
INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis

Evaluation of
C++ SIMD
Libraries

Felix Jonathan Rocke

INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis

Evaluation of
C++ SIMD
Libraries

Felix Jonathan Rocke

Aufgabensteller: Prof. Dr. Dieter Kranzlmüller

Betreuer: Dr. Karl Fürlinger

Sergej Breiter

Abgabetermin: 27. April 2023

Hiermit versichere ich, dass ich die vorliegende Bachelorarbeit selbständig verfasst und

keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

München, den 27. April 2023

. .

(Unterschrift des Kandidaten)

Abstract

Single Instruction, Multiple Data (SIMD) units parallelize code through vectorization, thus
enabling substantial performance improvements. Over the last two decades, SIMD units have
become part of most CPUs. Despite this availability, many applications are not taking full
advantage of SIMD units since utilizing the performance potential requires highly hardware-
dependent instructions. However, the increase in performance and the substantial energy
savings provided by these instructions should no longer be ignored, leading to the need for
an e�cient SIMD API to allow for an e�cient and portable programming model.

This thesis will evaluate six of the most popular SIMD libraries by reviewing their sup-
ported extensions, functions, documentation, and ease of use. Furthermore, we will bench-
mark the performance of the selected libraries using a floating point benchmark and compare
their results to dedicated intrinsics implementations using the AVX2, AVX512, SVE, and
NEON SIMD extensions. Finally, we will also take a closer look at Google’s SIMD library,
Highway, which has been rising in popularity recently. We will assess if the library is ready
to take on complex real-world algorithms by conducting a case study on the vectorization of
an algorithm operating on unsigned integers.

The results of the floating-point benchmark show that multiple libraries can match the
performance of compiler intrinsics. Highway excelled with a strong performance across mul-
tiple SIMD extensions for the real-world integer algorithm. Thus, Highway may currently
be the most suitable SIMD library for many software projects.

vii

Contents

1 Introduction 1

2 Core SIMD Principles 3
2.1 SIMD Registers . 3
2.2 Lanes . 4
2.3 Memory Alignment . 4
2.4 Vectorizing Loops . 4

3 SIMD Programming Approaches 7
3.1 Implicit Vectorization . 7

3.1.1 Auto Vectorization . 7
3.1.2 OpenMP Pragmas . 8

3.2 Explicit Vectorization . 8
3.2.1 Compiler Intrinsics . 9
3.2.2 Libraries . 9

4 C++ SIMD Libraries 11
4.1 Library Selection Methodology . 11
4.2 Review Criteria . 11
4.3 Selected Libraries . 12
4.4 Library Reviews . 12

4.4.1 Highway . 13
4.4.2 Vc . 15
4.4.3 Libsimdpp . 16
4.4.4 NSIMD . 17
4.4.5 SIMD Everywhere . 18
4.4.6 Pure SIMD . 19

4.5 Review Results . 20

5 Mandelbrot Benchmark 23
5.1 Introduction to the Mandelbrot Benchmark 23
5.2 Pseudocode Implementation . 24
5.3 Scalar C++ Implementation . 25
5.4 Vectorized Implementations . 26

5.4.1 Intrinsics . 26
5.4.2 Pure SIMD . 27
5.4.3 NSIMD . 28
5.4.4 Vc . 29
5.4.5 Highway . 29
5.4.6 Libsimdpp . 30
5.4.7 SIMD Everywhere . 31

ix

Contents

6 Case Study Vectorization of Epistasis Detection Algorithm with Highway 33
6.1 Problem Introduction . 33
6.2 Pseudocode Implementation . 33
6.3 Di↵erent Population Count Approaches . 35

6.3.1 Pseudocode Vector Population Count with Reduction 35
6.3.2 AVX2 Extract Population Count . 36
6.3.3 Highway Extract Population Count . 37
6.3.4 AVX512 Population Count Accumulate 37
6.3.5 Highway Population Count Accumulate 38

7 Evaluation 39
7.1 Experimental Setup . 39

7.1.1 Hardware . 39
7.1.2 SIMD Library Versions . 39
7.1.3 Measurement Method . 40

7.2 Mandelbrot Benchmark Evaluation . 40
7.2.1 Results AVX2 . 41
7.2.2 Results AVX512 . 43
7.2.3 Results SVE . 44
7.2.4 Results NEON . 46

7.3 Case Study Epistasis Detection . 47
7.3.1 Results AVX2 and AVX512 . 48
7.3.2 Results SVE . 50

8 Conclusion 53

List of Figures 55

List of Listings 57

List of Tables 59

Bibliography 61

x

1 Introduction

Single Instruction, Multiple Data (SIMD) units, in Flynn’s classification scheme, are an
internal hardware feature of most modern processors and enable a form of parallel processing
[Mar18]. SIMD functionality was first introduced to vector supercomputers in the 1970s and
then found its way into consumer processors in the 1990s. SIMD units can speed up data
parallel programs through code vectorization [PCM+16]. SIMD and vector parallelism, in
general, employ the concept of Data Level Parallelism (DLP), which they achieve through
data-parallel execution [PCM+16, KMSZ15]. In other words, SIMD instructions allow the
execution of an operation on multiple data operands simultaneously instead of repeating an
operation sequentially on all data points. Most vector instructions typically operate on two
SIMD registers and follow the same pattern, which is visualized in Figure 1.1. First, the
SIMD unit is supplied with two vectors and the operation that should be performed on them.
The operation will then return the resulting vector. SIMD units typically support arithmetic,
logical, and bit manipulation operations, e.g., addition, bitwise-AND, and sometimes math
functions like an absolute or square root operation [CFCD17, Int22a]. Besides enabling better
performance, employing SIMD functionality can also improve energy e�ciency because only
one instruction needs to be fetched for multiple data points instead of one instruction for
each data point [Mar18].

Figure 1.1: Visualization of a typical vector instruction operating on two vector registers
with four lanes each.

SIMD extensions, such as AVX512, NEON, and SVE, are extensions to instruction set
architectures (ISAs), e.g., x86, ARM, and RISC-V, which enable the use of vector operations
that can lead to a substantial speed-up compared to a scalar execution. For example, the
addition of two vectors with eight floating point numbers each could experience a theoretical
speed-up of a factor of eight.

Besides the simultaneous operations on a vector, the memory access concept of SIMD

1

1 Introduction

units may give rise to further increases in performance. Vector load and store instructions
can load multiple data items from or to the memory in blocks, improving the memory bus
bandwidth utilization compared to scalar load and store instructions [CFCD17]. The most
significant performance improvements can be found in applications with a significant level of
data parallelism. Therefore, high-performance applications, e.g., data mining or multimedia
applications, often utilize vectorization. In general, computations heavily reliant on linear
algebra benefit the most [Mar18]. Accordingly, for performance-critical applications, using
the vector functionality of modern CPUs is highly desirable.

In order to employ the SIMD hardware of a CPU, the code needs to be vectorized first.
There are several approaches to achieving this. The most common concept is to rely on
the auto-vectorization features of modern compilers. The compiler recognizes data-parallel
patterns and replaces the scalar arithmetic instructions with vector instructions. Although
auto-vectorization has significantly improved over the last few years, compilers only achieve
a fraction of the theoretically possible speed-up since they regularly fail to vectorize code
with complex control flows or structured data layouts [PCM+16].

The best performance can often only be achieved by using intrinsic functions that directly
inline assembly instructions o↵ered by the SIMD extension while allowing for a higher level
of abstraction than programming in assembly language. Unfortunately, this approach to
SIMD programming requires a significant amount of e↵ort and knowledge. Although the
programmer can still think sequentially and does not need to worry about race conditions
and other problems associated with parallel programming, using intrinsics is accompanied
by other challenges [Mar18]. The most notable problems are a lack of compatibility and
portability, thus requiring a di↵erent implementation for each SIMD extension. Accordingly,
while being challenging and labor-intensive, intrinsics programming often results in the best
performance through its low-level approach [PCM+16].

Library-based programming approaches attempt to bridge the gap between e↵ort and
performance. The functions of these libraries map to corresponding compiler intrinsics of
various extensions or o↵er code patterns that can be vectorized by the compiler more e�-
ciently. In this thesis, we will evaluate a variety of libraries that utilize di↵erent approaches
and compare them with respect to multiple factors. Specifically, the evaluation factors will
include the supported extension sets, available functions, documentation quality, ease of use,
and performance. A floating point benchmark will be used for the performance evaluation.
We will also examine one of the libraries more closely by conducting a case study on its
ability to e�ciently vectorize a real-world algorithm utilizing bitwise operations on unsigned
integers.

The remaining chapters of this thesis are structured as follows. Chapter 2 will provide an
in-depth explanation of SIMD’s core programming principles and will introduce important
terms and concepts referred to in this thesis. In Chapter 3, we will present a brief overview
of the di↵erent SIMD programming approaches before more closely reviewing six di↵erent
libraries in Chapter 4. Chapter 5 will present the Mandelbrot benchmark and its di↵erent
implementations. Chapter 6 will describe a case study on using the Highway library to
vectorize an algorithm for epistasis detection. The subsequent chapter will evaluate the
results of the Mandelbrot benchmark and the case study. The final chapter will summarize
the findings and give an outlook on the future of SIMD programming.

2

2 Core SIMD Principles

Since the widespread introduction of SIMD units to microprocessors in the 1990s, various
extensions have been developed. The first SIMD capabilities were introduced to Intel pro-
cessors with the MMX extension. Since then, Intel has developed multiple improved and
more powerful extension sets [Sie16]. The integer-only MMX extension set was replaced by
Streaming SIMD Extensions (SSE), which introduced vector operations on floating point
numbers [Int22a]. Nowadays, the focus has transitioned away from integers toward floating
point numbers [JR15].

Nevertheless, the concepts of SIMD programming remain similar across the many exten-
sions available today. This chapter will introduce the most common terminology and the
principles of SIMD programming.

2.1 SIMD Registers

SIMD extensions are usually implemented using SIMD units, which contain SIMD registers.
These registers can store multiple values and typically have a larger size than regular reg-
isters, allowing them to hold more data. The size of vector registers has been growing over
the last two decades. These registers can be found in most, if not all, modern CPUs across
multiple architectures [JR15]. SIMD registers are sometimes also called vector registers. In
the following chapters, these terms are used interchangeably.

Figure 2.1: x86-64 vector registers on a CPU supporting AVX512. Visualization from Ref.
[Sch16].

One of Intel’s most recent SIMD extensions, AVX512, has 32 vector registers, each having
a size of 512-bit [Int22a, PCM+16]. These registers are addressed as ZMM0-ZMM31. Their
lower half can be addressed as YMM0-YMM31 and corresponds to 256-bit vector registers intro-
duced with AVX (compare Figure 2.1). Moreover, the lower quarter of those ZMM registers

3

2 Core SIMD Principles

corresponds to 128-bit registers introduced with SSE [JR15, Int22a]. As a result, AVX
extensions allow for backward compatibility but not forward compatibility.

2.2 Lanes

In SIMD registers, data is divided into multiple lanes wherein each lane holds a single scalar
value. So a SIMD lane is a unit that operates on a single scalar value. The number of lanes
describes how many individual scalar values fit into one vector register, i.e., how many values
a vector operation can operate on simultaneously.

The number of lanes that fit in a SIMD register depends on two factors, namely, the
register size and the scalar type stored in the register. For example, SSE o↵ers 128-bit
vector registers so that each register can store four 32-bit single precision floating point
numbers, comparable to Figure 1.1, or two 64-bit double precision floating point numbers
[PCM+16, JR15, CFCD17].

Accordingly, larger registers allow for more lanes and, therefore, more operations to be
performed simultaneously, which explains the trend towards an increase in vector register
sizes.

2.3 Memory Alignment

Operations, capable of loading and storing multiple elements in one instruction, are essential
to extract the highest performance out of a SIMD unit. The fastest memory operations are
possible when the array we load from or store into allows for contiguous memory accesses,
and the memory address is aligned to the beginning of a cache line [CFCD17, Int23]. Thus,
allowing the provided data locality to be exploited by loading entire cache lines into SIMD
registers [Pac22].

While both aligned and unaligned load/store operations exist, using aligned operations
is generally preferred. Operating on aligned memory improves performance because un-
aligned load operations can make multiple load and shift instructions necessary when a
cache line is crossed to piece together the misaligned data inside a SIMD register. However,
aligning memory requires additional steps, e.g., using attribute ((aligned(64))), and
may lead to a higher memory consumption since the data must be padded or the mem-
ory is fragmented leaving addresses unused, which can no longer be utilized e↵ectively
[Int22a, CFCD17, Pac22].

2.4 Vectorizing Loops

SIMD operations are commonly used to vectorize loops. However, for nested loops, only the
innermost loop can, in most instances, be vectorized easily. Additionally, there can be no
data dependence between the vector lanes because, for example, no lane can wait to read
the result of another lane to finish its calculation. I.e., the calculations taking place in each
lane must be independent of all the other lanes [NDR+11].

The function depicted in Listing 2.1 is a simple example of a loop vectorization, which
demonstrates how a vectorized dot product could be implemented using AVX512 compiler
intrinsics. To keep the example as simple as possible, we assume that the length of the
vectors is a multiple of 16, which is the number of lanes available, so no extra steps are

4

2.4 Vectorizing Loops

required to handle remainders. Due to the 512-bit registers available under AVX512 and
the use of 32-bit floats, the vector instructions can operate on 16 elements simultaneously.
Therefore, the vectorization process can be compared with unrolling a loop, wherein each
iteration, we work on 16 elements [NDR+11, PJ15]. Thus, we increment the iterator i by
the number of lanes (compare line 5 of Listing 2.1).

1 float dot product avx512(float * a, float * b, size t length) {
2 assert(length % 16 == 0); // constraint for simplicity
3 m512 sum = mm512 setzero ps(); // zero initialized vector
4

5 for (size t i = 0; i < length; i += 16) {
6 m512 av = mm512 load ps(a + i); // load 16 values of a into av
7 m512 bv = mm512 load ps(b + i); // load 16 values of b into bv
8 sum = mm512 fmadd ps(av, bv, sum); // sum := (av * bv) + sum
9 }

10

11 return mm512 reduce add ps(sum); // return the sum of all 16 lanes
12 }

Listing 2.1: Dot product implementation using AVX512 compiler intrinsics.

Regarding the intrinsics used in Listing 2.1, the first one we utilized is mm512 setzero ps,
which sets every lane inside a vector register to zero (compare line 3). The C type m512 rep-
resents AVX512’s 512-bit vector registers containing single-precision floating point numbers.
The precision of the pack of numbers we operate on is also specified in every function through
the ending of ps (compare, e.g., line 3), which corresponds to packed single-precision, other
endings can be, for example, pd for packed double-precision, or ph for packed half-precision
[Int22a]. The subsequent compiler intrinsics function we use is mm512 load ps which loads
16 single-precision floating point numbers from aligned memory into a vector register (see
lines 6 and 7). The following function, mm512 fmadd ps, is a SIMD function requiring an
additional Fused Multiply Add (FMA) unit beside the SIMD unit [Int22a]. This function can
perform a multiplication and subsequent addition in a single instruction. The final function
necessary for this example is mm512 reduce add ps, which computes a sum across all the
vector lanes and returns a scalar result (compare line 11). It is important to note that this
function consists of a sequence of instructions with narrowing vector lengths. Therefore, it
should be avoided in loops to optimize performance [Int22a].

The performance of the function, dot product avx512, in Listing 2.1 could be further im-
proved by unrolling the loop and adding multiple sum accumulators to increase the through-
put. Due to the latency of 4 and throughput of 0.5 CPI of the mm512 fmadd ps function
on Intel Xeon Ice Lake-SP processors [Int22a], multiple independent accumulators can over-
come the latency associated with the FMA operation through pipelining. The number of
independent accumulators required for optimal performance depends on the number of FMA
ports available, the latency, and the throughput associated with the FMA instruction.

5

3 SIMD Programming Approaches

Multiple programming approaches to vectorize code exist. These approaches di↵er in the
performance they can provide, their portability, and their ease of use. This chapter will dive
deeper into those approaches, examine the factors that a↵ect their performance, and discuss
their advantages and disadvantages. Furthermore, the need for SIMD libraries in vectorizing
code for multiple platforms will be discussed.

3.1 Implicit Vectorization

The programming model of implicit vectorization refers to a technique in which the compiler
or interpreter vectorizes scalar code without requiring the programmer’s explicit use of vector
instructions.

This approach of vectorizing code has several advantages. First, in most cases, the pro-
grammer will only be required to add compiler flags (compare Table 3.1) or pragmas to
his code to enable the auto-vectorization features of modern compilers [PCM+16, GCC22a].
This results in highly portable code since only a single version is required across all architec-
tures because it can be compiled for all SIMD extensions and platforms, o↵ering a compatible
compiler. Therefore, it is only necessary to update the compiler to take advantage of a new
SIMD extension set [PCM+16].

3.1.1 Auto Vectorization

This section will focus on the auto-vectorization features of GCC (GNU Compiler Collection)
compilers [GCC22b] because we used GCC’s vectorizer in Section 7.2. However, most other
popular compilers, e.g., LLVM and Intel® Compiler, also have similar auto-vectorization
features [LLV23, Int22b].

Work on an auto-vectorization feature for GCC started in 2003, with the primary goal
being the creation of a basic vectorizer with the ability to map simple scalar operations to
their corresponding vector operation. The basic vectorizer was limited to innermost loops,
aligned memory, the absence of function calls, and no if-then-else constructs, besides the
need for the code structure and data dependence to allow vectorization [GCC22a]. Since
then, the features have been enhanced, and, for example, loops with conditions can now
be vectorized in some instances. However, the mentioned restrictions still often prohibit
e↵ective vectorization [GCC22a, PJ15].

When using the vectorization feature of GCC, a few flags are of particular importance (see
Table 3.1). The first and most crucial flag is -ftree-vectorize, which turns on GCC’s tree
vectorizer [GCC22a]. Another essential flag is -ftree-vectorizer-verbose, which outputs
information on which loops were vectorized and the reason for any failed loop vectorizations.
The level of detail this flag outputs can be adjusted; more information can be found in Ref.
[GCC05].

7

3 SIMD Programming Approaches

Flag Description

-ftree-vectorize Enables vectorization, by default turned on with -O2.

-ffast-math

Required for the vectorization of most floating point
operations since instruction reordering can lead to dif-
ferent rounding errors.

-ftree-vectorizer-verbose

Outputs information on which loops were and were not
vectorized, as well as the cause. There are multiple
debug levels to this flag. More information can be
found in Ref. [GCC05].

Table 3.1: Important GCC auto-vectorization flags. Details from Refs. [GCC23e, GCC22a,
GCC05].

Although vectorization features of modern compilers have improved since their inception,
they still need to catch up with explicit vectorization using intrinsics [PCM+16]. Compilers
fail to vectorize code with more complex control flows because they are often limited by
the information not coded into the algorithm and, therefore, cannot generate highly e�cient
vectorized code [KL12]. Studies have shown that auto-vectorized code, on average, only
takes advantage of two vector lanes [PJ15].

3.1.2 OpenMP Pragmas

More than 20 years ago, OpenMP (Open Multi-Processing) was created by compiler and
hardware manufacturers to provide a more straightforward way to use threads by defining
a compiler-directed threading model rather than using libraries such as Pthreads. Most
popular C/C++ compilers support a recent version of OpenMP [Bre20, Ope18, PCM+16].

In Version 4.0 of OpenMP, support for SIMD was added to the API [Ope18]. Since then,
the pragma #pragma omp simd can advise the compiler that a loop is data parallel and to
vectorize it. Additional clauses can help the compiler choose safe vector lengths, inform the
compiler about memory alignment and possible reductions [Ope18, Bre20, PCM+16].

3.2 Explicit Vectorization

Explicit vectorization is commonly performed using compiler intrinsics or by writing as-
sembly routines. Unfortunately, both strategies are labor-intensive due to their poor cross-
platform portability [KL12]. Multiple projects attempted to solve this issue by creating
highly portable and performant libraries such as the libraries in Refs. [Goo22c, Vc22a,
Lib22a].

Unlike implicit vectorization, explicit vectorization requires in-depth knowledge of the
principles of vectorization and mindful incorporation into the code. However, there are
distinct di↵erences in programming with intrinsics, assembly and libraries, which will be
highlighted in the following two subsections.

8

3.2 Explicit Vectorization

3.2.1 Compiler Intrinsics

Compiler intrinsics functions directly map to assembly instructions that are inlined by the
compiler. As a result, compiler intrinsics provide one of the most performant ways of vector-
izing code. In addition, intrinsics o↵er an abstraction layer above assembly code, facilitating
use by a broader audience since only few developers are comfortable writing code in assembly
language [KL12]. The GCC compiler, for example, will also further optimize code utilizing
compiler intrinsics or inline assembly [GCC23b, Lir09]. Nevertheless, intrinsics have multiple
drawbacks.

The first and primary reason is that intrinsics are highly hardware-dependent, making
portability a significant issue. For example, AVX intrinsics lack forward compatibility, i.e.,
code using, for example, AVX-512 intrinsics can not be executed on older machines which,
for example, support AVX2 [Int22a]. Thus, maintaining multiple versions of the same code
is often necessary to ensure highly e�cient execution on all machines [KL12].

Another factor is that SIMD extensions for x86 architectures do not provide complete
type safety, making bugs di�cult to identify [KL12]. For example, the only AVX512 type
for integers is m512i. As a result, it is possible to, e.g., perform an addition for 64-bit
integers on a vector packed with 32-bit integers without causing an error.

3.2.2 Libraries

SIMD libraries address some issues known from compiler intrinsics. For example, many li-
braries map their functions to the underlying intrinsic functions but give them more readable
names. For example, most libraries we examine o↵er overloaded functions so that functions
have the same name across di↵erent data types, vector lengths, and SIMD extension sets.
Turning functions such as the AVX function, mm256 add ps, for the addition of single pre-
cision floating point numbers, into, for example, Add, makes the code easier to read and
platform independent [Int22a, Goo22e]. This further abstraction opens up vectorization to
a broader audience than intrinsics and assembly.

Another benefit of this higher level of abstraction is that the library’s functions are typ-
ically mapped to various SIMD extensions. Thus, compiling the same code for di↵erent
architectures and extension sets is possible, resulting in significantly more portable code
since only one version of the code needs to be maintained instead of distinct versions for
every extension set. However, when a new SIMD extension is released, it will be necessary
to update the library.

The maintenance process is where the biggest drawback of libraries arises. In the past,
research institutions or open-source projects have typically developed SIMD libraries. How-
ever, those projects have often not gained enough traction, so adding support for new SIMD
extensions to the library either takes a long time or does not happen. As a result, some
libraries no longer receive updates or only consider bug fixes. The problem of long-term
support plagues all SIMD libraries and must be considered a significant drawback.

Nonetheless, when only considering the currently available SIMD extensions, those li-
braries can cut down development time considerably. Even when a new SIMD extension is
released, it can take years for the corresponding hardware to become widely available. Ac-
cordingly, it is not vital for many applications to immediately support the new extension set.
In the worst case, additional code versions must be maintained, while most SIMD extensions
are covered by the library, which is still an improvement over not using a library.

9

3 SIMD Programming Approaches

Most SIMD libraries that map their functions to compiler intrinsics claim to be zero
overhead by utilizing the inline optimization pass of the compiler. While this may result in
a zero-cost abstraction layer, there are instances in which a library implementation is slower
than a compiler intrinsics implementation. Multiple factors can lead to this issue. The two
most prevalent are that there still is overhead associated with the library and the other is
that library functions are more limited than intrinsic ones. Therefore, combining various
functions may be necessary to substitute missing functions in a library. As a result, it is
sometimes possible to write a more e�cient implementation utilizing intrinsics rather than
a library.

10

4 C++ SIMD Libraries

This chapter will review six SIMD libraries capable of generating highly portable code,
by o↵ering an abstraction layer above intrinsics programming, as discussed in Section 3.2.2.
However, we will first go over how we selected the libraries and explain the non-performance-
based review criteria before examining the libraries more closely. In the final section of
this chapter, we will summarize the key aspects and review the results. The performance
evaluation of the libraries introduced in this chapter can be found in Chapter 7.

4.1 Library Selection Methodology

The libraries were selected based on three main factors. The first is popularity, the second
is how advanced a library is, and the third and final factor is the design principle.

The first factor in the selection process is how popular a library is. Popular libraries fre-
quently have more thorough documentation, tests with higher code coverage, and a larger
developer community, enabling better support and assistance. We determined a library’s
popularity by comparing how often it is mentioned in literature and other sources. Ad-
ditionally, we compared how many so-called ‘stars’ their GitHub pages had to gauge the
following they have. Finally, we selected some of the most popular SIMD libraries currently
available through this process.

Secondly, we aimed to select the most advanced libraries since they typically support more
SIMD extensions, provide more features, and overall have fewer errors. Thus, they allow the
programmer to develop more e↵ective and higher-quality code. We determined how advanced
a library is by reviewing the supported extensions and functions. The libraries’ popularity
and advancement often coincided, leading to similar choices in the selection process.

Lastly, the design principle was also essential to the selection process. For example, some
libraries put simplicity first, whereas others emphasize flexibility or modularity. Further-
more, not all follow the same vectorization approach. Therefore, we included libraries with
di↵erent approaches and design philosophies, even if they are less popular or advanced, to
ensure we have a diverse selection to highlight the di↵erences.

4.2 Review Criteria

The selected libraries’ capabilities will be assessed in four main areas: supported SIMD
extension sets, available functions, documentation quality, and ease of use. Performance
related factors will not be considered here.

The supported SIMD extension sets are critical determinants of a library’s suitability for
a project since di↵erent CPU architectures support di↵erent extensions. Thus, a library
supporting a wider variety will be more versatile and suitable for a more extensive range
of projects. For example, a library supporting AVX and NEON can generate instructions

11

4 C++ SIMD Libraries

for most modern x86 and ARM CPUs. Accordingly, the supported SIMD extensions are a
critical determinant in choosing the optimal library for a project.

Besides the extensions, the available functions are equally essential in selecting a library
since they must be capable of tackling the project’s problems or, even better, solving any
task compiler intrinsics could handle. As a result, we will review the functions of the six
libraries to determine their capabilities.

Another crucial factor we consider when reviewing libraries is the quality of their docu-
mentation. They should be comprehensive, clear, fast to navigate, and easily understandable
since the documentation is a tool for the developer to learn how to use the library correctly.
The provided information should, for example, include the library’s function signatures,
usage examples, and any required dependencies.

In addition to the documentation, the ease of use is also a critical factor for consideration
since a library that is di�cult to use or has a steep learning curve will slow down the devel-
opment process and increase the likelihood of errors. This factor is significant because the
libraries should simplify SIMD programming and prevent typical errors made with compiler
intrinsics. The goal of a library should be an intuitive and straightforward API that can be
quickly grasped and used without a long learning period and considerable e↵ort.

Ultimately, the four factors mentioned above can significantly impact a project’s develop-
ment process and overall success. Thus, we examine the six libraries based on these factors.
In addition, for some libraries, we will provide supplementary relevant information.

4.3 Selected Libraries

In total, we carefully selected six libraries. The first four libraries for evaluation: Highway,
Vc, Libsimdpp, and NSIMD, were chosen based on their popularity and advanced features.
These libraries, which we consider among the most popular SIMD libraries on the market,
follow a design philosophy that aims to condense the extension sets’ available functions down
to a subset of functions.

However, we also included SIMD Everywhere in the evaluation to ensure we examine all
possible options. This library di↵ers significantly from the previously mentioned libraries
regarding its design principle since it aims to map all intrinsic functions between the SIMD
extension sets. Nonetheless, the library has a substantial following and an active community
working on advanced features. We also included Pure SIMD, which stood out due to its
reliance on auto-vectorization, providing a unique approach di↵erent from the other libraries’
principles.

4.4 Library Reviews

This section presents a comprehensive review of each selected library by evaluating the
criteria mentioned in Section 4.2. Each library’s introduction will include an analysis of the
supported SIMD extensions, whereas the available functions, documentation, and ease of
use are split into separate subsections. To facilitate easy comparison between the supported
SIMD extensions, Table 4.1 presents an overview for each library at the time of writing.

12

4.4 Library Reviews

Library Supported SIMD Extensions

Highway
SSSE3, SSE4, AVX2, AVX-512*, NEON, SVE, SVE2, WASM
SIMD; RISC-V V

Vc SSE2, SSE3, SSE4.1, SSE4.2, AVX, AVX2

Libsimdpp
SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, FMA3, FMA4,
AVX512*, NEON, NEONv2, Altivec, VSX v2.06, VSX v2.07,
MSA

NSIMD SSE2, SSE4.2, AVX, AVX2, AVX512*, NEON, SVE, VMX, VSX

SIMD Everywhere
Full Support: MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, AVX,
AVX2, FMA, GFNI, CLMUL, XOP, SVML, SIMD128
Partial Support: SSE4.2, AVX512*, NEON, SVE, AMX, AES

Pure SIMD Dependent on compilers auto-vectorization support

Table 4.1: Supported SIMD extension sets by each library. ⇤Multiple AVX512 versions are
supported.

4.4.1 Highway

The first library we will examine is Highway [Goo22c], a SIMD library for C++11 and
above, developed by Google and distributed under an Apache 2.0 license. Development first
started in 2017 and has been ongoing since with frequent updates. This library has become
more popular than others before it due to the high code quality and advanced feature set.
Additional information will be presented on Highway’s type system, as the library will be
used in a case study in Chapter 6.

The motivation behind Highway’s creation is intrinsic programming’s portability and com-
patibility struggles, which we discussed in Section 3.2.1. Highway aims to address these
issues by allowing the same code to be run on various platforms and architectures, elimi-
nating the need for multiple error-prone intrinsic implementations. As presented in Table
4.1, Highway supports the most popular SIMD extensions for x86 and ARM architectures.
Therefore, o↵ering a solid development basis. Another aim of the developers was for the li-
brary’s performance not to di↵er more than 10% to 20% from that of a handwritten intrinsics
implementation on the corresponding platform [Goo22d, Goo22a].

While Highway is a promising solution to the struggles of SIMD programming, it remains
to be seen if this library will be a long-term one because Google has a track record of abruptly
abandoning projects [Wik23].

Type System

The type system of compiler intrinsics for extensions, such as AVX2, is missing type safety,
making bugs hard to find. However, Highway provides type safety with its numerous vector
types. These numerous vector types are nonetheless easy to navigate since the library pro-
vides constructs that choose the optimal vector type for the selected datatype and current
target [Goo22e].

The code in Listing 4.1 presents the most vital functions of Highway’s type system, which

13

4 C++ SIMD Libraries

are usually found in the initial portion of code utilizing Highway.

1 const ScalableTag<T> d;
2 const size t N = Lanes(d);
3 using V = decltype(Zero(d));

Listing 4.1: Essential functions in Highway’s type system.

The first line of code (see line 1) in Listing 4.1 does the following. ScalableTag refers to a
zero-sized tag type of the form Simd<T, N, kPow2> where T is the type of the vector’s lanes,
e.g., uint32 t or float, and N is the number of lanes the vector should have. However, we
do not refer directly to the zero-sized tag type since we want our code to be portable. I.e.,
we should not assume the number of lanes the vector has because we do not know the SIMD
register size before the SIMD extension set is selected at compile time. Therefore, we cannot
set a value for N while writing the code. Thus, the ScalableTag type is supplied with a
type T, for example, float, which will then be used at compile time to choose the correct
number of vector lanes. The lvalue d can then be referred to when creating new vectors to
tell the overloaded functions, e.g., Set or Zero, which type of vector should be created.

The function, Lanes, in line 2 makes it possible to retrieve the number of lanes the vector
has from the lvalue d and stores the scalar value in N [Goo22e]. This function is, for example,
necessary to increment loops according to the number of vector lanes the current platform
provides.

The third and final line (see line 3) extracts the vector type associated with the lvalue d.
It makes it possible to refer to it as, for example, V [Goo22e]. This feature is helpful because,
as mentioned above, we should not assume the exact vector type when writing the code.

Functions

The Highway library consists of various overloaded functions, meaning that a function has
the same name for every possible type of vector it operates on [Goo22e]. This stands in
contrast to compiler intrinsics, where several functions are used for the same operation but
di↵er in the data type on which they operate (compare Section 2.4) [Int22a].

The functions available in the Highway library make it possible to write everything that
could be written with intrinsics. They span from functions for initialization, loading, storing,
arithmetic, and bitwise operations, to functions for logical operations and masks. If platform-
specific code is still necessary, this can be achieved by writing them inside a directive the
preprocessor resolves. For example, the if-directive, #if HWY TARGET == HWY NEON, can be
used to declare a NEON-specific implementation [Goo22e, Goo22a].

The library also o↵ers convenient functions for initializing vectors and other use cases, such
as the Iota function. It returns a vector in which each lane di↵ers from the one next to it by
a specified value [Goo22e]. This feature is handy in various applications, and we will use it in
the Highway implementation of the Mandelbrot benchmark (see Section 5.4.5). Achieving the
same functionality using intrinsics requires more thought because the programmer needs to
find the right combination of intrinsic functions to create an Iota function [Int22a]. Having
this feature built into the library improves usability significantly. Another useful function,
missing in most compiler intrinsics libraries, is the PopulationCount function which counts
the number of bits with the value 1 of an integer in each lane. In Section 6.3, we will closely
examine Highway’s population count implementation.

14

4.4 Library Reviews

Documentation

The documentation of Highway can be found in a folder [Goo22b] on the library’s GitHub
page. This folder o↵ers documentation on various aspects of the library.

It includes details on the design philosophy behind Highway and the library’s aims. An-
other beneficial file is the FAQ (Frequently Asked Questions) file, which is especially helpful
when just starting with Highway. More experienced Highway users may also be interested
in the internal implementation documentation of Highway in case they want to add func-
tionalities themselves or verify implementation details.

For most users, the most important document will be the quick reference guide. This guide
includes all function definitions, instructions on how to set namespaces, and more. However,
this guide could be improved. One problem is that the guide is a simple Markdown file which
makes navigating from one function to the next tedious and tiring [Goo22e]. Libraries like
Libsimdpp and Vc solved this problem better by providing a dedicated web page displaying
all the available functions in a more structured manner [Lib22b, Vc22b].

Ease of Use

In this section on ease of use, we will evaluate Highway in comparison to other SIMD libraries
and a compiler intrinsics approach for code vectorization.

Getting started with compiler intrinsics is relatively easy. First, one must include the
appropriate header file for the desired intrinsics, like immintrin.h for most x86 SIMD ex-
tensions [Int22a]. The next step requires setting a compiler flag like -march=native to allow
platform-specific code generation. Afterward, one can use intrinsic functions and types.
However, finding and choosing the correct functions can be a significant hurdle.

Getting to the same point with Highway is more complicated. First, the library must be
compiled, linked using the typical compiler flags, and included. The library o↵ers multiple
header files, allowing users to choose desired additional features dynamically. However, for
some includes a specific order is important. Another requirement is the proper setup of
the Highway namespaces, which is relatively intricate [Goo22e]. These steps can make it
more di�cult for first-time users to get started with this library compared to starting with
intrinsics. However, due to this intricate process, the user has flexibility regarding which
features they want to include. This greater flexibility can be necessary or favorable for
experienced users. Therefore, it is not necessarily a negative.

However, once the setup process is finished, using Highway is significantly easier than
using intrinsics. Contributing to this are the previously mentioned overloaded functions
which make it easy to remember names and the ability to change the lane datatype quickly.

Another advantage of Highway compared to other libraries and compiler intrinsics is that
inexperienced users do not need actively select a SIMD extension set because Highway will
choose the best available SIMD extension dynamically when using -march=native and only
resort to a di↵erent extension if specified by the user [Goo22c]. In most other SIMD libraries
like Libsimdpp 4.4.3, a macro is required at compile time to actively select the desired SIMD
Extension.

4.4.2 Vc

The Vc library [Vc22a] was one of the first C++ SIMD libraries. It was developed at the
Goethe University Frankfurt, Germany. This library aims, like Highway, to provide an

15

4 C++ SIMD Libraries

e�cient way to vectorize code across platforms while introducing no additional overhead
compared to code written with compiler intrinsics. The library requires C++11 and above
and is published under a BSD 3-Clause license.

The development of Vc appears to have stopped, but pull requests with bug fixes from
the community are still being reviewed. However, there seem to be plans to create Vc
2.0, based on the experimental std-simd library [SS21, Vc22a], which has been included in
GCC/stdlibc++ from GCC version 11 onwards. It is unclear if these plans are still being
pursued. The library currently lacks support for many newer SIMD Extension sets, e.g.,
SVE and AVX512, and only supports x86 SIMD extensions (compare Table 4.1) [Vc22a].

Functions

The library is highly advanced from a functionality standpoint because it provides all func-
tions necessary to vectorize code, that could also be vectorized using intrinsics. Additionally,
the library includes a couple of high-level math and utility functions, improving the usability
for math and other problems profiting from vector parallelism [Vc22b].

Some examined libraries, one of them being Vc, allow the users to use operators such as +
or * instead of using intrinsics functions like mm256 add ps or mm256 mul ps [Vc22b]. This
functionality has the benefit that users unfamiliar with the typical syntax of vectorized code
will have little trouble understanding the operations because they are the same as for scalar
code.

Google’s Highway library also o↵ers this functionality, although this feature does not work
on SVE and RISC-V V machines for some operations [Goo22e]. Therefore, using it should
be reconsidered in order to ensure maximum portability.

Ease of Use

Starting with Vc is more straightforward than starting with Highway because the program
structure is simpler than Highway since it does not require a complex include sequence
or namespaces. Additionally, the library’s GitHub page [Vc22a] includes various valuable
examples and a detailed setup guide, making it easy to get started.

Documentation

The documentation for the Vc library is also superior to the documentation of Google’s
Highway library because, unlike Highway, it relies on a dedicated webpage (see [Vc22b]) to
e�ciently present all required information in a more structured form.

4.4.3 Libsimdpp

Unlike the previous two libraries, Libsimdpp [Lib22a] is not developed by a company or
university but rather by the open-source community. Nevertheless, the goals are similar
to the already mentioned libraries. Libsimdpp aims to provide a zero-overhead header-only
API, allowing users to create portable vectorized code for the most popular SIMD extensions
(compare Table 4.1) by providing a wrapper for the underlying compiler intrinsics functions.
Libsimdpp o↵ers a C++11 and a C++98 version. The library is published under the Boost
Software License 1.0.

16

4.4 Library Reviews

The active development of the library appears to have finished for now, but work on bug
fixes continues.

Functions

Libsimdpp provides a great variety of overloaded functions and operators for the custom
vector types provided by the library. Making it possible to solve most, if not all, problems
by employing this library.

However, not all functions are implemented as nicely as in Highway. For example, Lib-
simdpp is missing an Iota and PopulationCount function as well as others, which we will
discuss more closely when looking at the implementation of the Mandelbrot Benchmark in
Section 5.4.6. To replicate an Iota function, the use of, for example, the make float func-
tion is necessary [Lib22b]. The problem with this function is that it is vector length specific.
So it is necessary to provide multiple implementations for di↵erent vector lengths. Therefore,
the use of macros and if-directives is required.

Ease of Use

The library has a simple layout making it very easy to get started. Since Libsimdpp is a
header-only library, no build process is required. Thus the first steps with it are straight-
forward. Moreover, no complicated include sequences or multiple namespaces are necessary,
unlike with Highway. Additionally, the vector types and functions are clearly and intuitively
named. Thus, Libsimdpp joins Vc in the list of libraries that have an easy and quick setup
process.

Documentation

Of all the libraries discussed, the documentation of Libsimdpp [Lib22b] is by far the best.
Like Vc, this library has a dedicated web page. However, the design of this web page is
superior to that of the Vc documentation because it matches the design of the popular
cppreference.com [Cpp23] page many C++ programmers are familiar with, making it easy
to navigate.

4.4.4 NSIMD

Like the previous libraries, NSIMD [NSI21a] o↵ers the ability to abstract SIMD programming
and aims to provide a zero-cost SIMD abstraction library by relying on the inline optimiza-
tion pass of the compiler. The core of this library originates from the boost.simd library
[NSI18], which is no longer available but was benchmarked using a Mandelbrot benchmark in
Pohl et al.’s paper [PCM+16] on SIMD C++ programming models. NSIMD is unique among
the libraries because it also supports GPU programming models like NVIDIA CUDA. Be-
sides the GPU support, the library o↵ers support for most of the popular extensions on x86
and ARM systems, see Table 4.1.

Another distinct di↵erence between this and the other libraries is that multiple APIs are
included. There is a base and an advanced API version for C and C++. However, both
C++ APIs wrap the C calls but o↵er operator overloading and higher-level type definitions
[NSI21a]. The APIs support di↵erent C and C++ standards, with support for C89, C11,
C++98, C++11, C++14, and C++20. The library is available under an MIT license [NSI21a].

17

4 C++ SIMD Libraries

Functions

This library is also well-equipped with a wide variety of functions that can handle most
tasks. However, although NSIMD supports SVE, there is no population count function
which is a standard SVE feature. Nonetheless, the library o↵ers classic library functions such
as iota or more advanced mathematical functions, such as a base-ten logarithm function
[NSI21b]. Overall, the variety of functions will be more than enough for most projects,
though problems could arise if, for example, a population count function is required as in
the algorithm described in Chapter 6.

Ease of Use

Getting started with this library is quick and easy and requires less work than, e.g., starting
with Highway. However, one major drawback is that no examples are included with the
library. Thus, the setup process may be more challenging for first time users of SIMD
libraries. Additionally, we have been unable to use the library on an ARM CPU supporting
SVE. It remains unclear whether the issue lies with the library itself or if we made an error.
Due to the brief usage section, we were unable to identify the cause of the issue.

Documentation

The library o↵ers a dedicated web page [NSI21b] for its documentation. Overall, the docu-
mentation provides incredible detail on the library’s functions. However, with the di↵erent
APIs and the detailed description of each function, it can become problematic for users to
understand what input a function needs. Therefore, providing the ability to hide some im-
plementation details from the user may be beneficial for better readability and easier use.
Although the function section of the library is very detailed, the usage section is relatively
thin and may have indirectly led to the issue with SVE discussed in the previous section (see
Section 4.4.4).

4.4.5 SIMD Everywhere

SIMD Everywhere is a C99 header-only library [SE23], which follows a di↵erent design
principle than the previously discussed libraries. SIMD Everywhere aims to map all compiler
intrinsics between the various extensions and not condense down the extension sets to their
commonalities. Thus, this library’s scope is much larger than the others. However, this also
shows in the supported SIMD extensions. As seen in Table 4.1, many of the more recent
extension sets are not fully supported yet, since they are still under development. The library
is published under an MIT license, like NSIMD [SE23].

Functions

The library does not o↵er custom functions but relies on the functions provided through
compiler intrinsics. So, for example, code utilizing AVX2 compiler intrinsics can be compiled
to use NEON intrinsics. The process of doing this is relatively easy. First, we need to include
a header file provided by the library for the compiler intrinsics we use instead of the native
library like, for example, immintrin.h, which includes most of the intrinsics available on x86
CPUs [SE23, Int22a]. Additionally, we must define SIMDE ENABLE NATIVE ALIASES so that

18

4.4 Library Reviews

SIMD Everywhere can use native compiler intrinsic function names. Otherwise, all intrinsic
functions and types must be prefixed with simde , which is generally recommended due to
possible portability issues in the API [SE23].

Ease of Use

The ability to use preexisting compiler intrinsics code with this library makes it incredibly
easy for developers already familiar with them. Otherwise, the developers will have to learn
the intrinsic functions and types of one SIMD extension to use this library because the code
can be compiled from one base implementation to any other supported SIMD extension.
Overall, using this library is simple and di↵ers only marginally from programming with
intrinsics.

Documentation

The documentation on the library’s GitHub page [SE23] is relatively short because all the
library’s functions are the same as the intrinsic ones. Therefore, the documentation provided
by hardware manufacturers can be used as guidance, for example, the Intel intrinsics guide,
see Ref. [Int22a].

The rest of the library’s documentation provides details on how to use it and opportunities
for contribution, besides detailed information on the development state of the various SIMD
extensions supported [Int22a].

4.4.6 Pure SIMD

Pure SIMD [PS21] is a header-only library that di↵ers significantly from the other libraries
because it does not wrap the underlying compiler intrinsics. It rather unrolls loops intro-
duced through vector operations at compile time and uses code patterns the compiler can
then easily vectorize [PS21]. The main advantage of this concept is that the library sup-
ports vectorization for every SIMD extension, with a compiler supporting auto-vectorization.
Therefore, this library is by far the most portable. However, at the time of writing, this
library remains largely unfinished.

Nonetheless, this approach to code vectorization is quite compelling and will, therefore,
be included in the benchmarks. The library uses C++17 and requires a compiler that sup-
ports SLP (superword-level parallelism) vectorization, which combines similar independent
instructions into vector instructions [PS21, LLV23]. The library is published under a BSD
3-Clause license.

Functions

As discussed in the previous section, the library still needs to be completed, and it is unclear
if it will ever be. Moreover, in the current state, the library is missing various functions
required in most programs. So most algorithms will have to rely on scalar sections in their
implementation, limiting the upside the vectorization process can provide. Thus, we cannot
endorse the functional extent of this library.

19

4 C++ SIMD Libraries

Ease of Use

The setup process is uncomplicated since it is a header-only library. Therefore, no complex
build process is required, making the first steps with this library straightforward [PS21].
Furthermore, the existing functions are named intuitively. Additionally, the library includes
overloaded operators, e.g., + and * (compare Listing 5.3) for vector types, similar to Vc (com-
pare Section 4.4.2). Overall, getting started is easy and quick, further aided by numerous
examples in the documentation.

Documentation

The documentation is relatively short, but that is to be expected due to the limited number
of features. Overall it o↵ers a good overview of the library’s functionality and addresses areas
where further development is necessary [PS21]. Moreover, it includes elaborate examples for
all the functions and advice on structuring code. In summary, the documentation is su�cient
for what the library o↵ers.

4.5 Review Results

After reviewing the six libraries on their extensions, functions, documentation, and ease of
use, it becomes clear that while there are many similarities, there are also some distinct
di↵erences. Thus, we highlight the strengths and weaknesses of each library in this section.
Table 4.2 presents an overview indicating which criteria a library satisfies.

Library
Supported

Functions Documentation Ease Of Use
Extensions

Highway 3 3 3 7
Vc 7 3 3 3

Libsimdpp 3 7 3 3
NSIMD 3 3 7 3

SIMD Everywhere 3 3 3 3
Pure SIMD 3 7 3 3

Table 4.2: Summary of the di↵erent review categories for each library. The 3 symbol indi-
cates that the library fulfills the expectations in the category; on the other hand,
an 7 symbol indicates the opposite.

For Google’s Highway library, we critiqued that getting started was more challenging
than with the other libraries due to the modular approach, which required more intricate
knowledge of the library. However, when the initial hurdles are overcome, Highway’s more
flexible approach can become helpful, especially if more advanced functionality is required.
Another critique was the documentation since it consists of multiple markdown files rather
than a dedicated webpage. Though, it is necessary to note that the information provided in
the files is more than su�cient. Thus, the library satisfies the criteria.

The drawback for Vc is relatively straightforward. As a result of its age, it does not
support newer extension sets, such as AVX512 or SVE. Thus, the library is limited to older
x86 CPUs.

20

4.5 Review Results

Libsimdpp impressed in many of the categories. The only critique we have for this library is
concerned with the available functions. While the library has most of the required functions,
it is missing a handful of more advanced functions, which would be highly desirable, such as
an iota and population count function.

The fourth library, NSIMD, has many convincing aspects, but its documentation could be
more optimal. It is convoluted and overly specific in many places, while other areas need to
be more detailed. Therefore, the documentation would benefit from a more concise approach
in many areas as well as some additional information in its usage section.

SIMD Everywhere fulfilled the expectations in all categories.
The final library we reviewed is Pure SIMD, which is the only library that solely relies on

auto-vectorization features of the compiler for its vectorization. Many aspects of the library
are well executed. However, it lacks many functions, which can be considered essential for a
SIMD library.

In summary, all libraries could satisfy most of the review criteria. However, all of them
had di↵erent strengths. Some shined due to their excellent documentation, others due to
their well-thought-out functions. We have found Highway, Libsimdpp, NSIMD, and SIMD
Everywhere especially convincing.

21

5 Mandelbrot Benchmark

The Mandelbrot benchmark is based on the calculation of the Mandelbrot set, named after
the french-american mathematician Benôıt Mandelbrot. We will use this benchmark to
examine and compare the performance of the di↵erent libraries we have previously discussed
(see Chapter 4). First, we will look at the definition of the Mandelbrot set before going over
the di↵erent implementations.

5.1 Introduction to the Mandelbrot Benchmark

The Mandelbrot set is the set of complex numbers c for which fc(zn) = z2n + c = zn+1 does
not diverge when iterated from z0 = 0. In other words, the distance of fc(zn) to the origin
(0, 0) is bounded, meaning the distance of fc(zn) to the origin does not approach infinity
under iteration. For the Mandelbrot set, it can be assumed that if the Euclidean norm of zn
exceeds 2, then c is not in the Mandelbrot set.

Plotting the Mandelbrot set on the complex plane creates a distinct shape as can be seen
in Figure 5.1. The calculations required to plot this image, are the Mandelbrot benchmark.

Figure 5.1: Graphical representation of the Mandelbrot set generated by the AVX2 imple-
mentation of the Mandelbrot benchmark overlaid onto a coordinate system of
the complex plane.

Every pixel in Figure 5.1 represents a value of c in the complex plane; if c is in the
Mandelbrot set, then the pixel is black. Otherwise, it is white. Some visualizations use more
than two colors, each visualizing a specific behavior under iteration. The resulting images are
famous for their intricate, fractal patterns, which exhibit self-similarity at di↵erent scales.

23

5 Mandelbrot Benchmark

5.2 Pseudocode Implementation

The following section includes a pseudocode implementation in Algorithm 1 representing the
Mandelbrot benchmark. The benchmark takes seven parameters, as shown in line one of the
algorithm. The parameters xBegin, xEnd, yBegin, and yEnd are the x and y dimensions
of the complex plane area we want to test for numbers in the Mandelbrot set. The last
three parameters, width, height, and image, provide information about the resolution of
the image and a pointer to the image.

Algorithm 1 Mandelbrot benchmark

1: procedure MandelBench(xBegin, xEnd, yBegin, yEnd,width, height, image)
2: xScale (xEnd� xBegin)/width
3: yScale (yEnd� yBegin)/height
4:

5: for j 0, j < height, j j + 1 do

6: for i 0, i < width, i i+ 1 do

7: c (xBegin+ i ⇤ xScale, yBegin+ j ⇤ yScale)
8: z (0, 0)
9:

10: iteration 0
11: while true do

12: iteration iteration+ 1
13: z (z ⇤ z) + c . Mandelbrot Iteration Rule
14:

15: if norm(z) > 2 then

16: image[j ⇤ width+ i] 0
17: break

18: else if iteration >= MAXITER then

19: image[j ⇤ width+ i] 1
20: break

21: end if

22: end while

23: end for

24: end for

25: end procedure

For each pixel in our image, we choose a value for c and test if it is included in the set
through iteration. Therefore, we need to calculate a di↵erent x and y value for each pixel
corresponding to its position within the complex plane. In lines 2 and 3 of Algorithm 1, we
calculate the distance of each pixel’s position in the complex plane to the one next to it.
This value is then used in line 7 to set the value for c.

The iteration rule for the Mandelbrot set can be found in line 13. After each iteration,
we check if one of two possible cases has occurred; if so, we can stop the iteration and move
to the next pixel. The first case is that zn will approach infinity under iteration, which we
can check by calculating the Euclidean norm of z and testing if it is greater than 2, which is
done in line 15. If the norm is greater than 2, c is not in the Mandelbrot set. The other case
is that we have reached the maximum number of iterations we have defined (see line 18).

24

5.3 Scalar C++ Implementation

When reaching that case, it is clear that the distance of z has stayed finite to the origin,
and we include c in the Mandelbrot set. Consequently, the number of iterations chosen
determines the accuracy of the calculated set and graphical representation because the norm
of zMAXITER may be less than 2, but this cannot guarantee that z would continue to stay
less if the iteration continued.

In this implementation of the Mandelbrot benchmark, we set the value of a pixel to zero
if c is not in the set and to one if it is in the set. By collecting this data, we can create a
bitmap image resembling Figure 5.1.

As seen in Algorithm 1 and the presented definition of the Mandelbrot set in Section
5.1, we can calculate the value of each pixel individually, i.e., the value of each pixel is
independent of all other pixels. Hence, calculating the image is highly data parallel making
it an excellent and common choice for a SIMD benchmark.

5.3 Scalar C++ Implementation

The scalar C++ implementation of the Mandelbrot benchmark in Figure 5.1 is quite similar
to the pseudocode implementation discussed before. However, one significant di↵erence is
that we are not relying on a complex number type. Instead, we treat the complex number’s
real and imaginary parts as two separate floating point values. We used this simplification
because the std::complex class provides a variety of assurances, which we do not need in this
application, and which also a↵ects the performance negatively [PCM+16]. Furthermore,
testing has shown that using the std::complex class or a custom class for complex numbers
can generally decrease the compiler’s ability to perform auto-vectorization, leading to a
slightly worse performance due to the more complex code structure. Additionally, most
SIMD extension sets have no support for complex number types. Therefore, relying on a
32-bit floating point type makes sense across all benchmarks.

1 void mandelbrot scalar(float xBegin, float xEnd,
2 float yBegin, float yEnd,
3 int width, int height, float * image) {
4

5 // calculate horizontal and vertical distance between pixels
6 float xScale = (xEnd − xBegin) / width;
7 float yScale = (yEnd − yBegin) / height;
8

9 float c real, c imag, z real, z imag, temp, z real squared,
z imag squared, norm squared;

10

11 for (int j = 0; j < height; j++) {
12 // imaginary part of c
13 c imag = yBegin + j * yScale;
14 for (int i = 0; i < width; i++) {
15 // real part of c
16 c real = xBegin + i * xScale;
17

18 //initialization of z
19 z real = 0.0f;
20 z imag = 0.0f;
21

22 int iteration = 0;
23 while (1) {
24 iteration++;

25

5 Mandelbrot Benchmark

25

26 // iteration of f(z) = zˆ2 + c
27 temp = z real * z imag;
28 z real squared = z real * z real;
29 z imag squared = z imag * z imag;
30 z real = (z real squared − z imag squared) + c real;
31 z imag = temp + temp + c imag;
32

33 // no square root to reduce number of instructions
34 norm squared = z imag squared + z real squared;
35

36 // breakout condition 1: squared norm larger than 4.0
37 if (norm squared > 4.0f) {
38 * image++ = 0.0f;
39 break;
40 }
41

42 // breakout condition 2: reached max iterations
43 if (iteration >= MAX ITERATIONS) {
44 * image++ = 1.0f;
45 break;
46 }
47 }
48 }
49 }
50 }

Listing 5.1: Scalar C++ Mandelbrot benchmark implementation.

The implementation in Figure 5.1 is very similar to the pseudocode implementation dis-
cussed in Section 5.2. However, one crucial di↵erence exists in how the Euclidean norm
is calculated. The Euclidean norm is defined as ||z|| =

p
Re(z)2 + Im(z)2. We already

calculated the square of the real and imaginary part of z during the iteration of fc(zn)
(compare line 28 and 29). Thus, we would only need to calculate the square root of the
sum of the two numbers to receive the Euclidean norm. However, we square the bailout
value instead of calculating the square root. I.e., we use 4 instead of 2 in the first breakout
condition’s comparison (compare line 37). As a result, we do not need an additional square
root operation.

5.4 Vectorized Implementations

The algorithm’s vectorization occurs along the x-axis, with the vector register’s lanes com-
puting results for adjacent pixels in a single row. Overall, the vectorized implementations
all share the same core elements and structure. Therefore, we will focus on specific aspects
of each library’s code rather than presenting the entire codebase. However, to ensure com-
prehension and maintain coherence, we have organized the code snippets chronologically,
making it easy to understand where each piece fits within the algorithm.

5.4.1 Intrinsics

The first implementation we will look at is one of the compiler intrinsics versions. In total,
there are four versions of the benchmark using intrinsics explicitly. The first two versions
are written for x86 CPUs using the AVX2 and AVX512 SIMD extensions. The other two

26

5.4 Vectorized Implementations

implementations use SVE and NEON as their SIMD extension set for ARM CPUs. The
following code snippet is part of the AVX2 implementation, see Listing 5.2.

1 ...
2 // for−loops and other variable initializations
3 ...
4

5 m256 c imag = mm256 set1 ps(yBegin + (j * yScale));
6 m256 c real = mm256 set ps(8+i, 7+i, 6+i, 5+i, 4+i, 3+i, 2+i, 1+i);
7 c real = mm256 fmadd ps(c real, xScaleVec, xBeginVec);
8

9 m256 z real = mm256 setzero ps();
10 m256 z imag = mm256 setzero ps();
11

12 ...
13 // while−loop and end of algorithm
14 ...

Listing 5.2: AVX2 compiler intrinsics Mandelbrot benchmark; initialization of c and z0.

The snippet shows the initialization of the real and imaginary parts of c and z, which
corresponds to lines 13 to 20 in the scalar C++ implementation in Listing 5.1. Setting the
initial value of z is easily achieved by setting the values of the z vectors to zero using a
so-called splat operation, which broadcasts the value 0 across the vector register. This splat
operation, mm256 setzero ps, can be seen in lines 9 and 10.

It is equally simple for the imaginary part of c, the value of c only changes when a new line
of the image’s pixels is calculated. Therefore, we can move line 5 out of the innermost for-
loop (compare Listing 5.1), which has been done for the benchmark implementations to avoid
unnecessary redefinitions of c imag. The calculation of c imag is identical to the pseudocode
and scalar implementation (compare Sections 5.2 and 5.3). However, the initialization is
di↵erent because the intrinsics function mm256 set1 ps broadcasts the calculated value to
all lanes.

The initialization of c real is more complex than that of c imag. Because we no longer
work with scalar values, we do not increment i by 1 in every iteration of the for-loop. Instead,
we increment i with the number of lanes of the vector. Thus, the function mm256 set ps is
needed, which allows setting the value of each lane in a vector individually from the back to
the front (compare line 6). After initializing the vector’s values with its x-axis position in the
image, we need to multiply c real with our x-axis scaling to receive a vector with correctly
spaced real parts of c. Now, we only need to add the x-position of the beginning on the
complex plane to shift the c real vector into place. On many AVX2-enabled machines, there
is an FMA unit, which allows multiplication followed by an addition in a single instruction,
which is more e�cient than a separate multiplication and addition instruction [Int22a]. We
utilize the function, mm256 fmadd ps in line 7 to extract the best possible performance.

5.4.2 Pure SIMD

The Pure SIMD library o↵ers an iota function like a few of the other libraries [PS21,
Goo22e]. Listing 5.3 displays the initialization of the real part of c, which is similar to the
process in Listing 5.2. However, the existence of an iota function simplifies this because it
is only necessary to give the function a start value and a step size between the scalar values
of each lane, compare line 5 in Listing 5.3 and line 6 in Listing 5.2.

27

5 Mandelbrot Benchmark

The subsequent scaling and shifting of c real into position, displayed in line 6 is compa-
rable to line 7 in Listing 5.2. As seen in the listing, the library o↵ers overloaded operators,
making it possible to use + and * on vector types.

1 ...
2 // for−loops and other initializations
3 ...
4

5 auto c real = iota<TargetVec, size t>(i, 1.0f);
6 c real = (c real * xScaleVec) + xBeginVec;
7

8 ...
9 // z initialization, while−Loop, and end of algorithm

10 ...

Listing 5.3: Pure SIMD Mandelbrot benchmark; initialization of c real.

5.4.3 NSIMD

The NSIMD library o↵ers multiple APIs for C and C++. We have implemented the bench-
mark using the C++ base API and the C++ advanced API. Therefore, we will compare the
same snippet from both implementations to see their di↵erences. The two code snippets in
Listing 5.4 and 5.5 both show the initialization of z0, which can also be seen in Listing 5.2.

1 typedef pack<float> floatv t;
2 typedef packl<float> maskv t;
3

4 ...
5 // c initialization and for−loops
6 ...
7

8 floatv t z real = set1<floatv t>(0.0f);
9 floatv t z imag = set1<floatv t>(0.0f);

10

11 ...
12 // while−loop and end of algorithm
13 ...

Listing 5.4: NSIMD C++ advanced API Mandelbrot benchmark; initialization of z0.

The code displayed in Listing 5.4 uses the C++ advanced API of the library. The one in
Listing 5.5 uses the C++ base API. The type definition of the advanced API is similar to
Highway and allows the creation of a datatype that carries most of the information, compare
lines 1, 8, and 9. For the base API, we must choose from various vector data types and input
the datatype into every function.

1 ...
2 // c initialization and for−loops
3 ...
4

5 vf32 z real = set1(0.0f, f32());
6 vf32 z imag = set1(0.0f, f32());
7

8 ...
9 // while−loop and end of algorithm

10 ...

Listing 5.5: NSIMD C++ base API Mandelbrot benchmark; initialization of z0.

28

5.4 Vectorized Implementations

5.4.4 Vc

The code snippet displayed in Listing 5.6 shows the iteration of z. These instructions are
equivalent to a complex multiplication and a subsequent addition. By relying on Vc’s feature
to use operators such as + and - on vectors, this code is almost identical to lines 26 to 31 in
the scalar C++ implementation in Listing 5.1, with the only di↵erence being the data types.

1 ...
2 // while−loop and initializations
3 ...
4

5 float v z real squared = z real * z real;
6 float v z imag squared = z imag * z imag;
7 float v temp = z real * z imag;
8

9 z real = (z real squared − z imag squared) + c real;
10 z imag = temp + temp + c imag;
11

12 ...
13 // breakout conditions and store routine
14 ...

Listing 5.6: Vc Mandelbrot benchmark; iteration of fc(zn).

5.4.5 Highway

In the Highway implementation (see Listing 5.7), we will look at the breakout condition of
the while-loop (comparable to lines 33 to 46 in Listing 5.1). As discussed before, there are
two conditions under which we store the results and break out of the while loop. The first
is the condition that we have reached the maximum number of iterations set. The second
and more challenging one is checking if the squared norm of z is greater than 4. Because
we operate on vectors, the breakout condition changes slightly from the scalar version. The
while-loop will only stop when all lanes of the vector unit report a squared norm greater
than 4 or the maximum number of iterations has been reached.

1 ...
2 // while−loop
3 // f(z) iteration
4 ...
5

6 auto norm squared = Add(z real squared, z imag squared);
7 auto mask = Lt(norm squared, bailoutVec);
8

9 if (iteration >= MAX ITERATIONS | | AllFalse(d, mask)) {
10 ...
11 // create and save result
12 ...
13 }
14

15 ...
16 // end of algorithm
17 ...

Listing 5.7: Highway Mandelbrot benchmark; calculation of the squared norm and breakout
condition.

29

5 Mandelbrot Benchmark

First, we need to calculate the squared norm, which can be done simply by adding the
square of the real and the square of the imaginary part of the complex number z using the
function Add, as shown in line 6. The second step requires the creation of a mask. Masks are
also vectors and consist of the same number of lanes as their corresponding vector, but they
usually use a di↵erent kind of register on the hardware [Int22a]. Each lane of a mask can
only have two possible values, 0 or 1, which makes masks comparable to a vector filled with
booleans. The value 1 indicates that the corresponding vector lane satisfies a condition and
0 when it does not. In line 7, we initialize the mask with the condition that the squared norm
is less than the bailout value of 4, using the function Lt. The following if-condition checks
whether the maximum number of iterations has been exceeded or the mask only contains
the false value, using the function AllFalse. If one of the conditions is true, we create a
result vector, save it in the image array, and break out of the while loop.

5.4.6 Libsimdpp

The extracted code in Listing 5.8 for the Libsimdpp library displays the same part of the
benchmark as the discussed Highway code in Section 5.4.5. However, due to the less extensive
number of functions available in this library, a combination of operations must be used to
achieve the same result.

1 ...
2 // while−loop
3 // f(z) iteration
4 ...
5

6 float32<N> norm squared = add(z real squared, z imag squared);
7 mask float32<N> mask = cmp lt(norm squared, bailoutVec);
8 float32<N> result = blend(oneVec, zeroVec, mask);
9

10 if (!test bits any(result) | | iteration >= MAX ITERATIONS) {
11 store(image + i + j*width, result);
12 break;
13 }
14 ...
15 // end of algorithm
16 ...

Listing 5.8: Libsimdpp Mandelbrot benchmark; calculation of the squared norm and
breakout condition.

The calculation of the squared norm with the Libsimdpp function add and the resulting
mask, calculated with cmp lt, is similar to the Highway implementation in Section 5.4.5.
However, unlike Highway, Libsimdpp does not o↵er an AllFalse function to evaluate a
mask [Lib22b]. Though, it does o↵er the function test bits any, which returns false

if no bits are set and true if any bits are set. By negating the result of this function, it
performs like AllFalse, except that test bits any does not accept a mask type as its input
[Lib22b, Goo22e]. Thus, we need to create a vector from the mask. Due to the lack of a type
conversion function from mask to vector, we must use the blend function, which combines
two vectors according to the provided mask [Lib22b]. By blending two vectors, of which one
is 0 on all lanes, and the other contains the value 1 across all lanes, we receive an equivalent
vector to our mask, compare line 8 of the code snippet. The created vector is also our result
if it satisfies the breakout conditions.

30

5.4 Vectorized Implementations

This snippet shows nicely how a missing library function can sometimes lead to more
complex code and the necessity for more instructions to be performed, thus hurting the
performance. For example, the blend function in line 8, which we did not need in the
Highway version, must be executed every iteration of the while loop, impacting performance
negatively compared to the Highway implementation in Section 5.4.5.

5.4.7 SIMD Everywhere

As discussed in Section 4.4.5, the SIMD Everywhere library di↵ers from most other SIMD
libraries. Because it can run code written with, for example, AVX2 compiler intrinsics on a
machine that does not natively support the extension [SE23].

As a result, the SIMD Everywhere implementation is identical to the code of the AVX2
version from Section 5.4.1, except for including the definition SIMDE ENABLE NATIVE ALIASES

and including the simde/x86/avx2.h header instead of immintrin.h. Without the defini-
tion, we would have had to prefix every AVX2 type and function with simde , altering the
AVX2 implementation [SE23].

31

6 Case Study Vectorization of Epistasis
Detection Algorithm with Highway

In this chapter, we conduct a case study using Google’s Highway library to vectorize an
algorithm for epistasis detection. The algorithm was developed by Marques et al. at the
Instituto Superior Técnico, Universidade de Lisboa, Portugal [MCSJ+22].

Marques et al. benchmarked and optimized the algorithm for CPUs and GPUs. On the
CPU side, they tested an AVX2, and two AVX512 implementations [MCSJ+22]. For the case
study, we will use Google’s Highway SIMD library to create two vectorized implementations
and evaluate the performance when targeting AVX2, AVX512, and SVE instructions. We
will also explore how Highway manages di↵erent AVX512 versions and population count
capabilities.

6.1 Problem Introduction

The epistasis detection algorithm can identify gene combinations in the sample data of
patients linked to an increased risk of developing certain diseases. Helping healthcare services
diagnose them early and provide personalized treatments to prevent or reduce the risk of
the disease developing [MCSJ+22].

The process of epistasis describes the interaction of Single-Nucleotide Polymorphisms
(SNPs) causing the onset of diseases such as Crohn’s. For some diseases, the interaction
of two SNPs (second-order epistasis) is enough to cause and identify them. Identifying
others can, however, require the consideration of higher-order epistasis. Therefore, it is nec-
essary to evaluate all possible genetic combinations in a data set [MCSJ+22]. The number
of gene interactions to examine grows exponentially with the number of gene interactions.
As a result, the epistasis detection algorithm, especially when considering higher interaction
orders, becomes highly computationally demanding [MCSJ+22].

6.2 Pseudocode Implementation

Marques et al.’s paper [MCSJ+22] describes the epistasis detection algorithm in great detail.
Therefore, we will only briefly touch on the most critical aspects of the vectorization of the
algorithm. In addition, a pseudocode implementation is displayed in Algorithm 2 as well as
a visualization in Figure 6.1, which presents the data sets and main steps of the algorithm.

The vectorization process is relatively straightforward. As seen in Algorithm 2, lines 8
to 13, LOAD operations, which are an essential part of all examined SIMD libraries, are
used to retrieve the SNP data. The NOR operations in lines 14 to 16 allow for a memory
optimization because every SNP consists of three values (compare Figure 6.1) of which the
third can be inferred from the first two by using a NOR operation. We can create the
NOR operations by combining the Or and Xor Highway functions, making them relatively

33

6 Case Study Vectorization of Epistasis Detection Algorithm with Highway

trivial to vectorize. After the NOR operations, only two other operations are required to
fill the frequency table, an AND operation, and a POPCNT (Population Count) operation
(compare Figure 6.1). These two instructions evaluate the gene interactions for all the
possible genotype combinations. Bitwise AND operations are an essential function of all
SIMD libraries and, therefore, trivial to vectorize. The real challenge is the vectorization of
the POPCNT operation in line 19 of the algorithm.

Algorithm 2 Epistasis detection on each CPU core, as seen in Ref. [MCSJ+22]

1: procedure Epistasis Detection(D0|1)
2: for i0, i1, i2 1 to M/BS do

3: ft0|1 0
4: for p0 1 to N0|1/BP do

5: for ii0, ii1, ii2 1 to BS do

6: if ii2 > ii1 > ii0 then

7: for p 1 to BP do

8: X0|1(0) LOAD(D0|1[i0, ii0, p0, p, 0])
9: X0|1(1) LOAD(D0|1[i0, ii0, p0, p, 1])

10: Y0|1(0) LOAD(D0|1[i1, ii1, p0, p, 0])
11: Y0|1(1) LOAD(D0|1[i1, ii1, p0, p, 1])
12: Z0|1(0) LOAD(D0|1[i2, ii2, p0, p, 0])
13: Z0|1(1) LOAD(D0|1[i2, ii2, p0, p, 1])
14: X0|1(2) NOR(X0|1(0), X0|1(1))
15: Y0|1(2) NOR(Y0|1(0), Y0|1(1))
16: Z0|1(2) NOR(Z0|1(0), Z0|1(1))
17: for gX , gY , gZ 0 to 2 do

18: ymm0|1(gX , gY , gZ) AND(X0|1(gX), Y0|1(gY), Z0|1(gZ))
19: ft0|1(gX , gY , gZ) ft0|1(gX , gY , gZ)

+ POPCNT(ymm0|1(gX , gY , gZ))
20: end for

21: end for

22: end if

23: end for

24: end for

25: return get score(ft0|1)
26: end for

27: end procedure

Population count operations count the number of bits in an integer with the value 1. This
function is not always called population count. Sometimes it is called Hamming Weight or
the number of set bits. Population count functions have di↵erent implementations; some are
hardware-based, others algorithmic, i.e., a sequence of instructions. Choosing the correct
implementation depends on the use case and the available hardware. Thus, it is of partic-
ular importance when vectorizing portable code. Therefore, we will discuss some possible
implementations in the following section.

34

6.3 Di↵erent Population Count Approaches

Figure 6.1: Binary representation of the SNP data sets, and the calculation of the frequency
table. Visualization from Ref. [MCSJ+22].

6.3 Di↵erent Population Count Approaches

There are multiple ways of obtaining a population count on an integer. Some rely on special
hardware instructions others use highly optimized algorithms to gather the count.

Many CPUs support hardware instructions, allowing the execution of highly e�cient pop-
ulation counts. There are multiple ways of targeting these instructions with di↵erent lev-
els of portability. One solution is using a function built into the compiler. For example,
GCC and Clang support using builtin popcountl on 64-bit unsigned integers to obtain
a population count. This built-in function will target hardware instructions if they exist
[GCC23a, Cla23]. Otherwise, it will rely on a highly optimized algorithm to perform the
count, which is part of the libgcc library and named popcountdi2 when using GCC, see
Ref. [GCC23d]. However, builtin popcountl is a scalar function and can not operate on
vectors. Furthermore, few CPUs o↵er an intrinsic function for vector population counts. For
example, Intel Corporation’s Ice Lake-SP CPUs support a 512-bit vector population count,
but CPUs using the Skylake-SP micro-architecture do not [Int22a].

As a result, there are multiple ways to perform a population count on a vector. The
first and most e�cient way is to use a compiler intrinsics function like the AVX512 function
mm512 popcnt epi32 available on Ice Lake-SP CPUs. Another approach is implementing
a vector algorithm consisting of a combination of compiler intrinsics functions to perform a
population count. The third possibility only makes sense in very few cases; here, we extract
each vector lane and perform a population count on the scalar values separately. Unfortu-
nately, this approach will make that portion of the code scalar and present a considerable
bottleneck.

6.3.1 Pseudocode Vector Population Count with Reduction

The epistasis detection algorithm requires a population count across a vector. Afterward, a
horizontal addition sums up all lanes of the vector to a scalar result to save it in the frequency
table (see Figure 6.1). A basic pseudocode implementation can be seen in Algorithm 3. The
algorithm begins with a vector population count in line 2 and is followed up by an add

35

6 Case Study Vectorization of Epistasis Detection Algorithm with Highway

reduction, which creates a sum across the lanes. The result of this function is added to a
scalar accumulator, which is subsequently used to fill the frequency table (compare Figure
6.1).

Algorithm 3 Vector population count followed by horizontal addition

1: procedure popcntReduce(vec input)
2: vec popcnt VEC POPCNT(vec input)
3: result REDUCE ADD(vec popcnt)
4: return result
5: end procedure

Horizontal additions or add-reductions, like the REDUCE ADD function in line 3, break
with the parallel nature of SIMD operations because they require a sequence of instructions
with a narrowing number of vector lanes to reduce a vector of integers to a single scalar value.
As a result, it is typically recommended to avoid using horizontal additions in performance-
critical sections [Int22a]. Therefore, it would be better for the performance if we used vector
accumulators instead of scalar accumulators to accumulate the result of this function, so
that we must only perform a single reduction for each accumulator right before filling the
frequency table.

6.3.2 AVX2 Extract Population Count

AVX2 does not include a hardware vector population count instruction, though CPUs sup-
porting AVX2 do support a scalar population count instruction. Therefore, extracting each
lane and performing the scalar population count on them can be beneficial when a reduction
would be necessary, regardless. This approach can be seen in Listing 6.1 and relies on a
scalar accumulator like Algorithm 3. However, this solution is only viable when a scalar
population count hardware instruction exists. Otherwise, an algorithmic vector population
count should be used because reducing a vector to a scalar value by extracting each lane is
ine�cient and only viable due to the strong performance of the hardware population count.

This exact implementation was used by Marques et al. in the AVX2 implementation of
the epistasis detection algorithm [MCSJ+22].

1 uint32 t ExtractPopcnt(m256i vec input){
2 uint64 t t = 0;
3

4 // extract each lane and perform scalar hardware population count
5 t += builtin popcountl(mm256 extract epi64(vec input, 0));
6 t += builtin popcountl(mm256 extract epi64(vec input, 1));
7 t += builtin popcountl(mm256 extract epi64(vec input, 2));
8 t += builtin popcountl(mm256 extract epi64(vec input, 3));
9

10 return (uint32 t) t;
11 }

Listing 6.1: AVX2 ExtractPopcnt function. Extract each lane and perform scalar hardware
population count on them.

36

6.3 Di↵erent Population Count Approaches

6.3.3 Highway Extract Population Count

The implementation displayed in Listing 6.2 is the Highway equivalent to the AVX2 im-
plementation in Listing 6.1, which was used by Marques et al. [MCSJ+22]. While also
representing the equivalent to the AVX512 implementation used on Intel Skylake-SP CPUs
by Marques et al. [MCSJ+22]. However, a few adjustments were made to ensure portability
between extensions and functionality.

Since the order of bits is irrelevant to the result of a population count, it becomes possible
to append the bits of multiple integers and perform a single population count on the new
integer. For example, performing a population count separately on two 32-bit integers and
adding the result together is equivalent to appending the bits of the two 32-bit integers and
turning them into one 64-bit integer on which we perform a population count. The single
64-bit population count is more e�cient than two separate 32-bit counts. Therefore, we
want to be able to extract 64-bit integers from vec input. However, unlike AVX2 intrinsics,
Highway is type-safe. Thus, we cannot simply extract 64-bit unsigned integers from a 32-
bit unsigned integer vector, like we have done in Listing 6.1. Therefore, we must first cast
vec input to an unsigned 64-bit integer vector, vec cast, as seen in line 4.

The second adjustment was the inclusion of a for-loop in lines 7 to 9. Due to the unknown
number of lanes, we require a for-loop to extract the lanes of the current target dynamically.
In comparison, for the AVX implementation in Listing 6.1, we knew that the 256-bit vector
had four lanes of 64-bit unsigned integers.

1 HWY ATTR uint32 t ExtractPopcnt(V vec input) {
2 // cast uint32 t vector to uint64 t vector
3 const ScalableTag<uint64 t> d;
4 auto vec cast = BitCast(d, vec input);
5

6 uint64 t t = 0;
7 for(int i = 0; i < Lanes(d); i++) {
8 t += builtin popcountl(ExtractLane(vec cast, i));
9 }

10

11 return (uint32 t) t;
12 }

Listing 6.2: Highway ExtractPopcnt function. Extract each lane and perform scalar
hardware population count on them.

6.3.4 AVX512 Population Count Accumulate

This implementation follows the same principles as Algorithm 3, but with a slight tweak
to optimize the performance. The first important fact about this implementation is that it
requires an AVX512 version supporting the vpopcntd hardware instruction, which enables a
hardware-based vector population count. This instruction is supported by Intel’s Ice Lake-SP
processors, and therefore only a subset of AVX512 capable machines have this functionality
[Int22a, MCSJ+22]. The instruction can be targeted using the AVX512 intrinsic function
mm512 popcnt epi32, which can be seen in line 2.
Unlike the implementation presented in Algorithm 3, we do not immediately follow up

the vector population count with a reduction. We do this since we want to avoid using
reductions in performance-critical sections due to their poor performance, as mentioned in
Section 6.3.1. Therefore, we rely on vector accumulators instead of a scalar accumulator,

37

6 Case Study Vectorization of Epistasis Detection Algorithm with Highway

as required with the ExtractPopcnt functions from Section 6.3.2 and Section 6.3.3, which
needed a reduction for every entry in the frequency table for every iteration. By using vector
accumulators, we only have to perform the reduction once on every accumulator for the cor-
responding frequency table entries, using the AVX512 function mm512 reduce add epi32.
This approach ensures the best performance when a hardware vector population count is
available.

1 m512i PopcntAccumulate(m512i vec acc, m512i vec input) {
2 vec popcnt = mm512 popcnt epi32(vec input);
3 return mm512 add epi32(vec acc, vec popcnt);
4 }

Listing 6.3: AVX512 PopcntAccumulate function. Hardware vector population count with
vector accumulator.

6.3.5 Highway Population Count Accumulate

The Google Highway implementation in Listing 6.4 is the Highway equivalent to the AVX512
implementation in Listing 6.3. The population count function in line 2, PopulationCount,
behaves di↵erently, depending on the target it is compiled for. As mentioned before, AVX2,
for example, does not support a hardware-based vector population count. In this case,
PopulationCount compiles to an algorithmic implementation of a population count. On
other CPUs, for example, ARM CPUs that support SVE or Ice Lake-SP CPUs, the function
will compile to the machine instruction for the vector population count, thus, providing
excellent performance.

1 HWY ATTR V PopcntAccumulate(V vec acc, V vec input) {
2 V vec popcnt = PopulationCount(vec input);
3 return Add(vec acc, vec popcnt);
4 }

Listing 6.4: Highway PopcntAccumulate function. Vector population count with vector
accumulator.

38

7 Evaluation

After having gone over the various SIMD libraries, we will examine the results of the Man-
delbrot benchmark, discussed in Chapter 5, and the epistasis detection algorithm, discussed
in Chapter 6.

7.1 Experimental Setup

Before reviewing the results of the Mandelbrot benchmark in Section 7.2 and the epistasis
detection case study in Section 7.3, we will go over the experimental setup we are using in
order to ensure the result’s reproducibility.

7.1.1 Hardware

All measurements were conducted on the Bavarian Energy, Architecture and Software Testbed
(BEAST) of the Leibniz Supercomputing Center (LRZ). On this system, we have had ac-
cess to some of the newest hardware available in the high-performance CPU market. We
conducted the benchmarks using the hardware and SIMD extension sets specified in Table
7.1.

System CPU Vector Size (Extension)

(ICE)
Intel® Xeon® Platinum 8360Y 256-bit (AVX2)

(Ice Lake-SP) 512-bit (AVX512)

(AFX)
Fujitsu A64FX

512-bit (SVE)
(Armv8.2-A + SVE)

(THX)
Cavium Thunder-X2

128-bit (NEON)
(Armv8.1-A + SIMD)

Table 7.1: List of CPUs and SIMD extensions used on the LRZ BEAST platform.

7.1.2 SIMD Library Versions

We always aimed to use the latest version of the libraries when running the benchmarks.
For Highway, we used version 1.0.4, which was used for all Mandelbrot benchmarks and
the epistasis detection algorithm. We used version 1.4.3 of the Vc library. Libsimdpp and
NSIMD were evaluated using version 2.1 and 3.0.1, respectively. Pure SIMD and SIMD
Everywhere do not have o�cial release versions, so we used the most recent build available
on their GitHub pages at the time [PS21, SE23]. For Pure SIMD, that build was from
October 2021, and for SIMD Everywhere, it was from February 2023.

39

7 Evaluation

7.1.3 Measurement Method

We used Version 1.7.1 of Google’s Benchmark library to take precise measurements [Goo23].
For the Mandelbrot benchmark, multiple hundred repetitions were performed. However, the
epistasis detection algorithm was only repeated ten times for every setting due to the high
resource demands of the algorithm. The library then calculates the mean, median, standard
deviation, coe�cient of variation, max duration, and min duration from the gathered data.
All measurements and benchmarks were done with frequency scaling turned o↵. The Bench-
mark library currently does not support processor a�nity (thread pinning) [Goo21]. Thus,
there is no guarantee that a thread will always be executed on the same core.

Throughout the following sections, we will often mention a maximum theoretical speed-up
for the algorithms. A theoretical speed-up in SIMD programming is typically the number of
lanes and represents the maximum speed-up that can be expected by using vector instruc-
tions in comparison to scalar instructions. However, it is essential to note that a theoretical
speed-up is a theoretical concept that can not always be reached or may even be exceeded
due to factors such as the latency and throughput of the scalar instructions compared to the
vector instructions and other factors such as memory bandwidth.

7.2 Mandelbrot Benchmark Evaluation

In this section, we will evaluate the Mandelbrot benchmark introduced in Chapter 5. The
benchmark will be conducted on the systems and the corresponding extensions displayed
in Table 7.1. We will examine all the libraries presented in Chapter 4 to evaluate their
performance on the di↵erent CPU architectures and SIMD extensions.

System Target Compiler Optimization Flags

(ICE), (AFX), (THX) SCALAR -O2 -fno-tree-vectorize -ffast-math

(ICE) AVX2
-O2 -fopenmp -ftree-vectorize -ffast-math

-march=haswell -mtune=haswell -maes

(ICE) AVX512
-O2 -fopenmp -ftree-vectorize -ffast-math

-march=icelake-client -mavx512vpopcntdq

(AFX) SVE
-O2 -fopenmp -ftree-vectorize -ffast-math

-march=armv8.2-a+sve -mcpu=a64fx+sve

(THX) NEON
-O2 -fopenmp -ftree-vectorize -ffast-math

-march=armv8-a+simd -mtune=thunderx2t99

Table 7.2: Compiler optimization flags used on each system and target for the Mandelbrot
benchmark.

Due to the hardware-close nature of SIMD programming, using the correct optimizations
is highly important because the compiler needs to know the type of CPU it generates instruc-
tions for. Therefore, we had to use di↵erent optimization flags on each system. Table 7.2
presents an overview of the set flags. The -march=<CPU> flag is often required by libraries
to select the best SIMD extension the CPU supports. Some libraries also require addi-
tional confirmation like Libsimdpp, which needs, for example, -DSIMDPP ARCH X86 AVX512F

40

7.2 Mandelbrot Benchmark Evaluation

-mavx512f -DSIMDPP ARCH X86 FMA3 -mfma flags to compile to AVX512 with FMA units
enabled.

We will evaluate the libraries’ performance by comparing the speed-up of the execution
times going from a scalar implementation to a library implementation while also comparing
them to a compiler intrinsics implementation. Through this, we will see how close the
library comes to theoretical maximum speed-up and how it compares to a dedicated compiler
intrinsics implementation.

7.2.1 Results AVX2

First, we will look at the performance of the Mandelbrot benchmark on the ICE system. We
will evaluate the libraries’ performance for this system when targeting AVX2 and AVX512.
We used g++ version 11.2.0 to compile all libraries and benchmarks on the ICE system.

AVX2 is one of the most common SIMD extension sets and can be found in many consumer-
level x86 CPUs nowadays. As a result, all examined libraries support this extension set
(compare Table 4.1).

In Figure 7.1, we have visualized the results of the benchmark targeting AVX2. The y-axis
displays the factor by which the implementation was faster than a scalar implementation. On
the x-axis, the di↵erent implementations are presented. We conducted three benchmarks for
each implementation, which di↵er in the number of maximum while-loop iterations (compare
Algorithm 1 line 18). The maximum while-loop iteration settings were 10, 100, and 1000.

1.0

1.5 1.5

3.3

6.7

4.5

1.3

8.9 8.9

5.9 5.9

1.0

1.4 1.4

6.7

7.6

7.1

2.2

8.0 8.0

7.4 7.4

1.0

1.4 1.4

7.8 7.9 7.8

2.4

8.0 8.0 7.9 7.9

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

Sc
al
ar

A
ut
o
V
ec
to
riz

at
io
n

O
pe

nM
P

H
ig
hw

ay V
c

Li
bs
im

dp
p

Pu
re
 S
IM

D

N
SI
M
D
 A

dv
an

ce
d

N
SI
M
D
 B

as
e

SI
M
D
 E

ve
ry
w
he

re

A
V
X
2
C
om

pi
ler

 I
nt
rin

sic
s

S
p
ee
d
-U
p

Maximum of 10 While-Loop Iterations Maximum of 100 While-Loop Iterations Maximum of 1000 While-Loop Iterations

Figure 7.1: Mandelbrot benchmark targeting AVX2 compiled with g++ 11.2.0 and run on
the ICE system.

41

7 Evaluation

Implicit Vectorization

First, we will examine the performance of implicit vectorization approaches (compare Fig-
ure 7.1). The auto-vectorization and the OpenMP approach behave very similarly. Both
implementations achieve a maximum speed-up of 1.5x when running with a maximum of
10 while-loop iterations. Notably, the performance decreases slightly with an increase in
iterations, which is the opposite of almost all other implementations. Overall, achieving a
speed-up of only 1.5x falls short of expectations when almost all explicit implementations
reach a speed-up of close to a factor of 8x. However, this result is consistent with other
studies [PJ15]. It is also noteworthy that the additional information provided by pragmas
in the OpenMP implementation did not result in a relevant performance increase for this
implementation.

Implementation Mean [ms] Median [ms] SD [ns] CV [%] Max [ms] Min [ms]

Scalar 111.63 111.62 36262 0.03 111.73 111.60
Auto Vectorization 78.59 78.59 6163 0.01 78.60 78.58

OpenMP 78.54 78.54 10536 0.01 78.56 78.53
Highway 16.64 16.63 3010 0.02 16.64 16.63

Vc 14.77 14.77 1605 0.01 14.78 14.77
Libsimdpp 15.83 15.83 1540 0.01 15.83 15.83
Pure SIMD 50.00 50.01 4894 0.01 50.02 50.00

NSIMD Advanced 14.04 14.04 1460 0.01 14.04 14.04
NSIMD Base 14.04 14.04 1810 0.01 14.04 14.04

SIMD Everywhere 15.08 15.08 4146 0.03 15.10 15.08
AVX2 Intrinsics 15.15 15.15 1940 0.01 15.16 15.15

Table 7.3: Detailed data of the AVX2 Mandelbrot benchmark with a maximum of 100 while-
loop iterations, compiled with g++ 11.2.0 and run on the ICE system, visualiza-
tion in Figure 7.1. SD is an abbreviation for Standard Deviation, CV for Coe�-
cient of Variation.

Explicit Vectorization

All explicit libraries achieve a speed-up comparable to or better than a compiler intrinsics
implementation, except Pure SIMD, which relies on auto-vectorization.

All libraries compiling to intrinsics perform nearly the same with 100 and 1000 While-Loop
iterations. For 1000 iterations, the speed-up is between 7.8x - 8.0x, reaching the maximum
theoretical speed-up, which is very impressive. When running 100 iterations, performance
drops slightly in almost all libraries. However, the drop in the speed-up is most significant in
Google’s Highway library, which only achieves a speed-up of 6.7x. This drop in performance
is even more pronounced when looking at the results when running with a maximum of 10
while-loop iterations. Here Highway delivers a speed-up of 3.3x, while the other libraries
provide a speed-up of 4.5x - 8.9x. The speed-up of 8.9x observed with the NSIMD library
is extraordinary because 8.0x is the theoretical maximum. Therefore, this library and some
others must use code patterns that allow the compiler to perform additional optimizations
to reach and surpass the speed-up achieved with AVX2 compiler intrinsics.

Overall, the NSIMD library and its two di↵erent APIs performed the best, providing a

42

7.2 Mandelbrot Benchmark Evaluation

speed-up of around 8.0x in all benchmarks.
We used the data displayed in Table 7.3 for the visualization in Figure 7.1. From the table,

it becomes clear that the benchmarks were very consistent with little deviation, because the
coe�cient of variation stays between 0.01% and 0.03% for all implementations.

7.2.2 Results AVX512

For the evaluation of the libraries targeting AVX512, we also used the ICE system and g++
11.2.0. However, the Vc library does not support AVX512, making it the only library we
have examined that does not support this extension (see Table 4.1).

One of the critical di↵erences between AVX2 and AVX512 is the larger vector register size
of 512-bit compared to AVX2’s 256-bit vector registers. As a result, the maximum theoretical
speed-up shifts from 8x to 16x because AVX512 can calculate 16 pixels simultaneously.

Figure 7.2 follows the same layout as the visualization of the results of the Mandelbrot
benchmarks targeting AVX2 in Figure 7.1.

1.0
1.5 1.5

6.4

10.6

1.4

13.9

15.5

7.1

11.5

1.0
1.4 1.4

12.5

13.5

2.5

14.6 14.6

7.7

14.0

1.0
1.4 1.4

14.5 14.5

2.7

15.2
14.9

8.0

14.8

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

Sc
al
ar

A
ut
o
V
ec
to
riz

at
io
n

O
pe

nM
P

H
ig
hw

ay

Li
bs
im

dp
p

Pu
re
 S
IM

D

N
SI
M
D
 A

dv
an

ce
d

N
SI
M
D
 B

as
e

SI
M
D
 E

ve
ry
w
he

re

A
V
X
51

2
C
om

pi
ler

 I
nt
rin

sic
s

S
p
ee
d
-U
p

Maximum of 10 While-Loop Iterations Maximum of 100 While-Loop Iterations Maximum of 1000 While-Loop Iterations

Figure 7.2: Mandelbrot benchmark targeting AVX512 compiled with g++ 11.2.0 and run on
the ICE system.

Implicit Vectorization

When examining Figure 7.2, it becomes clear that the auto-vectorization for AVX512 cannot
improve past the speed-up achieved in the AVX2 benchmark (compare Figure 7.1), and
so provides the same speed-up of only 1.4x - 1.5x. This is the case for both the auto-
vectorization version and the version aided by OpenMP.

43

7 Evaluation

Explicit Vectorization

The Pure SIMD implementation fails, just like in the AVX2 benchmark, to reach the perfor-
mance of other explicit vectorization approaches. However, Pure SIMD did perform slightly
better in the AVX512 benchmark, see Figure 7.2, with a speed-up of 2.7x at 1000 iterations
compared to 2.4x at 1000 iterations in the AVX2 Mandelbrot Benchmark (compare Figure
7.1).

Another library that falls behind the others is SIMD Everywhere because it fails to surpass
a speed-up of 8x. As mentioned in Section 5.4.7 this library relies on a slightly altered
AVX2 compiler intrinsics implementation. When inspecting the assembly code generated
when compiling the implementation to AVX512, it becomes clear that the library cannot
scale up the implementation to 16 lanes and take advantage of the larger register size.
Instead, the generated assembly code includes no significant changes compared to the AVX2
implementation. The slight increase in performance of SIMD Everywhere seen in Figure 7.2
compared to Figure 7.1 is likely primarily a result of better compiler optimization for the ICE
system when using the flags specified in Table 7.2 for AVX512 compared to AVX2. However,
it must be stated that the AVX512 support of SIMD Everywhere is still in active development
and unfinished. Therefore, the speed-up measured here might improve significantly in the
future [SE23].

All other libraries can match the speed-up observed in the compiler intrinsics implementa-
tion. Similar to the results seen in the AVX2 benchmark, the two NSIMD implementations
performed best in the AVX512 benchmark. The advanced API of NSIMD reached a speed-
up of 15.2x at 1000 iterations, and the base API achieved a speed-up of 14.9x, which is
equal to the AVX512 compiler intrinsics implementation. Libsimdpp and Highway have the
same speed-up of 14.5x at 1000 iterations. However, Highway performs slightly worse than
Libsimdpp at lower while-loop iteration counts.

Overall, the explicit libraries performed very well and generally came very close to the
theoretical maximum speed-up of 16x. These results solidify the usage of those libraries on
x86 Systems with AVX512 support.

7.2.3 Results SVE

Coming from the two x86 SIMD extensions, we will now look at the first ARM extension.
On the AFX system, we have access to the Scalable Vector Extension (SVE) set. SVE
follows a di↵erent design philosophy than all the other extensions examined in this paper
because SVE intrinsics do not define the SIMD register size in the underlying hardware.
They instead support SIMD register sizes ranging from 128-bit to 2048-bit [ARM23]. The
AFX system has SIMD registers with a maximum size of 512-bit [Fuj23]. As a result, the
maximum theoretical speed-up is 16x with 32-bit floats.

SVE is the newest among the extensions examined and less widespread than other recent
extensions, such as AVX512. Therefore, only a limited number of libraries currently support
it. NSIMD states that it supports SVE but only using the base API when compiling with
GCC. However, we have been unable to compile the base NSIMD implementation for SVE, so
we sadly have to exclude it [NSI21b]. Furthermore, the SVE support of SIMD Everywhere is
unfinished, similar to the AVX512 support. Nonetheless, we will include it in the benchmark
and analysis [SE23].

We used g++ version 11.0.0 to compile the benchmarks for SVE on the AFX system.

44

7.2 Mandelbrot Benchmark Evaluation

1.0 1.0 1.0

7.0

1.7

0.5

6.8

1.0 1.1 1.1

9.9

3.6

0.9

9.7

1.0 1.0 1.0

10.1

3.2

1.0

10.0

0.0

2.0

4.0

6.0

8.0

10.0

12.0

Scalar Auto
Vectorization

OpenMP Highway Pure SIMD SIMD
Everywhere

SVE Compiler
Intrinsics

S
p
ee
d
-U
p

Maximum of 10 While-Loop Iterations Maximum of 100 While-Loop Iterations Maximum of 1000 While-Loop Iterations

Figure 7.3: Mandelbrot benchmark targeting SVE compiled with g++ 11.0.0 and run on the
AFX system.

Implicit Vectorization

As shown in Figure 7.3, the auto-vectorization approaches fail when targeting SVE. The
pure auto-vectorization approach and the OpenMP-aided approach only provide a speed-up
of 1.1x at 100 iterations; the other two benchmarks achieve the same performance as the
scalar implementation. Due to the short existence of SVE, it may be the case that GCC
11.0.0 is not yet fully optimized for SVE because the version used was also the first GCC
version to support SVE [GCC23c]. However, Pure SIMD also relies on the auto-vectorization
feature of GCC and performs relatively well, see Figure 7.3.

Explicit Vectorization

Looking at the explicit vectorization approaches, only three libraries support SVE, excluding
NSIMD (compare Figure 7.3). First, we will examine SIMD Everywhere. Although the
library’s SVE support is in the early stages, it could compile to SVE. However, the resulting
implementation led to a slow-down of 0.5x compared to the scalar implementation when
running at 10 and 100 while-loop iterations. When running 1000 iterations, it managed
to match the scalar implementation. As mentioned when analyzing the library’s AVX512
performance, it may very well be the case that these results improve when further support
is added. However, from a compatibility standpoint, it is significant that it works.

The second library we will examine is Pure SIMD, which surprisingly had its best speed-up
when targeting SVE with a speed-up of 3.6x at 100 iterations and 3.2x at 1000 iterations.

The last library of which we are testing its SVE support is Highway. This library is the
only one that does an excellent job at matching the SVE compiler intrinsics implementation,
even surpassing the speed-up of the intrinsics version at 100 and 1000 iterations by 0.2x and
0.1x, respectively, and overall achieving a speed-up of 10.1x at 1000 iterations. It is also

45

7 Evaluation

interesting to see how SVE with 512-bit registers compares to AVX512. While targeting
AVX512, most libraries achieved a speed-up of 14.5x - 15.2x with 1000 iterations (see Figure
7.2), the SVE implementations did not come close to that, and only achieved a speed-up of
10x - 10.1x. We did not find any significant clues in the assembly code indicating the origin
of the di↵erence.

7.2.4 Results NEON

The fourth and final SIMD extension for which we will examine the libraries is another
ARM extension called NEON. Unlike SVE, NEON was not developed for high-performance
computing and only o↵ers 128-bit SIMD registers. Therefore, the theoretical maximum
speed-up on the THX system is only a factor of 4x. However, due to the older age of NEON,
a lot more libraries support it.

1.0

1.2 1.2

1.4

1.7

1.1

2.0 2.0

0.8

1.4

1.0 1.0 1.0

2.4

1.6

1.8

2.4 2.4

1.3

2.3

1.0 1.0 1.0

2.6

1.5

1.9

2.5 2.5

1.4

2.6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sc
al
ar

A
ut
o
V
ec
to
riz

at
io
n

O
pe

nM
P

H
ig
hw

ay

Li
bs
im

dp
p

Pu
re
 S
IM

D

N
SI
M
D
 A

dv
an

ce
d

N
SI
M
D
 B

as
e

SI
M
D
 E

ve
ry
w
he

re

N
EO

N
 C

om
pi
ler

 I
nt
rin

sic
s

S
p
ee
d
-U
p

Maximum of 10 While-Loop Iterations Maximum of 100 While-Loop Iterations Maximum of 1000 While-Loop Iterations

Figure 7.4: Mandelbrot benchmark targeting NEON compiled with g++ 8.3.1 and run on
the THX system.

Implicit Vectorization

Similar to SVE, little to no speed-up could be achieved through the two auto-vectorization
approaches, with both only achieving a minor speed-up of 1.2x at 10 iterations and matching
the scalar implementation for the other two benchmarks (compare Figure 7.4).

46

7.3 Case Study Epistasis Detection

Explicit Vectorization

For the results of the explicit vectorization, we will first look at SIMD Everywhere, which
performs better for NEON than for SVE and achieves a speed-up of 1.3x and 1.4x with 100
and 1000 iterations (compare Figure 7.4 and Figure 7.3). However, it does slow down to 0.8x
with 10 while loop iterations. Nevertheless, this result is solid considering that the NEON
implementation is also still under development and unfinished.

Pure SIMD also performs well with a speed-up of 1.9x at 1000 iterations, which is faster
than Libsimdpp, which only achieves 1.5x. This result is surprising because Libsimdpp
performs so well when targeting AVX2 and AVX512 (compare Figure 7.1 and Figure 7.2).
Highway and both NSIMD APIs manage to match the NEON compiler intrinsics implemen-
tation. Highway performs better than the NSIMD versions with a speed-up of 2.6x at 1000
iterations compared to 2.5x. Though, Highway performs significantly worse than NSIMD at
10 iterations, where it only achieves a speed-up of 1.4x compared to NSIMD’s 2.0x.

Overall, no implementation came close to the theoretical maximum speed-up of 4x, indicat-
ing other bottlenecks, which is consistent with other studies, see Ref. [SJD+18]. However, all
libraries brought a significant speed-up at higher iteration counts. Again, Highway matched
the intrinsics implementation perfectly. The achieved results make Highway and NSIMD a
good solution for NEON.

7.3 Case Study Epistasis Detection

In this section, we will evaluate the case study on the vectorization of the epistasis detection
algorithm, introduced in Chapter 6, using Google’s Highway library.

System Target Compiler Compiler Optimization Flags

(ICE) SCALAR g++ 11.2.0
-O2 -fopenmp -fno-tree-vectorize

-mpopcnt

(ICE) AVX2 g++ 11.2.0
-O2 -fopenmp -ftree-vectorize

-march=haswell -mtune=haswell -maes

(ICE) AVX512 g++ 11.2.0
-O2 -fopenmp -ftree-vectorize

-march=skylake-avx512

(ICE)
AVX512 -

g++ 11.2.0
-O2 -fopenmp -ftree-vectorize

vpopcntdq -march=icelake-client -mavx512vpopcntdq

(AFX) SCALAR clang++ 11.0.0 -O2 -fopenmp -fno-tree-vectorize

(AFX) SVE clang++ 11.0.0
-O2 -fopenmp -ftree-vectorize

-mcpu=a64fx+sve

Table 7.4: Compiler optimization flags for the epistasis detection algorithm used on each
system, target, and compiler.

We will benchmark the algorithm on the ICE and AFX systems and compare the speed-up
achieved using two di↵erent Highway implementations. The first is the Highway Extract-
Popcnt implementation, which uses the ExtractPopcnt function examined in Section 6.3.3.

47

7 Evaluation

The second is the Highway PopcntAccumulate implementation, which uses the PopcntAc-
cumulate function discussed in Section 6.3.5.

The epistasis detection algorithm is highly resource intensive; therefore, we have used
threads via OpenMP to parallelize the execution in addition to vectorization. For each
implementation, we benchmarked the algorithm with three settings for the number of SNPs
(2048, 4096, 8192) and 16384 samples. On the AFX system, we did not run the algorithm
with 8192 SNPs due to a slow scalar execution on the platform. However, we do not expect
a significant performance di↵erence with 8192 SNPs.

We used g++ and clang++ to compile the epistasis detection benchmarks. Unfortunately,
we could not compile the Highway SVE implementation using g++ due to an error we could
not fix. However, the error prohibiting us from compiling the SVE version of the algorithm
does not occur when compiling the SVE implementation of the Mandelbrot benchmark.
Accordingly, we only used the clang compiler for the epistasis detection benchmarks on
the AFX system. A detailed summary of the systems, targets, compilers, and compiler
optimization flags can be found in Table 7.4.

7.3.1 Results AVX2 and AVX512

We will start by examining the results of the Highway implementations when targeting
AVX2, AVX512, and AVX512vpopcntdq, with 128 threads on the ICE system.

Implementation Mean [s] Median [s] SD [ms] CV [%] Max [s] Min [s]

1. Scalar 133 133 293 0.22 133 132

2.
Compiler Intrinsics

61 62 1212 1.98 62 59ExtractPopcnt
(AVX2)

3.
Highway

64 64 32 0.05 64 64ExtractPopcnt
(AVX2)

4.
Highway

63 63 60 0.10 63 63PopcntAccumulate
(AVX2)

5.
Highway

68 68 277 0.41 68 67ExtractPopcnt
(AVX512)

6.
Highway

46 46 107 0.23 46 46PopcntAccumulate
(AVX512)

7.
Highway

16 16 70 0.45 16 16PopcntAccumulate
(AVX512vpopcntdq)

Table 7.5: Detailed data on execution times of the epistasis detection algorithm with 2048
SNPs and 16384 samples, collected on the ICE system using 128 threads.

First, we will review the implementations listed in Table 7.5. The scalar implementation

48

7.3 Case Study Epistasis Detection

in row 1 and compiler intrinsics implementation in row 2 of Table 7.5 were both provided
to us by Marques et al. [MCSJ+22]. The Highway implementations with ExtractPopcnt
in their name (see row 3 and row 5) use the population count implementation discussed in
Section 6.3.3. The Highway implementations with PopcntAccumulate in their name (see
rows 4, 6, and 7) use the population count function presented in Section 6.3.5.

1.00

2.17 2.07 2.12
1.97

2.88

8.52

1.00

2.23
2.07 2.07 1.96

2.86

8.45

1.00

2.22
2.07 2.06 1.95

2.79

8.17

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Scalar Compiler Intrinsics
ExtractPopcnt

(AVX2)

Highway
ExtractPopcnt

(AVX2)

Highway
PopcntAccumulate

(AVX2)

Highway
ExtractPopcnt

(AVX512)

Highway
PopcntAccumulate

(AVX512)

Highway
PopcntAccumulate

(AVX512vpopcntdq)

S
p
ee
d
-U
p

2048 SNPs 4096 SNPs 8192 SNPs

Figure 7.5: Epistasis detection algorithm targeting AVX2 and AVX512 compiled with g++
11.2.0 and run on the ICE system using 128 threads.

Figure 7.5 includes a visualization of the data in Table 7.5. The y-axis presents the factor
by which an implementation is faster than the scalar implementation. On the x-axis, the
di↵erent implementations are presented.

The compiler intrinsics AVX2 implementation achieves a speed-up of 2.17x with 2048
SNPs, 2.23x with 4096 SNPs, and 2.22x with 8192 SNPs. The equivalent Highway Extract-
Popcnt implementation targeting AVX2 achieves scores similar to the compiler intrinsics
implementation, with a speed-up of 2.07x at 2048, 4096, and 8192 SNPs. Accordingly, the
Highway implementation running with 4098 SNPs reaches 92.83% of the speed-up measured
for the AVX2 compiler intrinsics implementation. Therefore, Highway fulfills the design goal
not to deviate more than 10% to 20% from a dedicated intrinsics implementation for the
epistasis detection algorithm targeting AVX2. In addition, the Highway implementation us-
ing the PopcntAccumulate function from Section 6.3.5 achieves slightly better results than
the Highway ExtractPopcnt implementation with a speed-up of 2.12x at 2048 SNPs when
targeting AVX2.

From Figure 7.5, it also becomes clear that the Highway ExtractPopcnt implementation
targeting AVX512 does not provide a performance increase compared to the corresponding
AVX2 Highway version but rather a slowdown. The worse performance of the implemen-
tation when targeting AVX512 is the result of the necessity for two extract instructions to
retrieve a lane from an AVX512 ZMM register, which leads to a significant overhead. These
results are consistent with findings made by Marques et al. using an implementation similar
to this one for AVX512 [MCSJ+22].

49

7 Evaluation

The Highway implementation using the PopcntAccumulate function and targeting AVX512
did, however, achieve a speed-up of 2.88x with 2048 SNPs, 2.86x at 4096 SNPs, and 2.79x
SNPs. Therefore, this is the most e�cient implementation on CPUs that support AVX512
but do not support the vpopcntd instruction. The speed-up achieved with the algorith-
mic population count of Highway is better than the ExtractPopcnt implementation, which
Marques et al. used for AVX512 on CPUs without support for the vpopcntd instruction
[MCSJ+22]. In other words, we obtained a higher speed-up for AVX512 than Marques et
al. due to the algorithmic population count Highway o↵ers, which Marques et al. did not
implement with compiler intrinsics.

All speed-ups achieved are minor compared to those achieved when utilizing the vpopcntd
instruction supported on Ice Lake-SP CPUs. The Highway PopcntAccumulate implementa-
tion targeting AVX512vpopcntdq achieves a speed-up of 8.52x at 2048 SNPs, 8.45x at 4096
SNPs, and 8.17x at 8192 SNPs. These results are consistent with the speed-ups recorded by
Marques et al. when using the vpopcntd instruction [MCSJ+22].

Therefore, it makes sense to rely on the Highway implementation using the PopcntAc-
cumulate function from Section 6.3.5 over the ExtractPopcnt function from Section 6.3.3
when targeting AVX512. For AVX2, it is not as straightforward because the two Highway
implementations targeting AVX2 achieve almost the same speed-up, with the ExtractPopcnt
being slightly better at higher SNP counts and the PopcntAccumulate implementation bet-
ter at 2048 SNPs. However, the di↵erence is so marginal that we believe that it is reasonable
to use the Highway PopcntAccumulate implementation for all targets.

7.3.2 Results SVE

The third SIMD extension which we want to test using the Highway implementations of the
epistasis detection algorithm is SVE. We executed the epistasis detection algorithm with 48
threads on the AFX system.

Implementation Mean [s] Median [s] SD [s] CV [%] Max [s] Min [s]

Scalar 2873 2877 18 0.63 2891 2826
Highway ExtractPopcnt (SVE) 1999 2008 19 0.94 2021 1977

Highway PopcntAccumulate (SVE) 96 95 1.90 1.98 99 93

Table 7.6: Detailed data on execution times of the epistasis detection algorithm with 2048
SNPs and 16384 samples, collected on the AFX system using 48 threads, visual-
ization included in Figure 7.6. SD is an abbreviation for Standard Deviation, CV
for Coe�cient of Variation.

The scalar implementation listed in Table 7.6 corresponds to the scalar implementation
we received from Marques et al. [MCSJ+22]. However, Marques et al. did not test their
algorithm on a CPU supporting SVE; therefore, we do not have an SVE compiler intrinsics
reference implementation as we did for AVX2. The two Highway implementations are iden-
tical to the ones used in the AVX2 and AVX512 benchmarks of the algorithm. To recap,
the Highway ExtractPopcnt implementation uses the ExtractPopcnt function, which we dis-
cussed in Section 6.3.3, and the Highway PopcntAccumulate implementation relies on the
PopcntAccumulate function, which we examined in Section 6.3.5.

When comparing the data presented in Table 7.6 to the data from Table 7.5, it becomes

50

7.3 Case Study Epistasis Detection

1.00 1.44

30.03

1.00 1.43

29.97

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

Scalar Highway ExtractPopcnt
(SVE)

Highway
PopcntAccumulate

(SVE)

S
p
ee
d
-U
p

2048 SNPs 4096 SNPs

Figure 7.6: Epistasis detection algorithm targeting SVE compiled with clang++ 11.0.0 and
run on the AFX system using 48 threads.

clear that the benchmarks took substantially longer on the AFX system compared to the
ICE system. This finding is partly caused by the fact that the benchmarks on the ICE
system used 128 threads instead of 48 and that the ICE CPU cores have a higher frequency.
When considering these di↵erences and running the benchmark on the ICE system with 48
threads with an average frequency of 3.384 GHz and the AFX system with 48 threads and a
fixed frequency of 1.8 GHz, one could expect the ICE system to finish the calculation roughly
twice as fast. However, this is not the case. Benchmarking the scalar execution has shown
that the ICE system finishes 18.32x faster when running the algorithm with 48 threads, 2048
SNPs, and 16384 Samples. We will discuss a possible explanation for this later.

The visualization in Figure 7.6 follows the same structure as Figure 7.5. The first imple-
mentation we will examine is the Highway ExtractPopcnt, which only achieved a speed-up
of 1.44x at 2048 SNPs. Testing has shown that extracting lanes from SVE registers is less
e�cient than extracting from AVX registers. Storing the entire vector instead and then ap-
plying the population counts on the scalar values could slightly improve the 1.44x speed-up.
However, this approach can, in general, not be recommended because, as discussed in Section
6.3.5, Highway supports the hardware vector population count found on all SVE-supporting
CPUs and does not rely on the algorithmic approach, therefore, enabling excellent per-
formance when using the Highway PopulationCount function. As a result, the Highway
PopcntAccumulate implementation should always be used when targeting SVE.

The AFX system has 512-bit SIMD registers, and we are using uint32 t integers, so we are
working with 16 lanes, which leads to a theoretical maximum speed-up of 16x. Nonetheless,
the Highway PopcntAccumulate implementation achieved a very impressive speed-up of
30.03x at 2048 SNPs and 29.97x at 4096 SNPs. This significant additional performance

51

7 Evaluation

compared to the scalar implementation may be related to a slow scalar population count on
the AFX system, which may also cause the scalar implementation’s poor performance on
the AFX system compared to the ICE system. This theory is further supported by the fact
that the Highway version using the ExtractPopcnt function only achieves a minor speed-up,
and the Highway PopcntAccumulate implementation, which only changes a single function,
has a significant speed-up. However, we could not confirm this theory because the A64FX
Microarchitecture Manual [Fuj22] does neither state the throughput of the scalar population
count hardware instruction nor that of the vector population count instruction.

52

8 Conclusion

Throughout this thesis, we have examined di↵erent approaches to SIMD programming and
determined that libraries can be an essential tool to streamline the development of SIMD
applications. We examined each of the six libraries regarding the supported extensions,
functions, ease of use, documentation, and performance compared to a compiler intrinsics
implementation. The results of these factors are summarized in Table 8.1. A 3 indicates that
we determined the library has fulfilled the expectations in the category, and an 7 indicates
the opposite.

Library
Supported

Functions Documentation Ease Of Use
Performance Per Extension

Extensions AVX2 AVX512 NEON SVE

Highway 3 3 3 7 3 3 3 3
Vc 7 3 3 3 3 7 7 7

Libsimdpp 3 7 3 3 3 3 7 7
NSIMD 3 3 7 3 3 3 3 7

SIMD Everywhere 3 3 3 3 3 7 7 7
Pure SIMD 3 7 3 3 7 7 7 7

Table 8.1: Summary of all the examined factors and findings for each library. The 3 symbol
indicates that the library fulfills the expectations in the category; on the other
hand, an 7 symbol indicates the opposite.

The first library we will summarize the results of is Vc, which performed excellently when
targeting AVX2. However, due to the relatively old age of the library and the end of active
development, it does not support most of the newer common SIMD extensions. As a result,
of this significant drawback, we can generally not recommend this library.

For the subsequent library, Libsimdpp, a distinction between users must be made. Lib-
simdpp is a versatile and easy-to-use library, perfect for simple and small applications, but
users requiring more advanced functionality will not find it here. Additionally, the library’s
NEON performance could have been better, and it does not support SVE. Thus, it will not
be the best choice when targeting ARM SIMD extensions. Accordingly, while the library
can generally be recommended, it will be less suitable for large projects demanding complex
SIMD functions.

The concept of SIMD Everywhere di↵ers from all the other libraries we have examined
because it aims to map all compiler intrinsics between extension sets. However, through
our evaluation, we have found that although the code compiles to other extension sets, it
falls substantially short of the extension’s optimal performance. Therefore, we can only
recommend this library under the circumstance that code using intrinsics must be run on a
platform that does not support the extension set natively and where performance is of lesser
concern. In summary, SIMD Everywhere can be a valuable tool to execute existing SIMD
code on other platforms, but it will not achieve optimal performance.

Another library we cannot recommend is Pure SIMD. Overall, the concept of this library is
compelling because it utilizes the auto-vectorization feature of the compiler, thus, delivering

53

8 Conclusion

optimal portability across extensions. Moreover, the results obtained with Pure SIMD were
good, considering multiple code sections had to rely on scalar code because the library did
not o↵er the necessary functions. Accordingly, since the library does currently not o↵er the
necessary functions to vectorize most algorithms, we cannot recommend Pure SIMD.

NSIMD came close to Highway, with its outstanding performance for AVX2 and AVX512.
However, we could not compile for SVE due to an error. Therefore, we were unable to conduct
an SVE benchmark for this library. As discussed before, lacking documentation in the usage
section made it hard to determine the cause of the error. In the future, additional tests could
be beneficial to determine the cause of the error because NSIMD could be a contender to
Highway if the compilation issues can be resolved. Another question surrounding NSIMD is
the development state. The last update was over a year ago. Thus, it is unclear if or when
new features and extensions will be added. Overall, we cannot unequivocally recommend
the library.

When reviewing each library’s performance, it becomes clear that Google’s Highway li-
brary was the only one consistently performing excellently across all extensions. However,
the ease of use could be further improved. Specifically, getting started with Highway was
more complex compared to other libraries. These di�culties are caused by a more flexible
approach to includes and namespaces. While the additional flexibility may be troublesome
for beginners, these options can be highly beneficial for advanced users. Overall, Highway
o↵ers flexibility and advanced features like none of the other libraries. Furthermore, the
library has a fast and active development cycle, making it currently the only library we
tested with excellent performance across all extensions with a development team this active.
Therefore, we can strongly recommend Highway when searching for a zero-overhead SIMD
library capable of tackling more advanced problems.

There are numerous SIMD libraries we did not evaluate in this thesis. One of them that
could be evaluated in the future is xSIMD [xSI23], which is an active open-source library
with a strong developer community. The existence of so many SIMD libraries with a similar
purpose highlights the need for standardization and a standard API for SIMD programming.

The semiconductor company ARM Ltd. has taken the first steps to standardize and
future-proof SIMD features on ARM64 machines with the release of SVE. As mentioned,
SVE stands for Scalable Vector Extension, meaning SVE intrinsics do not have to specify
the underlying SIMD register size. Therefore, SVE intrinsics code can scale between SIMD
registers with sizes ranging from 128-bit to 2048-bit [ARM23]. This scalability aspect will
future-proof the SVE extension for the foreseeable future since current CPUs supporting
SVE only have SIMD registers with sizes up to 512-bit [Fuj23]. It would be desirable to see
other hardware manufacturers future-proof their SIMD approaches. However, in the end,
hardware manufacturers must find a solution that facilitates portable SIMD code across
architectures.

Developing a standardized SIMD API across di↵erent extensions presents the biggest chal-
lenge for SIMD to break out of the high-performance computing field into general consumer
software. However, for many use cases, Google’s Highway library may currently present the
best available abstraction tool for developing software using explicit vectorization for the
most commonly available SIMD extensions.

54

List of Figures

1.1 Visualization of a typical vector instruction operating on two vector registers
with four lanes each. 1

2.1 x86-64 vector registers on a CPU supporting AVX512. Visualization from
Ref. [Sch16]. 3

5.1 Graphical representation of the Mandelbrot set generated by the AVX2 im-
plementation of the Mandelbrot benchmark overlaid onto a coordinate system
of the complex plane. 23

6.1 Binary representation of the SNP data sets, and the calculation of the fre-
quency table. Visualization from Ref. [MCSJ+22]. 35

7.1 Mandelbrot benchmark targeting AVX2 compiled with g++ 11.2.0 and run
on the ICE system. 41

7.2 Mandelbrot benchmark targeting AVX512 compiled with g++ 11.2.0 and run
on the ICE system. 43

7.3 Mandelbrot benchmark targeting SVE compiled with g++ 11.0.0 and run on
the AFX system. 45

7.4 Mandelbrot benchmark targeting NEON compiled with g++ 8.3.1 and run
on the THX system. 46

7.5 Epistasis detection algorithm targeting AVX2 and AVX512 compiled with
g++ 11.2.0 and run on the ICE system using 128 threads. 49

7.6 Epistasis detection algorithm targeting SVE compiled with clang++ 11.0.0
and run on the AFX system using 48 threads. 51

55

List of Listings

2.1 Dot product implementation using AVX512 compiler intrinsics. 5

4.1 Essential functions in Highway’s type system. 14

5.1 Scalar C++ Mandelbrot benchmark implementation. 25
5.2 AVX2 compiler intrinsics Mandelbrot benchmark; initialization of c and z0. . 27
5.3 Pure SIMD Mandelbrot benchmark; initialization of c real. 28
5.4 NSIMD C++ advanced API Mandelbrot benchmark; initialization of z0. . . . 28
5.5 NSIMD C++ base API Mandelbrot benchmark; initialization of z0. 28
5.6 Vc Mandelbrot benchmark; iteration of fc(zn). 29
5.7 Highway Mandelbrot benchmark; calculation of the squared norm and break-

out condition. 29
5.8 Libsimdpp Mandelbrot benchmark; calculation of the squared norm and break-

out condition. 30

6.1 AVX2 ExtractPopcnt function. Extract each lane and perform scalar hard-
ware population count on them. 36

6.2 Highway ExtractPopcnt function. Extract each lane and perform scalar hard-
ware population count on them. 37

6.3 AVX512 PopcntAccumulate function. Hardware vector population count with
vector accumulator. 38

6.4 Highway PopcntAccumulate function. Vector population count with vector
accumulator. 38

57

List of Tables

3.1 Important GCC auto-vectorization flags. Details from Refs. [GCC23e, GCC22a,
GCC05]. 8

4.1 Supported SIMD extension sets by each library. ⇤Multiple AVX512 versions
are supported. 13

4.2 Summary of the di↵erent review categories for each library. The 3 symbol
indicates that the library fulfills the expectations in the category; on the other
hand, an 7 symbol indicates the opposite. 20

7.1 List of CPUs and SIMD extensions used on the LRZ BEAST platform. . . . 39
7.2 Compiler optimization flags used on each system and target for the Mandel-

brot benchmark. 40
7.3 Detailed data of the AVX2 Mandelbrot benchmark with a maximum of 100

while-loop iterations, compiled with g++ 11.2.0 and run on the ICE system,
visualization in Figure 7.1. SD is an abbreviation for Standard Deviation, CV
for Coe�cient of Variation. 42

7.4 Compiler optimization flags for the epistasis detection algorithm used on each
system, target, and compiler. 47

7.5 Detailed data on execution times of the epistasis detection algorithm with
2048 SNPs and 16384 samples, collected on the ICE system using 128 threads. 48

7.6 Detailed data on execution times of the epistasis detection algorithm with
2048 SNPs and 16384 samples, collected on the AFX system using 48 threads,
visualization included in Figure 7.6. SD is an abbreviation for Standard De-
viation, CV for Coe�cient of Variation. 50

8.1 Summary of all the examined factors and findings for each library. The 3
symbol indicates that the library fulfills the expectations in the category; on
the other hand, an 7 symbol indicates the opposite. 53

59

Bibliography

[ARM23] ARM: ARM SVE. https://developer.arm.com/Architectures/Scalable%
20Vector%20Extensions. Version: 2023. – visited on March 4, 2023

[Bre20] Breshears, Clay P.: OpenMP* Vectorization Support. https:

//www.intel.com/content/www/us/en/developer/articles/technical/
delve-into-mysteries-openmp-vectorization-support.html.
Version: 2020. – visited on January 4, 2023

[CFCD17] Cardoso, Joã. P. ; Figueired Coutinho, José G. ; Diniz, Pedro C.: Embed-
ded computing for high performance: E�cient mapping of computations using
customization, code transformations and compilation. Morgan Kaufmann, 2017

[Cla23] Clang: Clang Language Extensions. https://clang.llvm.org/docs/
LanguageExtensions.html. Version: 2023. – visited on January 26, 2023

[Cpp23] Cppreference: Cppreference Web Page. https://en.cppreference.com/w/.
Version: 2023. – visited on January 19, 2023

[Fuj22] Fujitsu: A64FX Microarchitecture Manual 1.8.
https://github.com/fujitsu/A64FX/blob/master/doc/
A64FX Microarchitecture Manual en 1.8.pdf. Version: 2022. – visited
on March 28, 2023

[Fuj23] Fujitsu: Datasheet Fujitsu A64FX. https://www.fujitsu.com/downloads/
SUPER/a64fx/a64fx datasheet en.pdf. Version: 2023. – visited on March 24,
2023

[GCC05] GCC: GCC Vectorizer Dump Reports. https://gcc.gnu.org/legacy-ml/gcc-
patches/2005-01/msg01247.html. Version: 2005. – visited on December 30,
2022

[GCC22a] GCC: GCC Auto Vectorization. https://gcc.gnu.org/projects/tree-ssa/
vectorization.html. Version: 2022. – visited on December 30, 2022

[GCC22b] GCC: GNU Compiler Collection Landing Page. https://gcc.gnu.org.
Version: 2022. – visited on December 27, 2022

[GCC23a] GCC: Built-in Functions Provided by GCC. https://gcc.gnu.org/
onlinedocs/gcc/Other-Builtins.html. Version: 2023. – visited on January
26, 2023

[GCC23b] GCC: Extended Asm - Assembler Instructions with C Expression Operands.
https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html. Version: 2023. –
visited on March 19, 2023

61

https://developer.arm.com/Architectures/Scalable%20Vector%20Extensions
https://developer.arm.com/Architectures/Scalable%20Vector%20Extensions
https://www.intel.com/content/www/us/en/developer/articles/technical/delve-into-mysteries-openmp-vectorization-support.html
https://www.intel.com/content/www/us/en/developer/articles/technical/delve-into-mysteries-openmp-vectorization-support.html
https://www.intel.com/content/www/us/en/developer/articles/technical/delve-into-mysteries-openmp-vectorization-support.html
https://clang.llvm.org/docs/LanguageExtensions.html
https://clang.llvm.org/docs/LanguageExtensions.html
https://en.cppreference.com/w/
https://github.com/fujitsu/A64FX/blob/master/doc/A64FX_Microarchitecture_Manual_en_1.8.pdf
https://github.com/fujitsu/A64FX/blob/master/doc/A64FX_Microarchitecture_Manual_en_1.8.pdf
https://www.fujitsu.com/downloads/SUPER/a64fx/a64fx_datasheet_en.pdf
https://www.fujitsu.com/downloads/SUPER/a64fx/a64fx_datasheet_en.pdf
https://gcc.gnu.org/legacy-ml/gcc-patches/2005-01/msg01247.html
https://gcc.gnu.org/legacy-ml/gcc-patches/2005-01/msg01247.html
https://gcc.gnu.org/projects/tree-ssa/vectorization.html
https://gcc.gnu.org/projects/tree-ssa/vectorization.html
https://gcc.gnu.org
https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html
https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html
https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html

Bibliography

[GCC23c] GCC: GCC 11 Release Series Changes, New Features, and Fixes. https:

//www.gnu.org/software/gcc/gcc-11/changes.html. Version: 2023. – visited
on March 4, 2023

[GCC23d] GCC: GCC Libgcc2 Library. https://github.com/gcc-mirror/gcc/blob/
master/libgcc/libgcc2.c. Version: 2023. – visited on March 21, 2023

[GCC23e] GCC: Options That Control Optimization. https://gcc.gnu.org/onlinedocs/
gcc/Optimize-Options.html#Optimize-Options. Version: 2023. – visited on
March 20, 2023

[Goo21] Google: Google Benchmark CPU A�nity Pull Request. https://github.com/
google/benchmark/pull/988. Version: 2021. – visited on April 12, 2023

[Goo22a] Google: Google Highway Design Philosophy. https://github.com/google/
highway/blob/master/g3doc/design philosophy.md. Version: 2022. – visited
on January 18, 2023

[Goo22b] Google: Google Highway Documentation. https://github.com/google/
highway/tree/master/g3doc. Version: 2022. – visited on December 3, 2022

[Goo22c] Google: Google Highway GitHub. https://github.com/google/highway.
Version: 2022. – visited on November 22, 2022

[Goo22d] Google: Google Highway Introduction. https://github.com/google/
highway/blob/master/g3doc/highway intro.pdf. Version: 2022. – visited on
December 4, 2022

[Goo22e] Google: Google Highway Quick Reference. https://github.com/google/
highway/blob/master/g3doc/quick reference.md. Version: 2022. – visited
on December 3, 2022

[Goo23] Google: Google Benchmark GitHub. https://github.com/google/
benchmark. Version: 2023. – visited on January 19, 2023

[Int22a] Intel: Intel Intrinsics Guide. https://www.intel.com/content/www/us/en/
docs/intrinsics-guide/index.html#. Version: 2022. – visited on November
8, 2022

[Int22b] Intel: Using Auto Vectorization with Intel® C++ Compiler. https:

//www.intel.com/content/www/us/en/docs/cpp-compiler/tutorial-auto-
vectorization/18-0/overview.html. Version: 2022. – visited on March 19,
2023

[Int23] Intel: Contiguous Memory Accesses. https://www.intel.com/content/
www/us/en/docs/oneapi-fpga-add-on/optimization-guide/2023-0/

contiguous-memory-accesses.html. Version: 2023. – visited on March 6,
2023

[JR15] Jeffers, Jim ; Reinders, James: High performance parallelism pearls volume
two: multicore and many-core programming approaches. Morgan Kaufmann,
2015

62

https://www.gnu.org/software/gcc/gcc-11/changes.html
https://www.gnu.org/software/gcc/gcc-11/changes.html
https://github.com/gcc-mirror/gcc/blob/master/libgcc/libgcc2.c
https://github.com/gcc-mirror/gcc/blob/master/libgcc/libgcc2.c
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#Optimize-Options
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#Optimize-Options
https://github.com/google/benchmark/pull/988
https://github.com/google/benchmark/pull/988
https://github.com/google/highway/blob/master/g3doc/design_philosophy.md
https://github.com/google/highway/blob/master/g3doc/design_philosophy.md
https://github.com/google/highway/tree/master/g3doc
https://github.com/google/highway/tree/master/g3doc
https://github.com/google/highway
https://github.com/google/highway/blob/master/g3doc/highway_intro.pdf
https://github.com/google/highway/blob/master/g3doc/highway_intro.pdf
https://github.com/google/highway/blob/master/g3doc/quick_reference.md
https://github.com/google/highway/blob/master/g3doc/quick_reference.md
https://github.com/google/benchmark
https://github.com/google/benchmark
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#
https://www.intel.com/content/www/us/en/docs/cpp-compiler/tutorial-auto-vectorization/18-0/overview.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/tutorial-auto-vectorization/18-0/overview.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/tutorial-auto-vectorization/18-0/overview.html
https://www.intel.com/content/www/us/en/docs/oneapi-fpga-add-on/optimization-guide/2023-0/contiguous-memory-accesses.html
https://www.intel.com/content/www/us/en/docs/oneapi-fpga-add-on/optimization-guide/2023-0/contiguous-memory-accesses.html
https://www.intel.com/content/www/us/en/docs/oneapi-fpga-add-on/optimization-guide/2023-0/contiguous-memory-accesses.html

Bibliography

[KL12] Kretz, Matthias ; Lindenstruth, Volker: Vc: A C++ library for explicit
vectorization. In: Software: Practice and Experience 42 (2012), Nr. 11, S.
1409–1430

[KMSZ15] Kaeli, David R. ; Mistry, Perhaad ; Schaa, Dana ; Zhang, Dong P.: Het-
erogeneous computing with OpenCL 2.0. Morgan Kaufmann, 2015

[Lib22a] Libsimdpp: Libsimdpp GitHub. https://github.com/p12tic/libsimdpp.
Version: 2022. – visited on Januar 19, 2023

[Lib22b] Libsimdpp: Libsimdpp Web Documentation. http://p12tic.github.io/
libsimdpp/v2.2-dev/libsimdpp/w/index.html. Version: 2022. – visited on
December 8, 2022

[Lir09] LiraNuna: SSE intrinsics optimizations in popular compilers.
https://www.liranuna.com/sse-intrinsics-optimizations-in-popular-
compilers/. Version: 2009. – visited on March 19, 2023

[LLV23] LLVM: Auto-Vectorization in LLVM. https://www.llvm.org/docs/
Vectorizers.html. Version: 2023. – visited on March 19, 2023

[Mar18] Marinescu, Dan C.: Cloud computing: theory and practice. Morgan Kauf-
mann, 2018

[MCSJ+22] Marques, Diogo ; Campos, Rafael ; Santander-Jiménez, Sergio ; Matveev,
Zakhar ; Sousa, Leonel ; Ilic, Aleksandar: Unlocking Personalized Healthcare
on Modern CPUs/GPUs: Three-way Gene Interaction Study. In: arXiv preprint
arXiv:2201.10956 (2022)

[NDR+11] Nuzman, Dorit ; Dyshel, Sergei ; Rohou, Erven ; Rosen, Ira ; Williams,
Kevin ; Yuste, David ; Cohen, Albert ; Zaks, Ayal: Vapor SIMD: Auto-
vectorize once, run everywhere. In: International Symposium on Code Genera-
tion and Optimization (CGO 2011) IEEE, 2011, S. 151–160

[NSI18] NSIMD: The state of boost.simd. https://github.com/agenium-scale/
boost.simd/issues/545. Version: 2018. – visited on March 9, 2023

[NSI21a] NSIMD: NSIMD GitHub. https://github.com/agenium-scale/nsimd.
Version: 2021. – visited on March 9, 2023

[NSI21b] NSIMD: NSIMD Web Documentation. https://agenium-scale.github.io/
nsimd/index.html. Version: 2021. – visited on March 4, 2023

[Ope18] OpenMP: OpenMP Application Programming Interface. https://

www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf.
Version: 2018. – visited on January 4, 2023

[Pac22] Pacheco, Peter: An introduction to parallel programming. Elsevier, 2022

[PCM+16] Pohl, Angela ; Cosenza, Biagio ; Mesa, Mauricio A. ; Chi, Chi C. ; Ju-

urlink, Ben: An evaluation of current SIMD programming models for C++.
In: Proceedings of the 3rd Workshop on Programming Models for SIMD/Vector
Processing, 2016, S. 1–8

63

https://github.com/p12tic/libsimdpp
http://p12tic.github.io/libsimdpp/v2.2-dev/libsimdpp/w/index.html
http://p12tic.github.io/libsimdpp/v2.2-dev/libsimdpp/w/index.html
https://www.liranuna.com/sse-intrinsics-optimizations-in-popular-compilers/
https://www.liranuna.com/sse-intrinsics-optimizations-in-popular-compilers/
https://www.llvm.org/docs/Vectorizers.html
https://www.llvm.org/docs/Vectorizers.html
https://github.com/agenium-scale/boost.simd/issues/545
https://github.com/agenium-scale/boost.simd/issues/545
https://github.com/agenium-scale/nsimd
https://agenium-scale.github.io/nsimd/index.html
https://agenium-scale.github.io/nsimd/index.html
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf

Bibliography

[PJ15] Porpodas, Vasileios ; Jones, Timothy M.: Throttling automatic vectorization:
When less is more. In: 2015 International Conference on Parallel Architecture
and Compilation (PACT) IEEE, 2015, S. 432–444

[PS21] Pure-SIMD: Pure SIMD GitHub. https://github.com/eatingtomatoes/
pure simd. Version: 2021. – visited on March 9, 2023

[Sch16] Schmitz, Andreas: GCC Autovectorization. https://hpac.cs.umu.se/
teaching/sem-accg-16/slides/08.Schmitz-GGC Autovec.pdf. Version: 2016.
– visited on January 18, 2023

[SE23] SIMD-Everywhere: SIMD Everywhere GitHub. https://github.com/simd-
everywhere/simde. Version: 2023. – visited on January 21, 2023

[Sie16] Siewert, Sam: Algorithm Acceleration Using Single Instruction Multiple
Data. https://www.intel.com/content/www/us/en/developer/articles/
technical/using-intel-streaming-simd-extensions-and-intel-

integrated-performance-primitives-to-accelerate-algorithms.html.
Version: 2016. – visited on November 8, 2022

[SJD+18] Sornet, Gauthier ; Jubertie, Sylvain ; Dupros, Fabrice ; De Martin, Flo-
rent ; Limet, Sebastien: Performance analysis of SIMD vectorization of high-
order finite-element kernels. In: 2018 International Conference on High Perfor-
mance Computing & Simulation (HPCS) IEEE, 2018, S. 423–430

[SS21] Std-Simd: Std-Simd GitHub. https://github.com/VcDevel/std-simd.
Version: 2021. – visited on January 18, 2023

[Vc22a] Vc: Vc GitHub. https://github.com/VcDevel/Vc. Version: 2022. – visited
on January 18, 2023

[Vc22b] Vc: Vc Web Documentation. https://vcdevel.github.io/Vc-1.4.3/.
Version: 2022. – visited on December 8, 2022

[Wik23] Wikipedia: Discontinued Google Services. https://en.wikipedia.org/
wiki/List of Google products#Discontinued products and services.
Version: 2023. – visited on February 18, 2023

[xSI23] xSIMD: xSIMD GitHub. https://github.com/xtensor-stack/xsimd.
Version: 2023. – visited on March 29, 2023

64

https://github.com/eatingtomatoes/pure_simd
https://github.com/eatingtomatoes/pure_simd
https://hpac.cs.umu.se/teaching/sem-accg-16/slides/08.Schmitz-GGC_Autovec.pdf
https://hpac.cs.umu.se/teaching/sem-accg-16/slides/08.Schmitz-GGC_Autovec.pdf
https://github.com/simd-everywhere/simde
https://github.com/simd-everywhere/simde
https://www.intel.com/content/www/us/en/developer/articles/technical/using-intel-streaming-simd-extensions-and-intel-integrated-performance-primitives-to-accelerate-algorithms.html
https://www.intel.com/content/www/us/en/developer/articles/technical/using-intel-streaming-simd-extensions-and-intel-integrated-performance-primitives-to-accelerate-algorithms.html
https://www.intel.com/content/www/us/en/developer/articles/technical/using-intel-streaming-simd-extensions-and-intel-integrated-performance-primitives-to-accelerate-algorithms.html
https://github.com/VcDevel/std-simd
https://github.com/VcDevel/Vc
https://vcdevel.github.io/Vc-1.4.3/
https://en.wikipedia.org/wiki/List_of_Google_products#Discontinued_products_and_services
https://en.wikipedia.org/wiki/List_of_Google_products#Discontinued_products_and_services
https://github.com/xtensor-stack/xsimd

	Introduction
	Core SIMD Principles
	SIMD Registers
	Lanes
	Memory Alignment
	Vectorizing Loops

	SIMD Programming Approaches
	Implicit Vectorization
	Auto Vectorization
	OpenMP Pragmas

	Explicit Vectorization
	Compiler Intrinsics
	Libraries

	C.30ex++1000 SIMD Libraries
	Library Selection Methodology
	Review Criteria
	Selected Libraries
	Library Reviews
	Highway
	Vc
	Libsimdpp
	NSIMD
	SIMD Everywhere
	Pure SIMD

	Review Results

	Mandelbrot Benchmark
	Introduction to the Mandelbrot Benchmark
	Pseudocode Implementation
	Scalar C.30ex++1000 Implementation
	Vectorized Implementations
	Intrinsics
	Pure SIMD
	NSIMD
	Vc
	Highway
	Libsimdpp
	SIMD Everywhere

	Case Study Vectorization of Epistasis Detection Algorithm with Highway
	Problem Introduction
	Pseudocode Implementation
	Different Population Count Approaches
	Pseudocode Vector Population Count with Reduction
	AVX2 Extract Population Count
	Highway Extract Population Count
	AVX512 Population Count Accumulate
	Highway Population Count Accumulate

	Evaluation
	Experimental Setup
	Hardware
	SIMD Library Versions
	Measurement Method

	Mandelbrot Benchmark Evaluation
	Results AVX2
	Results AVX512
	Results SVE
	Results NEON

	Case Study Epistasis Detection
	Results AVX2 and AVX512
	Results SVE

	Conclusion
	List of Figures
	List of Listings
	List of Tables
	Bibliography

