Published In Proceedings of the 14th Annual Workshop of HP Software University Association, 2007

Building Blocks for Release Management
Unification in Large-Scale Environments

Michael Brenner!, Silvia Knittl!, and Karin Schmelz (née Betz)?

! Munich Network Management Team
brenner@mnm-team.org, knittl@mnm-team.org
2 HVB Information Services
Karin.Betz@hvbis.com

Abstract. In large organizations, Release Management practices have
often evolved in organizational silos, resulting in a less efficient and riskier
introduction of changes into the live environment. This work is based
on an analysis of existing Release Management processes at HVBInfo.
It highlights problems of uncoordinated release processes, challenges of
unifying them, and basic building blocks for a comprehensive, ITIL-based
Release Management approach.

1 Introduction

If anywhere then in enterprise IT infrastructures, there is nothing permanent
except change. But uncoordinated, unplanned or insufficiently tested changes
are a leading cause of IT failures [6]. From an IT Service Management (ITSM)
perspective, it is Release Management that is responsible for introducing changes
into the live environment in a controlled manner (see e.g ITIL [5] or Microsoft
Operations Framework [4]). In Software Engineering (SE), usually a different
view is taken, where a release is primarily regarded as a particular version of a
single software product and Release Management as a project management task
for handling the software provision within scheduled time and budget (see e.g.
Rational Unified Process [3]).

The next Section introduces Release Management practices at HVB Infor-
mations-Verarbeitungs-GmbH (HVBInfo), where three distinct Release Manage-
ment processes have evolved over time, resulting in various quality issues. Sec-
tion 2 presents the basic approach for dealing with this situation, namely Release
Management unification, its challenges and building blocks for addressing them.
Section 3 discusses related work and section 4 concludes the article.

1.1 Scenario

HVBInfo is a service provider for the HypoVereinsbank (HVB) Group, supply-
ing IT services like desktop services or hosting. The most important customers
are the business units of HVB Bank. HVBInfo is running over 3400 servers,
30000 Clients and a number of IBM mainframes. New software for meeting the

M
hpsua

changing demands of the customers is developed either by external software pro-
ducers or by HVBSystems, an application development organization within the
HVBGroup.

Note that there are
contracts or agreements VB Business Unit LL
between the develop- [Beveiopment beveloping o o Service Level
ment organizations and = "™ Applications (Running Applications) e
the HVB business units,
and Service Level Agree- N ES RS | HvBInfo
ments underpinning the EX;;Z;L; e;:ii?j;er | | L | B |

relationship between the
business units and the
operations units of HVB-
Info — there is however no such formal agreement between any of the development
and operations units. This situation (see Figure 1), where customers have sep-
arate contracts with the software producers and the service providers, is not
unusual [7,1].

At HVBInfo Release Management has evolved independently in each op-
erations unit, resulting to platform specific release practices. There are three
distinct processes for Client/Server (C/S — Client Operations), zentrale Server
(zS — Server Operations) and Host (Mainframe Operations). While historically
there might have been good reasons for this, the ever increasing interdependen-
cies of components in the now significantly more networked infrastructure lead
to a higher impact of the drawbacks of this approach.

Fig. 1. Organizational Context

1.2 The Trouble with non-unified Release Management Approaches

Within the scope of the described scenario different problem areas have been
identified.

Issue A: No common understanding of terms and concepts. There are different
understandings of the definition, the scope and the roles of Release Management
between HVBInfo and the development organizations as well as within HVBInfo:
The C/S Release Management has more ITSM-oriented characteristics whereas
in zS, Release Management is mostly handled from a SE perspective.

Issue B: Insufficient flow of information between development and operations.
HVBInfo does not get notice of new software developments until the completed
product is transferred to them, making pre-planing of tests and user training
complex.

Issue C: Inefficiencies in managing releases. There are ambiguous responsibil-
ities, different wordings, and different release and testing policies per platform.
Table 1 shows an extract of different release types per platform and their prop-
erties. Host and C/S operations, both use the concept of Standard Releases,
trying to bundle a maximum of changes into a regularly scheduled release. On
the zS platform on the other hand, there is no concept of a Standard Release.
The concept of an Application Release used instead, is handled like a classical

software engineering project, thus the software producer is responsible for the
whole release process. Among other undesirable effects, this complexity makes
it all but impossible to coordinate releases phases, resulting in a higher num-
ber of rollouts, and consequently more downtime in the live environment, than
necessary.

C/S zS Host
Client Operations Server Operations Mainframe Ops.
Defined Release|Standard Release|Securityfix, Core Re-|Standard Release
Types (SR), Sonderversorg-|lease, Application Re-|(SR), Sonderver-
ung, Hotfix (HF),|lease (AR) sorgung, Hotfix (HF),
Securityfix Hot Release
SR Frequency ~ 5 per customer p.a. |n.a. Adjusted to C/S
SR Size Up to 380 products [n.a. = 4 products
SR Duration 17 to 21 weeks n.a. 8 to 10 weeks
HF Duration ~ 2 weeks n.a. 1 day
HF Responsible |Release Manager C/S |n.a. Product Responsible
AR Responsible |n.a. Project Manager n.a.

Table 1. Examples of release types and properties at HVBInfo

Issue D: Ineffectiveness in the protection of the live environment. The existence
of separate, uncoordinated release processes can weaken the effectiveness of test-
ing, thus putting the stability of the live environment at risk. This is exemplified
by the problem of intercalated hotfixes, illustrated in Figure 2. In this example,
a release consisting of two C/S products (which are to be updated from version
2 and 4 to versions 3 and 5 respectively) is build and assembled in C/S devel-
opment. They are then tested together in a test environment, which contains
copies of various products in the live environment — among them the current
version 7 of a zS product. However, while this standard release goes through a
lengthy testing process, an unforeseen issue (e.g. a newly discovered vulnerabil-
ity) triggers the development of an urgent change to the server component in zS
development. As this urgent change is being released as a hotfix, it goes through
an expedited testing cycle. The configuration of the zS test environment is re-
flecting the situation in the live environment, but does not account for pending
releases for other platforms.

Why is that a problem? Since a hotfix is always a riskier change, there is an
awareness that at the moment of its introduction, the live environment needs
to be closely monitored. However, problems might manifest themselves not at
that time, but much later. If the hotfix has “overtaken” the standard release
prepared by C/S, the rollout of the standard release will result in an untested
combination of products in the live environment — undermining the effort of
testing the standard release thoroughly and diligently.

Period 1: Period 2: Period 3: Period 4: Period 5:

Stable State in Urgent Change Uncoordinated Hotfix overtakes Unknown State in
Live Environment Initiated Testing d Live Envir
Wiz pv) v) ¢) V7 j v4) V7 j v+) v j vs) 8
e O e v2 v v v2 \Z \Z v2 \ A v2 \Z Vi v3 Vi Vi
zS Test - W i
Environment v2 ' v) ok I
Std Release B Std Release B Std Release B

C/S Test . ! S
Environment v3' =) i I§ v3' o) w I v3’ V5> i

zS i
Developer A ve
c/s

Developer B v3 v_sj

_/ J C/S platform products zS platform product

Fig. 2. Intercalated Hotfix Problem

2 Solution — Unifying Release Management

This section describes, which challenges need to be addressed when unifying
Release Management processes.

2.1 Challenges

RM Unification Challenge 1 (related to issue A) There should be a common
theoretical foundation for Release Management — its scope, goals, terms and
process — on which development and operations organizations can agree on.
RM Unification Challenge 2 (related to issue B) The “development-operations-
wall”. The lack of communication is mostly due to the the organizational constel-
lation, which, as depicted in Figure 1, resembles an angle rather than a triangle.
HVBInfo and the application development organizations interact mostly with
their customers but not with each other. This is a rather typical situation: Even
though the overall quality of the delivered IT services clearly depends on devel-
opment as well as operations organizations, there is usually hardly any formal
relationship or communication between them.

RM Unification Challenge 3 (related to issue C and D) The Release Ma-
nagement within HVBInfo needs to be unified. This involves several integration
aspects, namely roles, data, process and time. New roles need to be introduced
and existing roles need to be aligned and changed. Documentation requirements
need to be harmonized, as well as process workflows. The frequency and timing
of release cycles need to be adjusted in a way that is acceptable for the operations
of all platforms (with regard to flexibility and stability concerns).

2.2 Building Blocks

There are three basic concepts needed for approaching the challenges stated in
the previous section.

Addressing Challenge 1 This aspect is the topic of future work, for which the
integration of Release Management practices from SE and ITSM standards into
a single framework is planned.

Addressing Challenge 2 The“development-opera- Change
. ’ Management
tions-wall” can be, at least partly, pulled down by _
. . . Change Logging
an integration of Release Management with an I'TIL- and Filtering
based Change Management process. In ITIL the dif- v
ficult task of keeping a changing IT infrastructure e .
stable is shared between Change Management and ()
Release Management [5]. Figure 3 illustrates how in S —
ITIL Release Management is integrated into the over- T
all Change Management workflow (cp. also [4]). Basi- p—

Scheduling

cally, Change Management deals with the overall co-
Change'BuiIding, Release

ordination of changes — from initial proposal, through
authorization, up to a mandatory post implementa- g o, [M§Pagamant
tion review. Releases are defined as collections of au- v

thorized changes that are to be tested and introduced Change Review

into the infrastructure together. Consequently, most
scheduling aspects as well as the task of change build-
ing, testing and implementing, are operationally dele-
gated to Release Management, which controls release
composition, testing and rollout. The introduction of
an overarching Change Management can be the basis for a coordinated divi-
sion of tasks and better communication between development and operations.
Institutionalizing a Change Management process in which software changes are
tracked from the moment they are being planned (i.e. submitted as a Request for
Change), will enable HVBInfo to be be earlier and more consistently informed
about future changes, thus making the planing of releases more predictable and
stable.

Addressing Challenge 3 To overcome the drawbacks of different Release Ma-
nagement processes rolling out components into a shared live environment, a
concept for an integrated Release Management is proposed, which is platform-
independent and therefore responsible for all changes. The new Release Manage-
ment will have standardized process interfaces. New roles have been introduced,
e.g. independent testers. By introducing this role, testing can be more flexible
and its results more reliable. The test environment is now to be managed by
one role, so that “overtaking” releases, as discussed in Section 1.2, cannot oc-
cur unnoticed anymore. Through better communication and coordination more
changes can be bundled into a release, and thus the release frequency be lowered.
Thus information and training of users and staff become more efficient.

Fig.3. Change & Re-
lease Management in
ITIL

3 Related Work

To the authors’ knowledge, the are so far no publications specifically concerned
with the practical issues of unifying Release Management in large enterprises.
While overall the problem of integrating development and operations has not
been researched nearly enough, some work is pointing in the right direction. MOF
[4] includes a basic mapping of its review points to those of MSF, Microsoft’s
software development framework. CobiT [2] integrates practices for the entire
IT lifecycle in a single framework, but its emphasis lies on control practices — its
guidance for the development and operations processes themselves is not nearly
as detailed as that of the dedicated SE or ITSM frameworks.

4 Conclusion and Outlook

The suggested steps towards a unified Release Management are currently under
implementation at HVBInfo. The completion will take some time, as other urgent
integration projects (due a recent merger of the parent company HVB) have
currently taken precedence. Feedback by various stakeholders at HVBInfo was
positive, which gives reason to hope that the presented building blocks for Re-
lease Management unification will find their way into the operational concepts
of the future merged IT division.

The next step is to follow the progress of Release Management unification
at HVBInfo and to review the resulting feedback. This should provide a good
starting point for a further refinement of integration concepts. As the presented
problems with non-unified Release Management plague many large enterprises,
the proposed building blocks will hopefully find consideration in other scenarios,
thus possibly laying the foundation for some kind of “best practices in integrated
Enterprise Release Management”. In the longer term, further research into the
possibilities of integrating SE and I'TSM frameworks (cp. RM Unification Chal-
lenge 1, Section 2.1) is intended.

References

1. M. Brenner, M. Garschhammer, and F. Nickl. Requirements Engineering und IT
Service Management. In Modellierung 2006, volume 82 of LNI, pages 51-66. GI,
2006. http://tinyurl.com/2vaz23.

2. IT Governance Institute. CobiT 4.0, 2005. http://tinyurl.com/24dhh3.

3. 1. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Development
Process. Addison Wesley, 1999.

4. Microsoft Cooperation. Microsoft Operations Framework — Service Management
Functions — Release Management, 2004. http://tinyurl.com/29vp7e.

5. Office of Government Commerce, editor. Service Support. IT Infrastructure Library.
The Stationary Office, 2000.

6. D. Scott. Making smart investments to reduce unplanned downtime. Research Note
TG-07-4033, Gartner, 1999.

7. R. Zarnekow, W. Brenner, and U. Pilgram. Integriertes Informationsmanagement.
Springer, 2005.

