
This	
 paper	
 introduces	
 CMDB	
 pa4erns	
 as	
 an	
 approach	
 to	
 help	
 address	

conceptual	
 issues	
 in	
 CMDB	
 implementa7ons	
 and	
 provide	
 prac77oners	
 with	
 a	

common	
 set	
 of	
 terms	
 for	
 useful	
 designs.	

Configura7on	
 Management	
 Database	
 (CMDB)	
 is	
 one	
 of	
 the	
 most	
 central	
 concepts	
 in	

IT	
 Service	
 Management	
 (ITSM).	
 the	
 CMDB	
 is	
 a	
 tool,	
 maintained	
 by	
 the	
 ITSM	
 process	

Configura)on	
 Management,	
 that	
 provides	
 informa7on	
 about	
 Configura)on	
 Items	
 (CI)	

which	
 contribute	
 to	
 the	
 delivery	
 of	
 an	
 IT	
 service,	
 as	
 well	
 as	
 the	
 rela7onships	
 between	

CIs	
 and	
 between	
 CIs	
 and	
 IT	
 services.	
 Descrip7ons	
 and	
 discussions	
 of	
 the	
 majority	
 of	

ITSM	
 processes	
 defined	
 in	
 ITIL	
 [1]	
 or	
 ISO/IEC	
 20000	
 [2]	
 refer	
 to	
 the	
 CMDB	
 as	
 source	

of	
 informa7on,	
 vital	
 for	
 the	
 process	
 to	
 func7on	
 effec7vely.	
 	

978-1-4799-0913-1/14/$31.00 ©2014 IEEE

The	
 leading	
 ITSM	
 publica7ons	
 and	
 standards	
 describe	
 it	
 in	
 rather	
 general	
 terms.	
 ISO/
IEC	
 20000	
 defines	
 a	
 CMDB	
 as	
 a	
 data	
 store	
 used	
 to	
 record	
 a3ributes	
 of	
 configura)on	

items,	
 and	
 the	
 rela)onships	
 between	
 configura)on	
 items,	

throughout	
 their	
 lifecycle	
 [1]	

(Unfortunately,	
 since	
 its	
 third	
 versions	
 published	
 in	
 2007,	
 the	
 ITIL	
 books	
 have	
 started	

use	
 the	
 term	
 CMDB	
 to	
 denote	
 a	
 single	
 database,	
 while	
 newly	
 introduced	
 concept	

Configura)on	
 Management	
 System	
 	
 or	
 CMS	
 –	
 a	
 kind	
 of	
 „super	
 CMDB“	
 which	
 includes	

tools	
 for	
 collec)ng,	
 storing,	
 managing,	
 upda)ng,	
 analysing	
 and	
 presen)ng	
 data	

about	
 all	
 configura)on	
 items	
 and	
 their	
 rela)onships	
 –	
 now	
 serves	
 the	
 same	
 purpose	

as	
 the	
 original	
 CMDB	
 concept	
 [2].	
 For	
 simplicity,	
 we	
 will	
 s7ck	
 to	
 the	
 term	
 CMDB	
 in	
 its	

original	
 meaning	
 for	
 the	
 remainder	
 of	
 this	
 paper.)	

	

In	
 prac7ce,	
 a	
 CMDB	
 is	
 usually	
 not	
 a	
 single	
 database,	
 but	
 a	
 tool	
 that	
 synchronizes	
 and	

reconciles	
 configura7on	
 informa7on	
 from	
 various	
 sources	
 (management	
 data	

repositories),	
 and	
 enables	
 the	
 mapping	
 and	
 visualiza7on	
 of	
 CI-­‐rela7onships	
 [4].	
 	
 As	
 a	

piece	
 of	
 so[ware,	
 it	
 needs	
 to	
 be	
 integrated,	
 and	
 in	
 most	
 cases	
 also	
 shares	
 a	
 common	

pla\orm,	
 with	
 other	
 ITSM	
 applica7ons	
 to	
 form	
 an	
 ITSM	
 Suite,	
 that	
 allows	
 CIs	
 to	
 be	

linked	
 to	
 ar7facts	
 of	
 other	
 ITSM	
 processes	
 like	
 incident	
 records,	
 problem	
 records,	

change	
 records	
 etc.	

	

	

	

Despite	
 its	
 importance,	
 the	
 guidance	
 of	
 ISO/IEC	
 20000	
 and	
 ITIL	
 on	
 implemen7ng	

CMDBs	
 (or	
 CMSs)	
 remains	
 surprisingly	
 vague.	
 	

As	
 a	
 consequence,	
 the	
 CMDB	
 solu7ons	
 that	
 ITSM	
 so[ware	
 vendors	
 and	
 ITSM	

prac77oners	
 come	
 up	
 with,	
 differ	
 quite	
 significantly	
 in	
 scope,	
 structure	
 and	
 content.	

	

The	
 expecta7ons	
 for	
 what	
 a	
 CMDB	
 should	
 offer	
 are	
 o[en	
 unrealis7cally	
 high,	

resul7ng	
 in	
 too-­‐ambi7ous	
 projects	
 of	
 which	
 quite	
 a	
 large	
 por7on	
 fail	
 [3],	
 and	
 leading	

some	
 ITSM	
 experts	
 to	
 ques7on	
 the	
 prac7cality	
 of	
 the	
 whole	
 concept	
 [6].	

Gartner	
 sees	
 the	
 CMDB	
 currently	
 heading	
 downwards	
 in	
 its	
 IT	
 opera7ons	

management	
 hype	
 cycle	
 [5].	

	

Clearly,	
 more	
 concrete	
 guidance	
 on	
 implemen7ng	
 CMDBs	
 is	
 needed.	
 	

A very common obstacle towards a successful CMDB implementation are
unrealistic expectations.
Most IT staff wish for access to better and more detailed documentation. As
the CMDB concept is so vaguely defined, there is – almost as with a
Rorschach inkplot – much room for interpretation and many envision a tool
that will finally address all their documentation needs (and is thankfully
provided, paid for and maintained by an ITSM project team).It is therefore
important to manage these expectations and to clarify which requirements a
CMDB solution will have to fulfill, and which functionalities are maybe nice-to-
have, but non-essential.

The CMDB is a tool to be used in the context of ITSM processes. The use
cases (or query cases) it needs to address, and which should be prioritized,
are in the context of ITSM processes,, e.g. problem management or change
management. Fulfilling all IT administrators’ requirements for a documentation
tool with a single solution of is an unachievable goal. It is important to convey
that in most cases, introducing a CMDB solution at an IT service provider
organization will replace only very few, if any, existing tools for documenting
configuration information.

There is an abundance of very varied software that claims to support
Configuration Management or CMDB implementation.
Still, almost all leading commercial solutions share the same basic
characteristics:
They support the definition of templates (or class definitions) for CI records,
which can contain typed (int, char, boolean…) attributes. CI-relationships are
almost always limited to be binary and directed, but can otherwise be freely
defined or adapted. Samples are provided, but generally the definition of the
CI record templates and CI-relationship types is up to the organization that
wants to implement the CMDB.
This is a quite demanding task for most organizations, that do not specialize in
ITSM, and usually requires extensive third party consulting.

Our goal is to introduce CMDB patterns – doing for CMDB design what
Fowler‘s Analysis Patterns [7] did for the design of business information
systems: Start to provide higher-order designs that can be reused across
projects and types of infrastructures and thereby facilitate the future reuse,
discussion and sharing of good CMDB design ideas.

In the following, we will discuss our first three patterns, which evolved while
facing design issues during the development of a CMDB for services of the
Leibniz Supercomputing Centre.

The first pattern is called Collective CI and is, of the patterns presented in this
paper, probably the most commonly used.

The idea is simple: If sets of components are either kept at an identical
configuration or are not configurable (e.g. keyboards, monitors…), a single CI
(Collective CI) can act as a placeholder for many components.

Of course, some information is lost when this pattern is used. If a set of
components is configured identically, but the documentation of the
relationships for each individual component is still essential, this pattern
should not be used.
However, quite often the most important CMDB use cases can still be
addressed using one CI for many components, and the reduction in
complexity actually enables a simpler and more effective analysis.

In this only slightly simplified example based on a real-world scenario (cp.
http://www.lrz.de/services/compute/supermuc/systemdescription/), the
Collective CI pattern is used to provide a very simple CMDB model of a
supercomputer.
The first idea for creating a CMDB model of this supercomputer was to mimic
the system architecture, creating one CI for each of the 900 hardware nodes
and linking them to the CIs of the “islands” in which they are arranged.

However, all the nodes fall into one of just two hardware types, so-called thin
nodes (with two 8-core processors each) and fat nodes (with four 10-core
processors each). All nodes of each type boot from one of two software
configurations, as a Compute Node or as a Login Node.
Consequently, for managing software-related incidents, problems, changes
and releases, the nodes of each type are interchangeable. As hardware
failures of individual nodes are relatively easy to diagnose and the nodes
easily exchanges, only little value is gained from distinguishing identically
configured nodes.
The model using the Collective CI pattern contains only 4 CIs compared to the
over 9000 that would have been required for the more straight-forward
approach. Still, the utility for the ITSM processes is almost as high and quite a
few typical use cases – e.g. analysing if a number of similar incidents has
occurred on all types of nodes or just one – are actually more easily
addressed.

In most commercial CMDB solutions, CI-relationships are point-to-point (1-
to-1) and are defined by direction (source, destination) and type („depends
on“, „is part of“, „is backed up by“ etc.) only.

Especially for the documentation of complex network topologies this often
results in models that are either very complex – or miss representing essential
information.

Above	
 Screenshots	
 show	
 the	
 visualiza7on	
 of	
 two	
 models	
 of	
 the	
 same	
 infrastructure,	

as	
 rendered	
 with	
 an	
 "auto	
 layout"	
 func7on	
 of	
 a	
 commercial	
 CMDB	
 solu7on	
 (iET	

Solu7ons	
 CMDB).	

	

A	
 requirement	
 was,	
 that	
 the	
 physical	
 interconnec7on	
 –	
 “which	
 port	
 of	
 the	
 switch	
 is	

the	
 connected	
 to	
 interface	
 e6a	
 of	
 the	
 NAS	
 filer?”	
 –	
 should	
 be	
 documented	
 in	
 the	

model.	

Model	
 1,	
 created	
 with	
 the	
 out-­‐of-­‐the-­‐box	
 data	
 model	
 of	
 the	
 CMDB	
 solu7on,	
 achieves	

this	
 by	
 defining	
 NAS	
 interfaces	
 and	
 switch	
 ports	
 as	
 CIs	
 and	
 using	
 simple	
 (a4ribute-­‐
less)	
 “network	
 connec7on”	
 rela7onships.	

Model	
 2	
 uses	
 an	
 adapted	
 data	
 model,	
 realizing	
 the	
 rich	
 CI	
 rela)ons	
 pa4ern,	
 adding	
 a	

“source	
 port”	
 and	
 “des7na7on	
 port”	
 a4ribute	
 to	
 the	
 network	
 connec7on	

rela7onship.	
 It	
 would	
 also	
 be	
 rela7vely	
 easy	
 to	
 add	
 other	
 informa7on	
 like	
 VLAN	

numbers,	
 link	
 capacity	
 etc.	
 without	
 introducing	
 more	
 CIs.	

	
 	
 	

When	
 visualized,	
 model	
 2	
 is	
 obviously	
 simpler	
 and	
 more	
 intui7ve	
 to	
 understand.	

One	
 of	
 the	
 most	
 interes7ng	
 features	
 of	
 the	
 modeled	
 network	
 topology	
 –	
 	
 that	
 the	

NAS-­‐filers	
 are	
 connected	
 redundantly	
 via	
 switches	
 SWP1-­‐2WR	
 and	
 SWP2-­‐2WR	
 –	
 is	

more	
 readily	
 apparent	
 by	
 looking	
 at	
 the	
 representa7on	
 of	
 model	
 2.	
 	

In out-of-the-box state, most CMDB solutions support CI records with simple
attribute types (integer, char etc.) only. Modeling of interdependencies – e.g.
“what IP addresses are bound to which MAC addresses?” – would require the
creation of many more CIs (e.g. one CI for each network address on each
layer) with many relationships.
Having multi-value attributes (aka an attribute type “record”) offers a much
more efficient solution.
Typical applciations are the documentation of the network configuration (e.g.
<DEV>;<MAC>;<IPv4>;<IPv6>;<DNS>) or the mass storage configuration
(e.g. <TYPE>;<DEVICE>;<SIZE>;<MOUNTPOINT>) of server systems.

CMDB patterns are documenting “good practice” (or “best practice”) in CMDB
design.
In the long term, they should not remain the product of a small number of
authors, but be used, discussed, refined and extended by a community of
CMDB practitioners.

The first step in the further development of a CMDB pattern catalogue would
therefore be promoting the use of existing patterns, and disseminating the
“pattern idea” for CMDBs in general, e.g. by integrating CMDB patterns in a
future guide on Configuration Management in FitSM-5 [8].

