therefore, disparate applications might exhibit scaling behaviors that differ from the ones
observed on the basis of the current use cases, but the actual behavior cannot be accurately
predicted.

In order to provide more extensive insights into the scaling behavior of ZMTP regarding
other use cases, further experiments including runtime measurements are recommended as
future work on this topic, besides the additional experiments suggested above. The results
of such measurements might then either support or dismiss the assertions made about the
scalability of ZMTP, depending on the specific characteristics of the use case that is exam-
ined. Nevertheless, it is assumed that only some particular applications can substantially
benefit from the usage of ZMTP with regard to its scalability, since the fundamental aspects
of the protocol port that were identified as potential causes of the weak scaling behavior are
assumed to have negative impacts on other use cases as well.

In summary, the goal of this thesis, that is assessing and evaluating the scalability of ZMTP
in constrained environments, was accomplished on the basis of two representative use cases,
but even though the results pointed out to a relatively weak scalability of the protocol port,
distinct applications based on ZMTP should be considered separately in order to determine
their concrete scaling behavior.

70

List of Figures

3.1. Comparison between the IoT and TCP/IP protocol stack derived from [LB16] 11
3.2. Overview of RIOT’s structural elements premised on [BGH+18] 16
3.3. The GNRC networking architecture based on [LKH+18] 17
3.4. Sequence diagram of a TCP 3-Way-Handshake for connection establishment . 19
3.5. TCP header format based upon [Bru16] . 20
3.6. The structure of a ZMTP short frame containing two octets of data 25
3.7. Dependency graph of ZMTP source and header files 27

4.1. Methodology of the experimental approach 30
4.2. Master-worker model . 33
4.3. Logical topology of the nodes . 34
4.4. Partial workflow of the prime number count use case 36
4.5. Partial workflow of the word and line count use case 38
4.6. An IoT-LAB node operating an M3 open node 40

5.1. Plots of two different varying input size scenarios based on the prime number count

use case including error bars . 50
5.2. Plots of two different strong scaling scenarios based on the prime number count use

case including error bars . 54
5.3. Plots of two different test configurations based on the prime number count use case

defining 1,000 as input size including error bars 55
5.4. Plots of two different test configurations based on the prime number count use case

defining 10,000 as input size including error bars 55
5.5. Plots of both weak scaling scenarios based on the prime number count use case

including error bars . 57
5.6. Plots focusing on two specific intervals of different test configurations from the weak

scaling scenarios based on the prime number count use case including error bars . . 58
5.7. Plots of two different varying text passage allocation scenarios based on the word

and line count use case including error bars . 61
5.8. Plots of two different strong scaling scenarios based on the word and line count use

case including error bars . 63
5.9. Plots of two different test configurations defining one passage per worker based on

the word and count use case including error bars 63

71

List of Tables

3.1. Classification of constrained IoT devices as defined in RFC 7228 [BEK14] . . 10
3.2. Comparison between Contiki, TinyOS, Linux and RIOT OS based on [BHG+13] 15
3.3. Valid socket type combinations derived from [Hin14a] 22

4.1. Partial problem space definition by means of dimensions 31
4.2. Scenarios and associated test configurations for the prime number count use

case . 42
4.3. Scenarios and associated test configurations for the word and line count use

case . 43

5.1. Varying input size scenarios based on the prime number count use case includ-
ing mean runtime, sample standard deviation and coefficient of variation (CV) 49

5.2. Strong scaling scenarios based on the prime number count use case including
mean runtime, speedup, sample standard deviation and coefficient of varia-
tion (CV) . 52

5.3. Weak scaling scenarios based on the prime number count use case including
mean runtime, sample standard deviation and coefficient of variation (CV) . 56

5.4. Varying text allocation scenarios based on the word and line count use case
including mean runtime, sample standard deviation and coefficient of varia-
tion (CV) . 60

5.5. Strong scaling scenarios based on the word and line count use case including
mean runtime, speedup, sample standard deviation and coefficient of varia-
tion (CV) . 62

73

List of Listings

3.1. ABNF grammar of a ZMTP connection establishment as defined in [Hin14a] . 24
3.2. ABNF grammar of ZMTP traffic as specified in [Hin14a] 25
3.3. ABNF grammar of the NULL security mechanism as specified in [Hin14a] . . 26

4.1. Function calls needed for the execution time measurements 32
4.2. Integration of execution time measurements in the use case programs 35

75

Bibliography

[Abd10] Hervé Abdi. Coefficient of variation. In Encyclopedia of Research Design, pages
170–171. SAGE Publications, Inc., 2010.

[ABF+15] C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton, T. Noel, R. Pissard-
Gibollet, F. Saint-Marcel, G. Schreiner, J. Vandaele, and T. Watteyne. Fit
iot-lab: A large scale open experimental iot testbed. In 2015 IEEE 2nd World
Forum on Internet of Things (WF-IoT), pages 459–464, Dec 2015.

[AH14] M. Aazam and E. Huh. Fog computing and smart gateway based communication
for cloud of things. In 2014 International Conference on Future Internet of
Things and Cloud, pages 464–470, Aug 2014.

[AKAH14] M. Aazam, I. Khan, A. A. Alsaffar, and E. Huh. Cloud of things: Integrating
internet of things and cloud computing and the issues involved. In Proceedings
of 2014 11th International Bhurban Conference on Applied Sciences Technology
(IBCAST) Islamabad, Pakistan, 14th - 18th January, 2014, pages 414–419, Jan
2014.

[APP13] D. Alessandrelli, M. Petraccay, and P. Pagano. T-res: Enabling reconfigurable
in-network processing in iot-based wsns. In 2013 IEEE International Conference
on Distributed Computing in Sensor Systems, pages 337–344, May 2013.

[BA96] J Martin Bland and Douglas G Altman. Statistics notes: Measurement error.
BMJ, 312(7047):1654, 1996.

[BdDPP14] A. Botta, W. de Donato, V. Persico, and A. Pescapé. On the integration of
cloud computing and internet of things. In 2014 International Conference on
Future Internet of Things and Cloud, pages 23–30, Aug 2014.

[BdDPP16] A. Botta, W. de Donato, V. Persico, and A. Pescapé. Integration of cloud com-
puting and internet of things: A survey. Future Generation Computer Systems,
56:684 – 700, 2016.

[BEK14] C. Bormann, M. Ersue, and A. Keranen. Terminology for constrained-node
networks. RFC 7228, RFC Editor, May 2014.

[BGH+18] E. Baccelli, C. Gündogan, O. Hahm, P. Kietzmann, M. S. Lenders, H. Petersen,
K. Schleiser, T. C. Schmidt, and M. Wählisch. Riot: an open source operat-
ing system for low-end embedded devices in the iot. IEEE Internet of Things
Journal, pages 1–1, 2018.

[BHG+13] E. Baccelli, O. Hahm, M. Günes, M. Wählisch, and T. C. Schmidt. Riot os:
Towards an os for the internet of things. In 2013 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), pages 79–80, April 2013.

77

Bibliography

[BHL+12] Ilja N. Bronstein, Juraj Hromkovic, Bernd Luderer, Hans-Rudolf Schwarz,
Jochen Blath, Alexander Schied, Stephan Dempe, Gert Wanka, and Siegfried
Gottwald. Taschenbuch der Mathematik. Springer, 1st edition edition, 2012.

[BHW+12] Emmanuel Baccelli, Oliver Hahm, Matthias Wählisch, Mesut Günes, and
Thomas Schmidt. RIOT: One OS to Rule Them All in the IoT. Research
Report RR-8176, INRIA, December 2012.

[Bru16] Simon Brummer. Concept and implementation of tcp for the riot operating
system and evaluation of common tcp-extensions for the internet of things, April
2016.

[DBH15] S. K. Datta, C. Bonnet, and J. Haerri. Fog computing architecture to enable
consumer centric internet of things services. In 2015 International Symposium
on Consumer Electronics (ISCE), pages 1–2, June 2015.

[GBMP13] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. Internet of things (iot): A vision, architectural elements, and
future directions. Future Generation Computer Systems, 29(7):1645 – 1660,
2013. Including Special sections: Cyber-enabled Distributed Computing for
Ubiquitous Cloud and Network Services & Cloud Computing and Scientific Ap-
plications - Big Data, Scalable Analytics, and Beyond.

[HBPT16] O. Hahm, E. Baccelli, H. Petersen, and N. Tsiftes. Operating systems for low-
end devices in the internet of things: A survey. IEEE Internet of Things Journal,
3(5):720–734, Oct 2016.

[Hin13a] Pieter Hintjens. ZeroMQ. O’Reilly Media, 1st edition edition, March 2013.

[Hin13b] Pieter Hintjens. Zeromq exclusive pair. Zeromq rfc, iMatix Corporation, 2013.

[Hin13c] Pieter Hintjens. Zeromq pipeline. Zeromq rfc, iMatix Corporation, 2013.

[Hin13d] Pieter Hintjens. Zeromq request-reply. Zeromq rfc, iMatix Corporation, 2013.

[Hin13e] Pieter Hintjens. Zmtp curve. Zeromq rfc, iMatix Corporation, 2013.

[Hin13f] Pieter Hintjens. Zmtp plain. Zeromq rfc, iMatix Corporation, 2013.

[Hin14a] Pieter Hintjens. Zeromq message transport protocol. Zeromq rfc, iMatix Cor-
poration & Contributors, 2014.

[Hin14b] Pieter Hintjens. Zeromq publish-subscribe. Zeromq rfc, iMatix Corporation,
2014.

[Iwa16] H. Iwai. End of the scaling theory and moore’s law. In 2016 16th International
Workshop on Junction Technology (IWJT), pages 1–4, May 2016.

[KMS07] N. Kushalnagar, G. Montenegro, and C. Schumacher. Ipv6 over low-power
wireless personal area networks (6lowpans): Overview, assumptions, problem
statement, and goals. RFC 4919, RFC Editor, August 2007.

[LB16] Huichen Lin and Neil W. Bergmann. Iot privacy and security challenges for
smart home environments. Information, 7(3), 2016.

78

Bibliography

[Len16] Martine Lenders. Analysis and comparison of embedded network stacks - design
and evaluation of the gnrc network stack. Master thesis, Freie Universität Berlin,
April 2016.

[LKH+18] Martine Lenders, Peter Kietzmann, Oliver Hahm, Hauke Petersen, Cenk Gündo-
gan, Emmanuel Baccelli, Kaspar Schleiser, Thomas C. Schmidt, and Matthias
Wählisch. Connecting the world of embedded mobiles: The RIOT approach to
ubiquitous networking for the internet of things. CoRR, abs/1801.02833, 2018.

[LL15] In Lee and Kyoochun Lee. The internet of things (iot): Applications, invest-
ments, and challenges for enterprises”. Business Horizons, 58(4):431 – 440,
2015.

[MKB18] Redowan Mahmud, Ramamohanarao Kotagiri, and Rajkumar Buyya. Fog com-
puting: A taxonomy, survey and future directions. In Beniamino Di Martino,
Kuan-Ching Li, Laurence T. Yang, and Antonio Esposito, editors, Internet of
Everything: Algorithms, Methodologies, Technologies and Perspectives, pages
103–130. Springer Singapore, 2018.

[MKHC07] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler. Transmission of ipv6
packets over ieee 802.15.4 networks. RFC 4944, RFC Editor, September 2007.

[MW16] M. Mitchell Waldrop. The chips are down for moore’s law. Nature News,
530:144–147, 2016.

[PAV+13] M. R. Palattella, N. Accettura, X. Vilajosana, T. Watteyne, L. A. Grieco,
G. Boggia, and M. Dohler. Standardized protocol stack for the internet of (im-
portant) things. IEEE Communications Surveys Tutorials, 15(3):1389–1406,
Third 2013.

[PMN+18] E. Di Pascale, I. Macaluso, A. Nag, M. Kelly, and L. Doyle. The network as
a computer: A framework for distributed computing over iot mesh networks.
IEEE Internet of Things Journal, 5(3):2107–2119, June 2018.

[Pos81] Jon Postel. Transmission control protocol. STD 7, RFC Editor, September
1981.

[PS17] P. V. Paul and R. Saraswathi. The internet of things - a comprehensive survey. In
2017 International Conference on Computation of Power, Energy Information
and Communication (ICCPEIC), pages 421–426, March 2017.

[SHB14] Z. Shelby, K. Hartke, and C. Bormann. The constrained application protocol
(coap). RFC 7252, RFC Editor, June 2014.

[SM16] Subhadeep Sarkar and Sudip Misra. Theoretical modelling of fog computing:
a green computing paradigm to support iot applications. IET Networks, 5:23–
29(6), March 2016.

[SPKS12] A. Sehgal, V. Perelman, S. Kuryla, and J. Schonwalder. Management of resource
constrained devices in the internet of things. IEEE Communications Magazine,
50(12):144–149, December 2012.

79

Bibliography

[SYY+13] Z. Sheng, S. Yang, Y. Yu, A. V. Vasilakos, J. A. Mccann, and K. K. Leung. A
survey on the ietf protocol suite for the internet of things: standards, challenges,
and opportunities. IEEE Wireless Communications, 20(6):91–98, December
2013.

[WLMQ16] Qian Wang, B. Lee, N. Murray, and Y. Qiao. Cs-man: Computation service ma-
nagement for iot in-network processing. In 2016 27th Irish Signals and Systems
Conference (ISSC), pages 1–6, June 2016.

[WTB+12] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, JP. Vasseur, and R. Alexander. Rpl: Ipv6 routing protocol for low-
power and lossy networks. RFC 6550, RFC Editor, March 2012.

[YAH+17] I. Yaqoob, E. Ahmed, I. A. T. Hashem, A. I. A. Ahmed, A. Gani, M. Imran,
and M. Guizani. Internet of things architecture: Recent advances, taxonomy,
requirements, and open challenges. IEEE Wireless Communications, 24(3):10–
16, June 2017.

[ZLH+13] Jiehan Zhou, T. Leppanen, E. Harjula, M. Ylianttila, T. Ojala, Chen Yu, Hai
Jin, and L. T. Yang. Cloudthings: A common architecture for integrating the
internet of things with cloud computing. In Proceedings of the 2013 IEEE 17th
International Conference on Computer Supported Cooperative Work in Design
(CSCWD), pages 651–657, June 2013.

80

Appendix

A. Plots of the remaining scenarios

The following plots represent the remaining scenarios of the two use cases, that are not
graphically visualized within Section 5.2 of Chapter 5. As for the prime number use case,
three of the varying input size scenarios and three of the strong scaling scenarios are illus-
trated below. Since there are only two weak scaling scenarios for this use case, both of them
are already included in Chapter 5. In terms of the word and line count use case, three of
the varying text allocation scenarios and two of the strong scaling scenarios are additionally
presented in the following.

0

5

10

15

20

25

30

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Input size

M
ea

n
ru

nt
im

e
in

 m
in

Use case: Prime number count − Number of workers: 1

Figure 1.: Varying input size scenario no. one involving 1 worker

81

Appendix

0

5

10

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Input size

M
ea

n
ru

nt
im

e
in

 m
in

Use case: Prime number count − Number of workers: 4

Figure 2.: Varying input size scenario no. three involving 4 workers

0

5

10

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Input size

M
ea

n
ru

nt
im

e
in

 m
in

Use case: Prime number count − Number of workers: 8

Figure 3.: Varying input size scenario no. four involving 8 workers

82

A. Plots of the remaining scenarios

0

2

4

6

8

2 4 6 8 10

Number of workers

M
ea

n
ru

nt
im

e
in

 m
in

Use case: Prime number count − Input size: 2,000

Figure 4.: Strong scaling scenario no. two defining 2,000 as total input size

0

2

4

6

8

10

12

2 4 6 8 10

Number of workers

M
ea

n
ru

nt
im

e
in

 m
in

Use case: Prime number count − Input size: 3,000

Figure 5.: Strong scaling scenario no. three defining 3,000 as total input size

83

Appendix

0

2

4

6

8

10

12

14

2 4 6 8 10

Number of workers

M
ea

n
ru

nt
im

e
in

 m
in

Use case: Prime number count − Input size: 4,000

Figure 6.: Strong scaling scenario no. four defining 4,000 as total input size

0

1

2

3

1 2 3 4

Passages per Worker

M
ea

n
ru

nt
im

e
in

 m
in

Use case: Word and line count − Number of workers: 1

Figure 7.: Varying text allocation scenario no. one involving 1 worker

84

A. Plots of the remaining scenarios

0

1

2

3

1 2 3 4

Passages per Worker

M
ea

n
ru

nt
im

e
in

 m
in

Use case: Word and line count − Number of workers: 4

Figure 8.: Varying text allocation scenario no. three involving 4 workers

0

1

2

3

1 2 3 4

Passages per Worker

M
ea

n
ru

nt
im

e
in

 m
in

Use case: Word and line count − Number of workers: 8

Figure 9.: Varying text allocation scenario no. four involving 8 workers

85

Appendix

0

1

2

3

2 4 6 8 10

Number of workers

M
ea

n
ru

nt
im

e
in

 m
in

Use case: Word and line count − Passages per worker: 1

Figure 10.: Strong scaling scenario no. one defining 1 text passage per worker

0

1

2

3

2 4 6 8 10

Number of workers

M
ea

n
ru

nt
im

e
in

 m
in

Use case: Word and line count − Passages per worker: 4

Figure 11.: Strong scaling scenario no. four defining 4 text passages per worker

86

B. Excerpt of raw measurement data

B. Excerpt of raw measurement data

In order to give a short overview of the raw data that was measured for the execution time
of the nodes during the experiments, an excerpt of one of the resulting files is shown in the
table below. Compared to the original file, the measured values have already been converted
from microseconds to minutes some other measured values were omitted in this table.

Series Workers Worker interval Worker runtime Master runtime

1.1 1 1,001 - 11,000 29.543578 min 29.543214 min

1.2 1 1,001 - 11,000 28.634883 min 28.634486 min

1.3 1 1,001 - 11,000 28.431420 min 28.431320 min

1.4 1 1,001 - 11,000 29.083334 min 29.083436 min

1.5 1 1,001 - 11,000 29.258953 min 29.259012 min

2.1 2 1,001 - 6,000 16.693261 min 16.695216 min
2.1 2 6,001 - 11,000 14.287963 min 16.695216 min

2.2 2 1,001 - 6,000 17.999446 min 17.998990 min
2.2 2 6,001 - 11,000 13.928416 min 17.998990 min

2.3 2 1,001 - 6,000 16.563307 min 16.564612 min
2.3 2 6,001 - 11,000 13.742645 min 16.564612 min

2.4 2 1,001 - 6,000 16.623095 min 16.623026 min
2.4 2 6,001 - 11,000 14.418386 min 16.623026 min

2.5 2 1,001 - 6,000 16.745418 min 16.744842 min
2.5 2 6,001 - 11,000 13.297820 min 16.744842 min

3.1 4 1,001 - 3,500 9.834560 min 9.834552 min
3.1 4 3,501 - 6,000 9.384086 min 9.834552 min
3.1 4 6,001 - 8,500 8.954884 min 9.834552 min
3.1 4 8,501 - 11,000 8.184703 min 9.834552 min

3.2 4 1,001 - 3,500 10.013794 min 10.013444 min
3.2 4 3,501 - 6,000 8.942943 min 10.013444 min
3.2 4 6,001 - 8,500 9.330387 min 10.013444 min
3.2 4 8,501 - 11,000 8.119858 min 10.013444 min

3.3 4 1,001 - 3,500 9.437159 min 9.450286 min
3.3 4 3,501 - 6,000 9.449376 min 9.450286 min
3.3 4 6,001 - 8,500 8.771658 min 9.450286 min
3.3 4 8,501 - 11,000 8.325073 min 9.450286 min

3.4 4 1,001 - 3,500 10.505340 min 10.505493 min
3.4 4 3,501 - 6,000 9.671213 min 10.505493 min
3.4 4 6,001 - 8,500 8.831652 min 10.505493 min
3.4 4 8,501 - 11,000 8.169167 min 10.505493 min

3.5 4 1,001 - 3,500 10.165001 min 10.164781 min
3.5 4 3,501 - 6,000 9.800943 min 10.164781 min
3.5 4 6,001 - 8,500 7.922632 min 10.164781 min
3.5 4 8,501 - 11,000 8.579721 min 10.164781 min

Table 1.: Excerpt of the file containing the measured values for the last strong scaling scenario
of the prime number count use case defining 10,000 numbers as total input size

87

	Introduction
	Related work
	Background information on constrained environments
	Constrained devices
	Definition and classification
	The IoT protocol stack
	Fields of application
	Challenges

	The RIOT operating system
	Overview and features
	Structure
	The GNRC network stack
	GNRC TCP

	The ZeroMQ Message Transport Protocol
	ZeroMQ
	ZMTP overview

	Experimental approach
	General methodology
	Conceptual Design
	Problem space definition

	Measurands
	Execution time
	Power consumption

	Representative use cases
	Use case 1 - Prime number count
	Use case 2 - Word and line count

	Setups
	Test environment
	Test configurations and scaling scenarios

	Test procedure

	Evaluation and scaling conclusions
	Measurement accuracy and standard deviation
	Measurement results and observations
	Execution time results
	Power consumption results

	Potential causes
	Consequent scaling conclusions

	General conclusion and outlook
	List of Figures
	List of Tables
	List of Listings
	Bibliography
	Appendix
	Plots of the remaining scenarios
	Excerpt of raw measurement data

