
From Processes to Policies —
Concepts for Large Scale Policy Generation

V. A. Danciu, B. Kempter
Munich Network Management Team
University of Munich
Oettingenstr. 67
D-80538 Munich
Germany
{danciu|kempter}@nm.ifi.lmu.de

Abstract
Process-oriented IT management has gained more and more significance due to the need
to specify and control IT infrastructures and services. An indicator for this circumstance
is the success of the IT Infrastructure Library and the enhanced Telecom Operations Map.
A process-oriented view allows administrators to specify management tasks and to de-
compose complex tasks into process chains and hierarchies. Policy based management is
a promising candidate for implementation of processes, as it delivers a powerful concept
for the implementation of management tasks. Policies are well suited for large scale sys-
tems, as the distributed execution in heterogeneous environments is one of the important
features of policy architectures.

In this paper we introduce patterns for the automated generation of policies from pro-
cess specifications. To achieve the translation between process and policy specification,
we leverage common characteristics of processes and policies and define mappings that
serve as generic translation patterns. The use of these patterns allows automated trans-
lation of process definitions to policies. The approach enables high-level, intuitive man-
agement specification, while taking a step towards augmented automation and integration
at the operational level. We derive requirements imposed by the translation and present
ProPolis, a policy language incorporating those requirements.

Keywords
IT management process, policy-based management, translation patterns

1 Introduction
Process orientation is gaining more and more attention in the industry and research area.
The need to implement processes throughout all parts of a company grows, as it promises
synergy and automation effects through integration with existing business processes.

This paper focuses on IT management processes. In our view, a management process
at the operational level consists of a set of management operations, executed on managed
systems. The IT infrastructure library (ITIL) [18] and the enhanced Telecom Operations
Map (eTOM) [11] are prominent representatives of standardization documents, aiming to
achieve common specifications of management processes.

At present, the assessment of business practices and the derivation of process specifi-
cation from the analysis results continually gain importance in the IT industry. Reference
process specifications provide a common base for this effort. The resulting, organization-
specific management processes are implemented using various technologies. Some emerg-

ing technologies allow the direct execution of processes/workflows, however they are con-
strained to specific services or specific types of managed objects.

On the other hand, policy based management is a concept accepted by the research
community as a powerful means of specifying management down to implementation
level.

The greatest benefit from deploying policy-based management is expected for orga-
nizations that maintain large networks and cater for large user bases. One of the major
difficulties encountered, when such an organization moves to policy-based management,
is the large number of policies that have to be specified ’from scratch’. In consequence,
the initial cost of introducing policy-based management is quite high. Changes to the busi-
ness processes have to be reflected as changes to the policy base, thus adding maintenance
cost.

In this paper we systematically analyze common management process patterns and
derive a generic mapping to policies. By applying such a mapping, policies can be gen-
erated automatically from process specifications. This approach allows a more intuitive
management design through specification of management processes, and enables the use
of graphical tools. The policies generated from the specification implement the opera-
tional management.

Using a generic approach, we avoid constraining the mapping to specific policy lan-
guages or process representations. By satisfying the specific requirements imposed by the
process to policy translation, the implementation complexity of a translator software can
be diminished. For this reason, a modular, process-aware policy definition language called
ProPoliS has been designed. A ’machine-friendly’, XML-based, prototypical implemen-
tation of this language serves as a platform for further study.

Section 2 presents the necessary concepts for a process to policy mapping. Section
3 is dedicated to the mapping of management processes to policies. From the common
characteristics of processes (and policies) we developtranslation patterns. By analyzing
a process definition and identifying such patterns, a translation tool can generate policies
from process partitions. An example process from the area of accounting management
demonstrates the applicability of our concept. Section 4 introduces the policy definition
language ProPoliS.

Publications of importance to our approach are discussed in section 5. Section 6 sum-
marizes the paper and presents further work.

2 Fundamental Concepts
To specify a generic mapping between processes and policies, we identify their common
characteristics by analyzing their elements. To achieve general, valid mapping rules called
translation patterns, a general representation of management processes and policies has to
be identified. For this purpose, prominent standards and research work have been analyzed
as a prerequisite of Sections 2.1 and 2.2.

2.1 Common Process Characteristics

To summarize important work [11, 18, 22, 24], a process can be informally described as
a set of entities, events and actions:

2

Entities can be either human personnel or managed objects (MOs). Entities may
generate events or execute actions. Examples for entities are: ’change
manager’, ’user’ and ’application server’.

Events communicate a change of state in an entity, that is relevant to man-
agement. Examples for events are: ’document changed’, ’user requests
service’ and ’application server restarted’.

Actions are performed by entities in response to events. They can perform a
change of state in entities. A special form of action is the generation
of an event. Examples for actions are: ’update document’, ’authenticate
user’ and ’restart application server’.

Process chaining is implemented by having the source process generate an event that
is significant to the target process. Thus, processes can be modeled independently of each
other, having their interfaces to other processes defined by the expected and potentially
generated events.

Introducing the concept ofrich eventsallows an additional information flow between
processes. Rich events (as e.g. in [20]) serve as a transport facility for any application-
specific information.

2.2 Common Policy Characteristics

From the existing work on policies ([7, 21, 15, 9, 17]) a canonical form for policies can
be derived.

Subject designates the entity to which the policy applies.
Target identifies an entity that is affected by the policy (i. e. the target of the

action of the policy).
Event describes the event which causes the policy to be evaluated.

Action is the operation performed on atarget to enforce the policy.
Condition is the constraint under which the policy is enforced.

While only the event, action and condition fields are ubiquitous, the introduction of
subjects and targets is necessary for referencing entities.

3 Mapping Management Processes to Policies

Entity

Action

Event
Constraint

Event

Action

Target

Subject

P
ro

ce
ss

 c
ha

ra
ct

er
is

tic
s

P
ol

ic
y

fie
ld

s

Figure 1 Mapping process
to policy characteristics

The characteristics of management processes are used as
a common base for the targeted mapping. Figure 1 shows
an overview of the mapping of characteristics. Entities are
mapped to subjects and targets. Thus, persons or MOs can
have policies specified for them (subject). They can also be
affected by policies (target).

Actions in process semantics correspond to actions of
policies. An action can be anything between one single func-
tion call and entire scripts executed on a target MO. Events
in processes match the event-constraint-pair in policies. While
it is common for process specifications to contain condi-
tions, these can be represented using a sufficiently detailed typing of events. Such a typ-
ing will yield a very large number of event types and is, in consequence, unsuited for
implementation. Even if, in our view, conditions are not part of the indispensable process
characteristics, we employ UML decision notation (e.g. in Figure 3) for clarity. We deem
an event in process to have happened, when an event notification (e.g. a signal) has been
received, and the conditions (if any) yieldtrue.

3

3.1 Translation primitives

To extract translation primitives, we describe the fundamental patterns occurring in pro-
cesses and give the general notation of the policies generated from them. We use UML
Activity Diagrams [24] for graphical description of processes, though, in general, any
equivalent notation can be used.

Basic patterns
The most fundamental structure in an event-driven process is the unconditional execution
of an action in response to an event. As shown in Figure 2a, several events can be specified
to trigger the execution of the action (the comma in the event list impliesor).

In most cases, the entity responsible for the action and the target of that action need to
be specified as well (Figure 2b).

myEventN

event{myEvent }

action{ myAction()}
target{myEntity2}
subject{ myEntity1}

policy {

}

} myAction()action{

Process1

(a)

(b)

Process1

myAction()

myEvent

myAction()

myEntity1

myEntity2

myEvent1 policy {

}

event{myEvent1,...,myEventN}

Figure 2 Basic patterns

The first case results in a single policy with only theeventandactionfields present.
In the second case,subjectand target of the policy are determined by examining the
direction of the arrows that connect the entities to the action.

An entity having an arrow pointingtowardsit (UML output object) results in a policy
target, while entities having arrows pointingaway(input object) from them (and towards
the action) result in policy subjects. The policies resulting from the patterns are shown in
order in Figure 2.

Decision pattern
The process in Figure 3 chooses between two different actions depending on the value of a
predicate. Two policies are generated from this process, differing at least in the condition
field.

The general case has several decision branches, each carrying its guard condition. In
this case, a number of policies equal to the number of branches needs to be generated in
such a way that every policy includes the condition of the decision branch it corresponds
to. Note that any condition can be formulated for a decision branch; for clarity, Figure 3
is constrained to an<expression> <operator> <expression> pattern.

Parallel actions and synchronization
Parallelization and synchronization in UML Activity Diagrams are modeled usingsynch
bars. The generation of policies for parallel actions in a process is done by generating
one policy for each action, analogously to the generation of policies for multiple decision
branches.

Synchronizing actions requires the policy system to track execution of actions and to

4

event{myEvent}

condition{ } variable1 < value1
action{ myAction1() }

policy {

}

event{myEvent}
action{ myAction2() }
condition{ } variable1 > value1

policy {

}

myEvent

[variable1 < value1]

myAction1() myAction2()

[variable1 > value1]

Figure 3 Decision pattern

generate events upon their termination. We call this type of internal eventsintermediary
events. They need not be noted in the process specification but can be deducted from it.

synch1

P
ro

ce
ss

2 synch1

P
ro

ce
ss

2

done_synch1

done_myAction1 done_myAction2

policy { priority="99"

action{ setCompleted(synch1,
myAction1)

event{ }done_myAction1
target{ }SynchService

}

policy { priority="99"

action{

event{done_myAction2
target{ }SynchService

myAction2)
 setCompleted(synch1,

}

}}

policy { priority="0"
event{done_myAction1,

done_myAction2 }
target{ }System
action{generateEvent(done_synch1)
condition{
SynchService.isCompleted(synch1)

}
}

}

myEvent

P
ro

ce
ss

1

policy {

}
action{ myAction2()}
event{myEvent}

policy {

}

event{myEvent}
action{ myAction1()}

myEvent

P
ro

ce
ss

1

myAction1() myAction2()

Figure 4 Synchronization pattern

Keeping state To implement synchronization, an instrument is required that can keep
track of all the synchronized actions pending. That instrument will need to record the
completed actions in the context of a synchronization point.

We design this instrument as aSynchService, that provides three functions to be used
in policies. To distinguish concurrent instances of the process, a label calledsynchID is
used. For each synchronization procedure, an instance of the service needs to be initial-
ized by the policy system with an identifier of the synchronization point, the number of
concurrent actions, and the names of these actions:
void init(String synchID, int numberOfActions, String[] actionNames)

Completion of an action must be recorded with the service using the following function:
void setCompleted(String synchID, String actionName)

The service can be used to determine whether there are pending actions, or if the synchro-
nization procedure is complete:
boolean isCompleted(String synchID)

5

Execution order In response to an event pertaining to the synchronization point (synch1),
two policies will fire: one that sets the state of the completed action, and one that checks
if all actions have completed.

It is crucial that these policies are evaluated in order, i.e. the state of the completed
action must be setfirst. With a random order of evaluation, the last action to complete may
be recorded at the SynchService after the last check for completion has been performed;
in consequence, the synchronization barrier will never be passed.

The ordering of policy evaluation is enforced usingpriorities as suggested in [9, 17],
with a priority of 0 being the lowest. Execution ordering by means of priorities introduces
the problem of priority assignment. For all synchronization instances, only two different
priority values are needed – for policies setting the state and policies checking the state;
these can be assigned automatically. Policies belonging to different instances will not
interfere with each other, since they will call the SynchService using differentsynchID
values. Policies governing the synchronization of the pattern are shown in Figure 4.

Fault handling
The execution of actions enforced by policies sometimes fails. Though most policy-based
approaches do not seem to address this problem, handling failure of actions is an important
part of a robust process design. While action failure detection is impossible to assert in
general, implementations relying on a form of remote procedure call with synchronous
procedure call semantics (e.g. based on a middleware like [6, 23]) are expected to provide
it.
policy {

event{myEvent1 }
target {myTarget}
action {default {myAction1()}

onError {myAction2()}
}}

Figure 5 Secondary action

Thus, it is useful to allowsecondaryactions
to be specified within policies. They will be ex-
ecuted when theprimary action (i.e. the action
hitherto referred to) of the policy fails (Figure 5).
This construct allows process patterns that need to
test the success of an action to be translated simi-
larly to the condition pattern sketched in Figure 3,

but generating only one policy. The secondary action can be used to generate an event,
transferring control to an error handling process [12].

Complexity estimates
The size of processes become very large at a detailed level. The number of policies gen-
erated from such a process specification is a co-determinant of the maintainability of
the management system. Fortunately, the number of policies created from the patterns
presented in this section can be estimated with some accuracy. In the following we will
provide estimates for the number of policies generated from every pattern.

Conventions We define the following symbols used in the formulas:

N The number of policies generated; in general this is the result of the formulas.
B The number of branches in the condition pattern
Ba The number of branches ending in an action
Bt The number of branchesnot ending in an action
A The number of actions in the parallelization and synchronization patterns

Basic, multiple events, fault handling patternsIn their isolated form, these pattern create
only one policy.

N = 1 (1)

6

Decision patterns The number of policies generated from a decision pattern is depen-
dent on the number of available decision branches. In general, decision branches, that end
in an action, yield one policy each. For decision branches not immediately leading to an
action, the target of the branches must be analyzed.
Ba ≤ N ≤ B = Ba + Bt (2)

Parallel actions Assuming a policy definition language that uses one single action per
policy, the number of parallelized actions is determinant of the number of policies.
N = A (3)

Synchronized actionsUsing the translation suggested, two policies will be generated for
every synchronized action: one for registering its completion and one that checks if the
completed action was the last one in the synchronization instance.
N = 2A (4)

The sum of all the complexities of all patterns occurring in a process yields the com-
plexity of the process as a whole. Taking our estimates into account, the complexity of
the number of policies isk · n, n being the number of patterns, andk a function yielding
the typical number of policies created per pattern. Sincek is a constant term, the order is
O(n).

3.2 Mapping an Example Process

In order to illustrate the modeling of processes, we have chosen an example based on
the accounting process presented in [21]. The example describes parts of the processes
Change, Deploy metersandConfigure accounting systemthat are triggered if a new user
is being added to a service.

The change process is initiated by the eventuserAddRequest. In response to the event,
the actionaddUser() is executed or the eventuserAlreadyExists is generated, depend-
ing whether the conditiondirectory.userExists() is false or true (arguments to the
userExists() function are transported by the event). If the user is added successfully, the
eventuserAdded is generated.

In response to the eventuserAdded, features of the processDeploy metersare acti-
vated. The policies in Figure 6 originate from theDeploy metersprocess, that contains the
parallelization/synchronization pattern. For every new user, a usage meter for the service
that produces meter records (createMeter()) and a sensor (createSensor()) counting
the accountable units is created.

As these actions can be executed independently of each other, two parallel control
flows are initialized. Both actions are synchronized before the eventmeterInstalled is
dispatched. This event, in turn, triggers features of theConfigure accounting systempro-
cess. Following the same pattern, the newly created meter is configured within this pro-
cess.

3.3 Requirements for a Policy Definition Language

Based on the common characteristics of management processes and policies identified
in Section 2.1 and 2.2, generic translation patterns were developed. The derived patterns
and the complexity estimates for the translation indicate that process and policies fit each
other quite well at the operational level. Our approach supports any policy language fea-
turing the elements described in Section 2.2. Nevertheless, meeting a number of require-
ments imposed by the translation will help reduce complexity in the implementation of

7

request
Customer

meters
Deploy

:ChangeManager

userAddRequest

:Factory

:Directory

action{ }setCompleted(synch1, createMeter())
target{ }SynchService
event{ }done_createMeter
priority="99"

policy {

}

target{ }SynchService

priority="99"
event{ }done_createSensor

action{ }setCompleted(synch1, createSensor())

policy {

}

action{ }generateEvent(done_synch1)
target{System}

condition{ }SynchService.isCompleted(synch1)

priority="0"
event{ }done_createSensor

policy {

}

target{System}
event{done_synch1 }

target{System}

condition{ }SynchService.isCompleted(synch1)

event{ }done_createMeter
priority="0"

Change

m:Meter
id="meter_1"

[true][false]
directory.userExists()

Configure accounting system

userAlreadyExists

userAdded

userAdded

createSensor()

meterInstalled

createMeter()

meterReadyconfigureMeter()

meterInstalled

addUser()

policy {

}
action{ }generateEvent(meterInstalled)

policy {

}

action{ }generateEvent(done_synch1)

Figure 6 Example process and mapping of deploy meters

a process-to-policy translator, enable maintenance and debugging features, and natively
support robust process design.

Rich Events Events are the central mechanism for notifications and process chaining.
Rich Events are an elegant and easy means to transport information necessary to process
activity.

Execution Order Processes demand the possibility to preset an execution order of con-
currently active policies.

Fault Handling For robust process design, it is necessary to be able to define actions
that handle actions’ failure.

Synchronization Parallelization and synchronization mechanisms for actions must be
provided. This mechanism, in turn, requires the detection of action termination.

Partial Reverse Mapping Processes may change over time, entailing an update of the
associated policies. Also, since faulty policies will always have been derived from an
erroneous process specification, a reverse mapping of policies (back) to processes is re-
quired for debugging.

8

4 ProPoliS: A Process Aware Policy Definition Language

The automated generation of policies from process specifications poses new requirements
on a policy language (Section 3.3), while the inherently automated management of the
policies themselves allows the introduction of new language features.

4.1 Language Features

Tagging Mapping policies back to their origin process can be supported bytaggingev-
ery policy with the identifier (e.g. name) of the process it is derived from. Policies trig-
gering transitions between processes are tagged with the names of the source and target
of the transition.

:Repository

:p1 Policy

procs[] = {proc1}
priority = 0
Id = 32

:e1 Entity

:ev2 Event

:e2 Entity

:a5 Action

:c2 Condition

:e3 Entity

:ev1 Event

:c1 Condition

:e4 Entity

policy parts
Local

policy parts
Referenced

policy parts
Unused

policy parts
Local

:a1 Action

type = void
params[] = { }
name = action1

:p2 Policy

procs[]={proc17}
priority = 0
Id = 42

<<subject>>

<<target>>

<<target>>

Figure 7 Repository for policies and policy parts

Modular policies In PCIM [5],
an object oriented model for pol-
icy representation is proposed. In
the context of management pro-
cesses, the modularization of poli-
cies leverages already defined in-
formation by allowing reuse of e.g.
configuration items(CI) defined
in an ITIL Configuration Manage-
ment process. Consistency between
entities and roles can be ensured
by providing a comprehensive set
of entity definitions defined within
an organization during process mod-
eling. This also ensures consis-
tency between the entities and roles
used in policies.

Therefore, we apply PCIM’s
modularization concepts in decom-
posing policies into parts, thus allowing the fields of the policy – thepolicy parts– to be
locally defined or references to a global part definition. Note that local parts are only us-
able by the policy within which they are defined. Policies as well as policy parts are stored
in a policy repository, as shown in Figure 7.

Roles and Domains Roles and domains are well known and pervasively implemented
concepts [7]. ProPoliS allows the substitution of domains and/or roles for entities, i.e.
instead of an entity, a role or domain can be specified.

Management of policies using meta-policiesAutomated maintenance of the policy base
can be performed using meta-policies. We define meta-policies as operational policies
operating on policies or policy parts.

4.2 ProPoliS Syntax Overview

ProPoliS was designed with an XML mapping of the language in mind. To meet this
requirement, language elements arewell formedin the sense of [26]; we use braces as
delimiters. Some language elements are designed as attributes, allowing lists as the most
complex data structure for their values. We use value types defined in [27] to further ease
the mapping. An overview of the syntax specification in EBNF is given in the following.
Due to space constraints, some of the grammar productions are left out.

9

References Globally defined policy parts carry anid to allow references to them from
within policy definitions. Additionally, parts can be marked as ’library’ items; imple-
mentations should not delete unreferenced parts with this flag set. TherelatedProcess

construct allows tagging policies and parts with process identifiers.
〈processAssignable〉 ::= 〈referable〉 [〈relatedProcess〉]
〈referable〉 ::= ” id=” 〈xsd:ID〉 [〈libraryItem〉] [〈comment〉]

〈relatedProcess〉 ::= ” relatedProcesses{” 〈process〉 { ” ,” 〈process〉 } ”}”
〈process〉 ::= 〈identifier〉 | ”OTHER” | ”ALL”

Policy A policy consists of the main fields (event, action etc.), attributes and admin-
istrative data. The policy descriptor and attributes determine its state (active or not), its
priority, expiration date and authors. The language version can be noted for a policy, as
ProPoliS may evolve to meet new requirements.

〈policy〉 ::= ”policy{” 〈processAssignable〉 [”domain{” 〈domain〉 ”}”]
[〈subjectSet〉] [〈targetSet〉] 〈eventSet〉 〈actionSet〉
[〈constraintSet〉] [〈descriptor〉] 〈attribs〉 ”}”

〈descriptor〉 ::= ”descriptor{” [〈createdBy〉] [〈creationDate〉]
[〈lastModified〉] [〈modifiedBy〉] [〈expires〉] ”}”

〈attribs〉 ::= ”attributes{” 〈enabled〉 [〈priority〉] [〈version〉] ”}”

Main policy fields The main policy parts are organized in typed sets. The definitions
of all policy parts follow the same pattern of allowing either a local definition, a single
reference to a globally defined part, or a group of references. The meta-syntax is:

〈part〉 ::= ”name{” 〈local def.〉 | 〈ref〉 | 〈group〉 ”}”

As examples, thetargetSet andconstraintSet productions are shown below. Con-
straint sets are in normal form and consist of unary and binary predicates applicable to
values including literals, object attribute values and function return values.

〈targetSet〉 ::= ” targetSet{” (〈target〉 | 〈targetRef〉 | 〈targetGroup〉) ”}”
〈constraintSet〉 ::= ”constraintSet{” (〈cnf〉 | 〈dnf〉

| 〈constraint〉 | 〈constraintRef〉) ”}”

Actions are composite; they consist of a default action, and one that is to be executed
if the first one fails. We use a notation common in object oriented languages, where an
action consists of a symbol denoting a method name and a set of parameters. An object
name is optional. We specify a special action for the generation of events, thus forcing
implementation of event generation in the policy system.

〈action〉 ::= ”action{” 〈processAssignable〉
〈defaultAction〉 [〈errorAction〉] ”}”

〈actionRef〉 ::= 〈ref〉
〈actionGroup〉 ::= 〈group〉

〈defaultAction〉 ::= ”default{” 〈genericAction〉 ”}”
〈errorAction〉 ::= ”onError{” 〈genericAction〉 ”}”
〈genericAction〉 ::= 〈methodCall〉 | 〈generateEvent〉
〈methodCall〉 ::= ” invoke{” [〈objectName〉 ” .”] 〈method〉 ”}”
〈generateEvent〉 ::= ”generateEvent{” 〈eventName〉 ”(” 〈parameterSet〉 ”)}”
〈method〉 ::= 〈identifier〉 ”(” 〈parameterSet〉 ”)”
〈eventName〉 ::= 〈identifier〉
〈objectName〉 ::= 〈identifier〉

The overview given does not constitute a complete specification, but is focused on
constructs relevant to process translation. Language constructs not shown here include

10

role and domain definitions, parameters and values, as well as constructs for logical ex-
pressions to be used in conditions.

5 Related Work
To our knowledge, the mapping of management processes to policies has not been ad-
dressed up till now. For this reason, we present prominent representative work in the area
of management processes and policies, and discuss its significance in the focus of this
paper.

5.1 Processes

Reference ProcessesThe IT Infrastructure Library (ITIL) [18] is a continuously evolv-
ing collection of best practice documents, with regard to the service management of a IT
service provider. It defines (among others) the process sets ofservice supportandser-
vice delivery. Processes descriptions are derived from expert knowledge in a particular
field and written more or less in prose, so that ITIL can be regarded to be a bottom-up
approach. To use ITIL as a starting point for our approach, a few prerequisites must be
met: as ITIL offers no formal process language, a direct mapping is not possible. The
description of process chaining is often missing. Yet, an example for the formalization of
the ITIL incident management process provides proof of concept that ITIL is a suitable
and important source for formalizing management processes[4]. The event-driven chain-
ing of processes is described using the event process chains (EPCs) described in ARIS
[22]. EPC is a graphical modeling language and has equivalent expressiveness as UML
activity diagrams.

A common process model for accounting management is presented in [21]. The depen-
dencies of the subprocesses are described in a formal way using UML activity diagrams
[19]. A mapping from the accounting management processes to policies is demonstrated,
though a systematic approach for the mapping is not described.

The enhanced Telecom Operations Map (eTOM) [11] published by the TeleManage-
ment Forum in 2002 is a business process framework for the telecommunication industry.
A former, yet more formal representation of the processes, also describes the concrete
association of processes[10].

eTOM is customer-centric and covers a broad range of important processes including
processes for strategy, infrastructure, product, and operations. It has a hierarchical decom-
position approach ranging from Level 0 (the highest conceptual level) down to Level 4.
Level 0 covers seven process groups which are decomposed in Level 2 to over 80 (sub-)
processes. Level 3 and Level 4 processes are the most detailed processes and include a
process flow description (only at Level 2 all processes are described in eTOM). The pro-
cesses are not described in a formal way, and neither input and output parameters, nor the
linking of processes are described explicitely. eTOM serves as an important framework
to define management processes. Using eTOM as a starting point of process to policy
translation, first a formalization of the processes has to be accomplished.

Workflows and Business ProcessesSeveral process definition and formalization frame-
works have been authored by different institutions in the field. Prominent examples are
the Workflow Coalition’s (WfMC) XML-based process definition language [25], as well
as the Business Process Modeling Language [2] defined by the Business Process Man-
agement Initialive (BPMI) and the ebXML Business Process Specification Schema [3].

These specifications may converge (functionally) into the Business Process Execution
Language for Web Services (BPEL4WS) [1], a specification with strong support in the in-

11

dustry, aiming at actual execution of business processes using web service technology. For
process to policy translation, BPEL provides useful formalisms for the description of ac-
tions, as well as some support for entity definition and asynchronous messaging. BPEL’s
focus on web services constrains its general applicability; nevertheless, the underlying
process specification facilities appear useful.

5.2 Policies

Policy based management is a field of intensive research activities since several years. [16,
13] introduce a policy hierarchy featuring different abstraction levels to which a policy
can belong to. [13] defines three levels, namely strategic, goal oriented and operational
policies. As we focus on operational processes, operational policies are discussed.

No standard for policy languages has evolved yet, but as a common understanding, a
policy can be defined [8, 16] as:A policy is a persistent and declarative specification of a
rule regarding the behavior of a system. A policy is derived from management goals.

[7, 8] introduces Ponder which is one of the furthest developed policy definition lan-
guage (PDL) in the research community. Significant for Ponder is the introduction of
different types of policies: authorization and obligation policies. Authorization policies
express certain rights of a subject to execute an action (which exists in the form of ad-
mission and prohibition). On the other hand, an obligation policy specifies the duty to
execute an action if a certain event occurs. Ponder covers constructs for roles, groups and
domains to handle a set of objects at once. Although Ponder is designed to express any
management task, a focus towards access control is established. If Ponder is chosen as
target PDL for process translation, only obligation policies are generated. As Ponder does
not support tagging directly, this feature could be introduced by coding the name of the
process as part of the policy name.

The PDL developed in this paper is a enhancement of the PDL outlined in [21]. Im-
portant add-ons are tagging and modularity.

[15] defines a policy as a function that maps a series of events to a set of actions.
Their policy definition language calledPDL has the structure of an event-condition-
action (ECA) rule. Two basic constructs exist: ’policy rule’ and ’policy defined event
proposition’. As an important difference to Ponder,PDL does not support the concept of
subjects, targets, or grouping structures. [14] introduces a workflow language forPDL.
It defines workflows as aspecification of complex actionsof a policy action. Thus, its
understanding of workflows is an extention of the policy language.

6 Conclusions and Further Work
Process orientation is one of the important trends in IT management. While processes
are an established concept in core business areas, in the area of IT management process
orientation is presently being widely deployed. On the other hand, policy based manage-
ment is a promising candidate for the execution of management operations on large-scaled
managed systems. A mapping of processes to policies is of great interest as it allows an
important automation step.

In this paper, we have systematically analyzed the characteristics process of manage-
ment processes in a top-down approach. To achieve a broad applicability, no specific pro-
cess or policy description was presumed. In order to map processes to policies, generic
translation patterns were extracted, the fundamental ones being decision, parallelism and
synchronization patterns. Moreover, requirements like reverse mapping and fault han-
dling for a suitable policy definition language were derived from the analysis phase. A

12

complexity estimate indicates only a linear order of generated policies, demonstrating the
applicability of our approach for large scale systems. A policy definition language called
ProPoliS was specified to reflect the requirements of process orientation.

Our approach can be instrumental to a rapid implementation of translation tools for
a given concrete process specification and policy definition language. With such a tool,
only the process definition is required; most operational parts of the management system
are created automatically.

In the future, we will apply the concepts presented in this paper to existing formalisms
for process/workflow definition, and implement translation tools with ProPoliS as the
policy language. Another area of interest is the reverse mapping, generating process de-
scriptions out of an existing policy base.

Acknowledgment

The authors wish to thank the members of the Munich Network Management (MNM)
Team for helpful discussions and valuable comments on previous versions of this paper.
The MNM Team directed by Prof. Dr. Heinz-Gerd Hegering is a group of researchers
of the University of Munich, the Munich University of Technology, and the Leibniz Su-
percomputing Center of the Bavarian Academy of Sciences. Its web–server is located at
http://wwwmnmteam.ifi.lmu.de.

References
[1] Tony Andrews et al. Business Process Execution Lanugage for Web Services Version 1.1.

Specification, November 2003.
[2] Business Process Modeling Lanugage. Specification, Business Process Management Initiative

(BPMI), November 2002.
[3] ebXML Business Process Specification Schema Version 1.01. Specification, UN/CEFACT

and OASIS, May 2001.
[4] M. Brenner, I. Radisic, and M. Schollmeyer. A Criteria Catalog based Methodology for An-

alyzing Service Management Processes. In M. Feridun, P. Kropf, and G. Babin, editors,Pro-
ceedings of the 13th IFIP/IEEE International Workshop on Distributed Systems: Operations
& Management (DSOM 2002), Lecture Notes in Computer Science (LNCS) 2506, pages 145–
156, Montreal, Canada, October 2002. IFIP/IEEE, Springer.

[5] Common Information Model (CIM) Specification Version 2.2. Specification, June 1999.
[6] Common Object Request Broker Architecture (CORBA/IIOP). Omg specification, Object

Management Group, December 2002.
[7] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. Ponder: A language for Specifying Security

and Management Policies for Distributed Systems. The Language Specification Version 2.3.
Imperial college research report doc 2000/1, Imperial College of Science, Technology and
Medicine, University of London, Department of Computing, October 2000.

[8] N. C. Damianou.A Policy Framework for Management of Distributed Systems. PhD thesis,
Imperial College of Science, Technology and Medicine, Universi ty of London, Department
of Computing, February 2002.

[9] DMTF Policy working group. CIM Core Policy Model White Paper. White Paper, Distributed
Management Task Force, June 2003.

[10] Telecom Operations Map. Technical Report GB 910 Approved Version 2.1, TeleManagement
Forum, March 2000.

[11] enhanced Telecom Operations Map (eTOM), The Business Process Framework For The Infor-
mation and Communications Services Industry. Technical Report GB 921 Approved Version
3.6, TeleManagement Forum, November 2003.

13

http://wwwmnmteam.ifi.lmu.de

[12] H.-G. Hegering, S. Abeck, and B. Neumair.Integrated Management of Networked Systems
– Concepts, Architectures and their Operational Application. Morgan Kaufmann Publishers,
ISBN 1-55860-571-1, 1999.

[13] Thomas Koch.Automated Management of Distributed Systems. PhD thesis, Fern-Universität
Hagen, Germany, 1997.

[14] Madhur Kohli and Jorge Lobo. Policy based management of telecommunication networks.
In Policy Workshop 1999, Bristol, U.K., 1999.

[15] Jorge Lobo, Randeep Bhatia, and Shamim A. Naqvi. A policy description language. InPro-
ceedings of the Sixteenth National Conference on Artificial Intelligence (AAAI-99), pages 291–
298, 1999.

[16] Damian A. Marriott. Policy Service for Distributed Systems. PhD thesis, Imperial College
London, June 1997.

[17] B. Moore, E. Ellesson, J. Strassner, and A. Westerinen. RFC 3060: Policy core information
model – version 1 specification. RFC, Internet Engineering Task Force (IETF), February
2001.

[18] Office of Government Commerce (OGC), editor.Service Support. IT Infrastructure Library
(ITIL). The Stationary Office, Norwich, UK, 2000.

[19] UML 1.4 Interchange Metamodel in XML. TC Document ad/01-02-15, Object Management
Group, February 2001.

[20] Notification Service Specification. Technical Report formal/02-08-04, Object Management
Group, August 2002.

[21] I. Radisic. Using Policy–Based Concepts to Provide Service Oriented Accounting Manage-
ment. In R. Stadler and M. Ulema, editors,Proceedings of the 8th International IFIP/IEEE
Network Operations and Management Symposium (NOMS 2002), pages 313–326, Florence,
Italy, April 2002. IFIP/IEEE, IEEE Publishing.

[22] A.-W. Scheer.ARIS – Business Process Modeling. Springer, Berlin, 1999.
[23] Sun. Java remote method invocation specification. Technical report, Sun Microsystems, 1997.

http://www.javasoft.com/products/jdk/1.1/docs/guide/rmi/spec/ rmiTOC.doc.html.
[24] OMG Unified Modeling Language Specification, Version 1.5. Technical Report formal/03-

03-01, Object Management Group, March 2003. http://www.omg.org/cgi-bin/doc?formal/03-
03-01.

[25] Workflow Process Definition Interface – XML Process Definition Language Version 1.0.
Specification, Workflow Management Coalition, October 2002.

[26] Extensible Markup Language (XML) 1.0. W3c recommendation, W3C, 2000.
[27] XML Schema Part 2: Datatypes. W3C Recommendation REC-xmlschema-2-20010502, May

2001.

Biography
Bernhard Kempter studied computer science at the Munich University of Technology, Germany
(TUM). He joined the MNM team after receiving his diploma degree (M. Sc.) in 1999 and is cur-
rently a Ph. D. candidate at LMU. There he also works as a research and teaching assistant. His
research interests focus on integrated networks and management in general, with an emphasis on
service management and the resolution of policy conflicts.

Vitalian A. Danciu studied computer science at the Ludwig-Maximilian-University in Munich,
Germany (LMU), where he received his diploma degree (M. Sc.) . Since joining the MNM team
in 2003, he is a Ph. D. candidate at LMU while working as a research and teaching assistant. His
research interests include policy-based, process-oriented management, as well as management of
mobile systems.

In: Managing Next Generation Convergence Networks and Services:

Proceedings of 2004 IEEE/IFIP Network Management & Operations Symposium3 Seoul, Korea

14

	From Processes to Policies --- Concepts for Large Scale Policy Generation
	Abstract*2pt
	Keywords*2pt
	Introduction
	Fundamental Concepts
	Mapping Management Processes to Policies
	ProPoliS: A Process Aware Policy Definition Language
	Related Work
	Conclusions and Further Work

	Literatur

