Designing CMDB data models
with good utility and limited complexity

Michael Brenner; Markus Gillmeister
Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities
Garching n. Munich, Germany

Leibniz Supercomputing Centre

of the Bavarian Academy of Sciences and Humanities

This paper introduces CMDB patterns as an approach to help address
conceptual issues in CMDB implementations and provide practitioners with a
common set of terms for useful designs.

Configuration Management Database (CMDB) is one of the most central concepts in
IT Service Management (ITSM). the CMDB is a tool, maintained by the ITSM process
Configuration Management, that provides information about Configuration Items (Cl)
which contribute to the delivery of an IT service, as well as the relationships between
Cls and between Cls and IT services. Descriptions and discussions of the majority of
ITSM processes defined in ITIL [1] or ISO/IEC 20000 [2] refer to the CMDB as source
of information, vital for the process to function effectively.

978-1-4799-0913-1/14/$31.00 ©2014 IEEE

CMDB as a concept and as a tool

CMDB as a concept of ISO/IEC 20000 and ITIL

» Configuration management database (CMDB)
Data store used to record attributes of configuration items, and the relationships
between configuration items, throughout their lifecycle

« Configuration item (Cl)
Element that needs to be controlled in order to deliver a service or services

CMDB as a tool ITSM App ITSM App
+ Usually part of a comprehensive Cient Admin / Dev Tool
ITSM suite — TooToommmmmmmERAOTTTTTOO TR
Lo L. Incident Mgmt CMDB
* Allows linking Cls to incident Application Application

records, problem records, = _ __ T - __-___.
change records etc. and
vice versa

» SQL basis usually quite noticeable
(no true object orientation) SQL DBMS

The leading ITSM publications and standards describe it in rather general terms. 1ISO/
IEC 20000 defines a CMDB as a data store used to record attributes of configuration
items, and the relationships between configuration items,

throughout their lifecycle [1]

(Unfortunately, since its third versions published in 2007, the ITIL books have started
use the term CMDB to denote a single database, while newly introduced concept
Configuration Management System or CMS — a kind of ,,super CMDB“ which includes
tools for collecting, storing, managing, updating, analysing and presenting data
about all configuration items and their relationships — now serves the same purpose
as the original CMDB concept [2]. For simplicity, we will stick to the term CMDB in its
original meaning for the remainder of this paper.)

In practice, a CMDB is usually not a single database, but a tool that synchronizes and
reconciles configuration information from various sources (management data
repositories), and enables the mapping and visualization of Cl-relationships [4]. As a
piece of software, it needs to be integrated, and in most cases also shares a common
platform, with other ITSM applications to form an ITSM Suite, that allows Cls to be
linked to artifacts of other ITSM processes like incident records, problem records,
change records etc.

Status quo of the CMDB in practice

+ About half of all CMDB projects fail [Gartner 2013], “Cause of death” is
almost always complexity

« Part of the IT service management community questions whether
implementing and maintaining a CMDB is justifiable from a business point
of view:

It is such an enormous undertaking that any organisation attempting it is
going to burn money on an irresponsible scale.
(Blog post by IT Skeptic: “ITIL’s dead elephant: CMDB can't be done”)

+ CMDB is currently heading down
into the “trough of disillusionment” in
the Gartner hype cycle.

Position of the “Service View CMDB” in the hype
cycle for IT operations management

Despite its importance, the guidance of ISO/IEC 20000 and ITIL on implementing
CMDBs (or CMSs) remains surprisingly vague.

As a consequence, the CMDB solutions that ITSM software vendors and ITSM
practitioners come up with, differ quite significantly in scope, structure and content.

The expectations for what a CMDB should offer are often unrealistically high,
resulting in too-ambitious projects of which quite a large portion fail [3], and leading
some ITSM experts to question the practicality of the whole concept [6].

Gartner sees the CMDB currently heading downwards in its IT operations
management hype cycle [5].

Clearly, more concrete guidance on implementing CMDBs is needed.

Towards a higher success rate for CMDB projects

+ Status quo: Each organization designs its own CMDB information model.
This is not likely to change in the near future!
+ Universally accepted common information and data model for CMDBs is nowhere
in sight

+ Service providers’ infrastructures, business models, company cultures etc. vary
greatly, there might never be one CMDB information model to suit all needs

+ What is needed:
Non-prescriptive, adaptable, pragmatic guidance on CMDB design

+ Setting the right scope for a CMDB project
-> clarification of CMDB requirements and prioritization of use cases

+ Guidance on designing the information model
-> CMDB patterns

Setting the scope: CMDB use cases

%_

Problem Mgmt

%_

CMDB

Determine
possible root
cause of
Incidents

Determine
possible impact
of changes

"Users at site A and site C have reported network connectivity
issues.
What network infrastructure do these sites share?
Have there any changes been done to it recently?

Software update to patch level 22 for all switches
of type X4000 (sw1brz, sw2brz, sw3brz) requested.
What parts of the network infrastructure and which end user sites

Change Mgmt are affected?

What is the value of
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet
\Services\RasMan\PPP\EAP\88
on wsrv22.ads.example.com and srv5.ads-u2.example.com?

Manage device
configuration

Admin

Goal: Benefit from finding the answers to these questions easier and
quicker through use of the CMDB >> Cost of maintaining the CMDB

A very common obstacle towards a successful CMDB implementation are
unrealistic expectations.

Most IT staff wish for access to better and more detailed documentation. As
the CMDB concept is so vaguely defined, there is — almost as with a
Rorschach inkplot — much room for interpretation and many envision a tool
that will finally address all their documentation needs (and is thankfully
provided, paid for and maintained by an ITSM project team).lIt is therefore
important to manage these expectations and to clarify which requirements a
CMDB solution will have to fulfill, and which functionalities are maybe nice-to-
have, but non-essential.

The CMDB is a tool to be used in the context of ITSM processes. The use
cases (or query cases) it needs to address, and which should be prioritized,
are in the context of ITSM processes,, e.g. problem management or change
management. Fulfilling all IT administrators’ requirements for a documentation
tool with a single solution of is an unachievable goal. It is important to convey
that in most cases, introducing a CMDB solution at an IT service provider
organization will replace only very few, if any, existing tools for documenting
configuration information.

CMDB Patterns

+ Majority of CMDBs are composed of Recordss93:Soltware-Cl

Name:char = CalcPackX
Version_Name:char = Version 10.9.1

» Clrecords, derived from a template and containing a
number of attributes of a simple type

installed on

+ Binary and directed Cl-relationships Record6543:Switch-Ci
System,Name:chz_:r = swscc05
+ CMDBs become more complex, the more Nurmber_of_Portsiint = 24
» attributes the records contain; connected to
* Cl records there are; Record7599:Server-Cl
System_Name:char = luxms01
. C|_re|ati0nships there are per Cl. IPv4_Address:record = 127.189.253.120

+ CMDB patterns should

+ help to design CMDB information models that offer a
good utility/maintenance ratio;

+ allow CMDB designers to share and discuss ideas
using a common terminology;

+ limit the complexity of the resulting CMDB.

There is an abundance of very varied software that claims to support
Configuration Management or CMDB implementation.

Still, almost all leading commercial solutions share the same basic
characteristics:

They support the definition of templates (or class definitions) for Cl records,
which can contain typed (int, char, boolean...) attributes. Cl-relationships are
almost always limited to be binary and directed, but can otherwise be freely
defined or adapted. Samples are provided, but generally the definition of the
Cl record templates and Cl-relationship types is up to the organization that
wants to implement the CMDB.

This is a quite demanding task for most organizations, that do not specialize in
ITSM, and usually requires extensive third party consulting.

Our goal is to introduce CMDB patterns — doing for CMDB design what
Fowler's Analysis Patterns [7] did for the design of business information
systems: Start to provide higher-order designs that can be reused across
projects and types of infrastructures and thereby facilitate the future reuse,
discussion and sharing of good CMDB design ideas.

In the following, we will discuss our first three patterns, which evolved while
facing design issues during the development of a CMDB for services of the
Leibniz Supercomputing Centre.

Pattern Collective Cl

+ Description
Collective Cl - Use one Cl as a placeholder for many components

Leveraged circumstance (prerequisite)
There is an enforced policy to keep subsets of components in a standardized
configuration.

.

Advantage
Number of Cls drastically reduced, important relationships easier to analyse, updating
the CMDB less complex

Disadvantage
Individual relationships for each component not documented

Variations / Comments

Individual Cl for each component, but use collective abstract Cl for standard
configuration groups: No reduction in number of Cls, but updating configuration
easier. Individual Cl-relationships are kept documented.

~

The first pattern is called Collective Cl and is, of the patterns presented in this
paper, probably the most commonly used.

The idea is simple: If sets of components are either kept at an identical
configuration or are not configurable (e.g. keyboards, monitors...), a single ClI
(Collective CI) can act as a placeholder for many components.

Of course, some information is lost when this pattern is used. If a set of
components is configured identically, but the documentation of the
relationships for each individual component is still essential, this pattern
should not be used.

However, quite often the most important CMDB use cases can still be
addressed using one CI for many components, and the reduction in
complexity actually enables a simpler and more effective analysis.

Collective Cl - Example: Supercomputer nodes

Common approach:
1 Cl per addressable node

+ 1 Cl per island Use of Collective Cl Pattern
>9000 Cls 4Cls
Island
Fat Fat
Compute Login Node
Compute Compute Node 5
Node 1 Node 205 .
Type: e [Type:
Login Node Compute
Node
N Thin Thin Login
in in Compute Node
g e |

Thin Thin Thin Thin
Compute Compute Compute Compute
Node 1 Node 512 Node 8705 |-+ | Node 9216
Type: Login Type: .
Node Compute
Node

In this only slightly simplified example based on a real-world scenario (cp.
http://www.Irz.de/services/compute/supermuc/systemdescription/), the
Collective Cl pattern is used to provide a very simple CMDB model of a
supercomputer.

The first idea for creating a CMDB model of this supercomputer was to mimic
the system architecture, creating one ClI for each of the 900 hardware nodes
and linking them to the Cls of the “islands” in which they are arranged.

However, all the nodes fall into one of just two hardware types, so-called thin
nodes (with two 8-core processors each) and fat nodes (with four 10-core
processors each). All nodes of each type boot from one of two software
configurations, as a Compute Node or as a Login Node.

Consequently, for managing software-related incidents, problems, changes
and releases, the nodes of each type are interchangeable. As hardware
failures of individual nodes are relatively easy to diagnose and the nodes
easily exchanges, only little value is gained from distinguishing identically
configured nodes.

The model using the Collective Cl pattern contains only 4 Cls compared to the
over 9000 that would have been required for the more straight-forward
approach. Still, the utility for the ITSM processes is almost as high and quite a
few typical use cases — e.g. analysing if a number of similar incidents has
occurred on all types of nodes or just one — are actually more easily
addressed.

Pattern Rich Cl relations

.

Description
Rich ClI relations — Add editable attributes to Cl-relations; preferably including
multi-value attributes

Leveraged circumstance (prerequisite)
Data model allows attributes to be added to relationships (usually given for
CMDB based on relational databases)

Advantage
Number of Cls drastically reduced, major relationships clearer

Possible Disadvantage
Individual network components (NICs etc.) no longer controlled as individual Cls

Variation / Comments
Pattern also useable for other documentation cases (e.g. mounting volumes)

m nasearoa :Server
nas6070a :Server

I SWP-2WR :Switch nas6070a :Server

connected to
source port = e6a

destination port = eth2

Interface: eth2

In most commercial CMDB solutions, Cl-relationships are point-to-point (1-
to-1) and are defined by direction (source, destination) and type (,depends
on“, ,is part of*, ,is backed up by“ etc.) only.

Especially for the documentation of complex network topologies this often
results in models that are either very complex — or miss representing essential
information.

Rich Cl relations - Example

Model 1 Model 2
v) Al
. 1% qu! 12-» RUM =
: bl b
m . / ";‘v’-‘»' i
- » e E L)
P ... [}
0 - ™ N
Byl
: » L ¢ G-

K
G |

Above Screenshots show the visualization of two models of the same infrastructure,
as rendered with an "auto layout" function of a commercial CMDB solution (iET
Solutions CMDB).

A requirement was, that the physical interconnection — “which port of the switch is
the connected to interface e6a of the NAS filer?” — should be documented in the
model.

Model 1, created with the out-of-the-box data model of the CMDB solution, achieves
this by defining NAS interfaces and switch ports as Cls and using simple (attribute-
less) “network connection” relationships.

Model 2 uses an adapted data model, realizing the rich Cl relations pattern, adding a
“source port” and “destination port” attribute to the network connection
relationship. It would also be relatively easy to add other information like VLAN
numbers, link capacity etc. without introducing more Cls.

When visualized, model 2 is obviously simpler and more intuitive to understand.
One of the most interesting features of the modeled network topology — that the
NAS-filers are connected redundantly via switches SWP1-2WR and SWP2-2WR — is
more readily apparent by looking at the representation of model 2.

Pattern Multi-value attributes

+ Description
Multi-value attributes — Enable record-type attributes in Cl records

Leveraged circumstance (prerequisite)
Data model supports an attribute record type or is adaptable to suit one
(e.g. support for comma-separated lists in attributes)

.

Advantage

Modeling of associations between system sub-components — e.g. how are IP
addresses, MAC addresses and network interfaces bound to each other — much more
efficient than with multiple-Cl solutions.

Possible Disadvantage
Depending on the data model and implementation of the new type, some queries
become more complex (e.g.”Which IP addresses are currently unused?”)

Variation / Comments

Multi-value attributes are ideal for modeling the network configuration of systems, but
are also useful for describing mass storage components.

Multi-value attributes and Rich ClI relations are distinct patterns, but serve the same
purpose — reducing the number of Cls with no or little loss of information — and are
best used in combination.

In out-of-the-box state, most CMDB solutions support Cl records with simple
attribute types (integer, char etc.) only. Modeling of interdependencies — e.g.
“what IP addresses are bound to which MAC addresses?” — would require the
creation of many more Cls (e.g. one Cl for each network address on each
layer) with many relationships.

Having multi-value attributes (aka an attribute type “record”) offers a much
more efficient solution.

Typical applciations are the documentation of the network configuration (e.g.
<DEV>;<MAC>;<IPv4>;<IPv6>;<DNS>) or the mass storage configuration
(e.g. <TYPE>;<DEVICE>;<SIZE>;<MOUNTPOINT>) of server systems.

Multi-value attributes - Example

Approach 1:
The way most out-of-the box example
models look like. Common queries remain
simple, but associations are lost.

Approach 1 (CIM-like):
Conceptually clean, but many Cls and
relationships. Many common queries
(“what server has IP addresses
127.189.253.1207”) and consistency
checks become difficult.

Approach 3 (multi-value attributes):
Associations are kept, common queries
remain simple, while some others (“which
IP-addresses are free?”) become more
complex and need to be predefined.

sever |
Sys-Name luxms01

MAC 00:07:£9:23:CD:59
MAC 00:07:E9:23:CD:58
1Pv4 127.189.253.120/24
1Pv4 127.189.253.108/24
1Pv4 127.189.253.111/24
1Pv4 127.189.253.102124
1Pv4 127.189.253.100/24
1Pv4 1.77.6.1/24

1Pv4 1177651724

IP v4 address
127.189.253.120/24

IMAC address
00:07:£9:23:CD:59

127.189.253.108/24

ethl 00:07:€9:23:CD:58

127.189.253.111/24

127.189.2563.120/24 luxms01.example.com
127.189.253.108/24 relay4.example.com
127.189.253.111/24 -

127.189.253.102/24 relay2.example.com
127.189.253.100/24 relay6.example.com
11.77.6.1/24

11.77.6.51/24 relay2.mail.example.com

Limitations and future work

Limitations

» So far, very limited number of patterns.

» So far, practical demonstration of utility in only one scenario.

* Rich Cl relations and multi-value attributes address specific weaknesses

of common SQL-based CMDB data models. May become obsolete with
better out-of-the-box CMDB data models.

Future work
Patterns are “best practice”: Spread the idea and encourage participation

» Promote adoption of rich ClI relations and multi-value attributes with
CMDB tool developers.

» Promote use of patterns by other CMDB practitioners
(e.g. by integrating them in a FitSM Guide).

» Gather feedback and new ideas.

« Develop further patterns and refine existing ones.

CMDB patterns are documenting “good practice” (or “best practice”) in CMDB
design.

In the long term, they should not remain the product of a small number of
authors, but be used, discussed, refined and extended by a community of
CMDB practitioners.

The first step in the further development of a CMDB pattern catalogue would
therefore be promoting the use of existing patterns, and disseminating the
“pattern idea” for CMDBs in general, e.g. by integrating CMDB patterns in a
future guide on Configuration Management in FitSM-5 [8].

Conclusion

CMDBs are critical for ITSM, but difficult to implement successfully
A one-size-fits-all silver-bullet solution for CMDB design is very far away

<

Patterns can serve as a toolset to aid in CMDB design

+ Common language for talking about CMDB data and information modeling

+ Building up a stock of reusable designs

The three exemplary patterns presented...

» aim to reduce complexity of the CMDB, while maintaining or enhancing utility;

+ do this either by reducing the number of Cls and relationships or by
(to achieve a maintainable, easily visualized and understandable model)

» Are general design patterns, but can serve as a basis for more specific patterns
and Cl templates (for common components, bits of infrastructure design etc.)

References

[1]1 ISO/IEC 20000-1:2011 — Service Management System Requirements,
ISO/IEC, April 2011

[2] ITIL Service Transition — 2011 Edition, Cabinet Office, 2011

[3] Colville, R.J.: Seven Steps to Select Configuration Item Data and Develop a CMDB
Project That Delivers Business Value, Gartner, January 2013

[4] Colville, R.J.: CMDB or Configuration Database — Know the Difference,
Gartner, March 2006

[5] Adams, P. and Govekar, M.: Hype Cycle for IT Operations Management 2013,
Gartner, July 2013

[6] England, R.: ITIL’s dead elephant: CMDB can't be done,
IT Skeptic (http://www.itskeptic.org/cmdb), June 2006

[7] Fowler, M.: Analysis Patterns: Reusable Object Models,
Addison-Wesley, November 1996

[8] FitSM-5:2014: Guidance on the application and implementation of lightweight service
management in federated IT infrastructures, FedSM project, http://www.fedsm.eu/fitsm,
February 2014

