
Automated generation of dependency models

for service management

Christian Ensel�

Munich Network Management Team

University of Munich, Dept. of CS

Oettingenstr. 67

D-80538 Munich, Germany

Phone: +49-89-2178-2171, Fax: -2262

E-Mail: ensel@informatik.uni-muenchen.de

Abstract

Various service management tasks depend on
knowledge about objects they are applied to.
Understanding dependencies between these ob-
jects is of special interest. Such dependency
models are neither generally available nor easy
to create. Creating them manually is expensive
in regard to both time and money. In addition,
they must be brought up to date, re
ecting the
frequent changes in the managed environment.

After motivating use of dependency models for
various service management tasks, this article
presents a new approach on the modelling it-
self. It is shown that the proposed modelling
process enables automated generation of such
models. To add
exibility and to guarantee
applicability in many environments a special
technique based on neural technologies is used.
This avoids or at least reduces the disadvan-
tages of a purely manual creation process.

�The author's work is sponsored by the \Bun-
desministerium f�ur Bildung und Forschung" (BMBF)
project \LEONET"

1 Introduction

Service management is becoming more and
more important within the area of IT-
management. Its signi�cance is stressed by
the nowadays commonly used expression of the
paradigm shift towards service management |
expressing that IT-management is no longer fo-
cused on components enabling the services, but
driven by top down requirements. These have
their origins in demands of service customers,
contracts specifying \quality of service" (ser-
vice level agreements) and company policies.

The problems of service management, such as
specifying these requirements, breaking them
down to components, etc. have not been solved
yet. However, with the subject becoming more
and more important, also more work on this
subject is being carried out.

One special diÆculty arises from the fact that
services cannot be considered isolated tasks.
They tightly depend on other (sub-)services
and | on the lower level | on operating sys-
tems, physical components and communication
infrastructure. Obviously, several tasks for ser-

1

vice management bene�t from | or are even
impossible without | the knowledge about
inter{service dependencies. Such tasks are de-
scribed in section 2.

Descriptions of such dependencies of services
are commonly called service dependency mod-
els. Section 3 gives more exact de�nitions of
several distinct types of models.

In section 4 this article describes what existing
problems, mainly concerning the model's man-
ual creation. Later, section 5 presents a pro-
cess enabling the automated creation of models
along with discussions of the resulting bene�ts.
As the project is still in its beginnings, a pro-
totype cannot be presented yet; nevertheless,
an analysis of some aspects of implementation
follow in section 6.

2 Existing Applications of

Dependency Models

Several research projects (e.g. [12], [2]) already
investigated the advantages of models of de-
pendencies between services. A common re-
sult of these examinations is that | assuming
models do already exist | great bene�ts can
be achieved for management tasks.

One application is the so-called root cause anal-
ysis. It helps to �nd a common (root) cause of
problems or faults detected at di�erent places
within an environment. It may be applied to
network components reporting error conditions
as well as on services where, e.g. the service
users detects the problem. The reason for the
actual need of such root cause analysis is that
error conditions or problem reports brought
to the administrators or management systems,
are just description of symptoms. To be able
to derive their causes, further knowledge about
the dependencies among them is necessary. [6],
[5] and [9] explain this subject in detail.

Similar dependency models are needed when
determining availability requirements on ser-
vices from superior ones (looking from a top
down perspective) respectively for the calcula-
tion of service availability from the availabil-
ity of underlying services (bottom up), as de-
scribed in [10].

The management on the lower OSI layers also
bene�ts from such models. E.g., [11] applies
reasoning on models for network performance
management.

The knowledge of dependencies between ser-
vices may further be useful for the prediction
of impacts on other services due to manage-
ment operations. This is of particular interest
in the typical `repair'-scenario, where a service
implementation has to be shut down temporar-
ily: it might be essential to know the e�ects on
other services beforehand.

3 Types of Models

To enable a common understanding of the
meaning of dependency models in the explana-
tions following later, this section distinguishes
and explains several model types.

Generally speaking, service dependency models
can be considered graphs consisting of nodes
which represent the managed objects | in this
case the services or service realizations | and
of edges, standing for functional inter-service
dependencies.

In the simplest case the graph is not directed;
then edges only represent generic relationships,
but it is not possible to express the direction
of the dependencies. This must be regarded a
serious de�ciency for lots of applications, but
might be suÆcient for special tasks.

Usually, directed graphs are used. Besides the
direction it is in some cases useful to attach fur-
ther management relevant attributes to them.

2

With these it is possible:

� to form groups which, e.g., to express that
a dependency cannot occur without the
others,

� to express that some dependencies must
occur in a certain order, or

� to attach values of strength or likelihood.

One can already imagine that dependency
models used for di�erent purposes may di�er
in various ways, e.g. according to their level of
abstraction, the degree of detail and of course
the types of services and components. Exam-
ples are:

� hosts with communication dependencies

� high level services, disregarding dis-
tributed service implementations and

� services including several levels of subser-
vices.

Basically, for the models there are always two
opposite levels of abstraction:

1. abstract service models and

2. models of real world services (applications,
components, etc.).

The �rst type is used to model purely abstract
services with their dependencies. It is inde-
pendent of any concrete runtime environment.
Figure 1 shows an example.

Advantages of abstract representations are
that they are comparably small, compared to
the second type, generic in nature and reusable
in various environments.

Models of the second type provide a repre-
sentation of a particular, real environment |
it models the dependencies of the service im-
plementations as they exist at runtime, like a
program or piece of hardware communicating
with others, or depending on underlying soft-
ware/hardware components. Thus, the infras-
tructure the services are implemented in in
u-

web client

web server

DNS server

 communication
infrastructure

A depends
on B

AA BB

Figure 1: Typical Abstract Service Depen-
dency Graph

ence the structure of the model.

Sometimes these models are simply considered
as instantiated examples of the abstract graph.
However, while this is true for the nodes (ser-
vices), this may not be true for the edges (de-
pendencies). It may, e.g., not be the case due
to special circumstances, where the abstract
model is (purposely) generalising too much,
thus hiding di�erences in distinct service im-
plementations.

Figure 2 shows a scenario, where one of the
web clients does not depend on the DNS server.
This might be the case, because only very spe-
cial web pages are viewed from that particular
browser, for which only direct IP addresses are
needed, or simply because the host names are
stored in a static con�guration �le. Thus, the
dependency depicted by the broken line would
be part of a model instantiated from the ab-
stract one (�gure 1), but is not part of the real
world model. For simplicity reasons, the mod-
elling of the communication infrastructure is
left aside.

Thus, the

3. instantiated dependency model

is a third type of models.

Compared to the abstract models, a possi-

3

web client
on host bb

web server
on host aa

DNS server
on host aa

communication
infrastructure

A depends
on B

AA BBweb client
on host cc

see text

Figure 2: Real World Service Dependency
Graph

bly huge number of objects and dependencies
might be needed for the real world and the in-
stantiated models. The real world graph has
less or exactly the same number of dependen-
cies than the instantiated one, otherwise there
would be major faults in the abstract model.

In the di�erences between these two graphs lies
useful information, because they are, in other
words, exceptions from the generic case.

Models, as usually described in other works,
are either abstract or instantiated models. The
bene�ts of models that directly describe real
world dependencies are usually left out of con-
sideration, because the automatic creation is
not yet possible in an adequate way.

Between these two extremes of abstract and
real world models lie the

4. reduced real world model.

Just like the real world models, they provide
a view on the real services and resources, but
| to reduce complexity | they make one step
towards abstraction by merging some instances
into one node.

This may, happen to hide the existence of re-
dundant services, or with services/applications

of the same type used exclusively. The latter
case is useful, e.g. in a scenario where a worker
may use one of two input terminals, according
to his location at the working environment (e.g.
the side of the assembly line), but not both at
the same time.

4 Problems of Manual

Model Creation

Section 2 already mentioned that most papers
on the bene�ts of dependency models assume
the existence of such models. Others, like [2]
present means of describing models suitable for
IT-management, but also do not provide mod-
els as such.

Despite of the positive results of such investi-
gations, dependency models are hardly used at
a larger scale in real environments. This is due
to several reasons:

Up to now, they have to be created by hand;
this can be a very time consuming task, es-
pecially in complex environments with a large
number of services. The problem gets worse if
di�erent applications of the dependency mod-
els are taken into account which need models
at di�erent levels of detail. Either, one �nds
some kind of compromise or has to create sev-
eral distinct graphs.

From a purely top down perspective, the `best'
models are based on generic services; reusable
in various environments. However, to guaran-
tee a wide acceptance, it is �nally up to inter-
national standardisation organisations to de-
�ne generic descriptions of services and their
dependencies | usually taking a very long
time.

Examples for generic de�nitions can be found
in the Common Information Model (CIM, [3],
[4] respectively), de�ning classes for services
and other managed objects including several

4

types of dependencies.

Later, during the utilisation of models, it might
be necessary to change some of them, adapt
them to new conditions, etc. This is especially
a problem, because services often cannot be
modelled on a very abstract level, but | as
programs available on the market do not al-
ways exactly match the exact requirements |
the models must consider the properties of the
real world service realizations. Even simple
software updates might then lead to changes
in the models. Over the years, this again sums
up to a time consuming task.

Preventing the design of widely used models is
the lack of an established common model de-
scription format on the market. This makes
the realization of management applications
more diÆcult and is a real handicap for reusing
the same models for di�erent purposes. Ac-
tually, this problem should, e.g. be addressed
by the information model of management plat-
forms | but nowadays these are not yet pow-
erful enough to handle the kinds of dependency
descriptions needed.

The above reasons �nally lead to the fact that
companies do not deliver models along with
their products. This is a further handicap for
their customers. The only dependencies usu-
ally described are vaguely expressed prerequi-
sites like \needs HP-UX10 and 200MB of disk
space".

There are further reasons, why companies do
not deliver more exact dependency descrip-
tions: On the one hand due to con�dentiality
of the information, and on the other hand due
to strategic reasons which are enforced to help
strengthening the companies market position.

The big e�orts that have to be taken to gener-
ate the models also do not allow to carry out
modelling regularly. This prevents their ap-
plication for special management tasks, as de-
scribed in the end of section 5.

All these disadvantages are reasons why depen-
dency models are not widely used. One at-
tempt to overcome | at least the most signif-
icant | disadvantages is to automate the cre-
ation process of models as much as possible.
This would help to reduce the time to create,
as well as to maintain the models, to an ac-
ceptable extent and thus help to diminish the
problems coming from the companies (still) not
delivering models with their products.

5 Overall Modelling Pro-

cess

Before an explanation of the modelling itself,
this section describes the overall modelling pro-
cess it is embedded in.

Usually, the manual creation of abstract mod-
els is one of the �rst steps. Afterwards, the in-
stantiated model is derived adding knowledge
about the environment.

However, to enable the automated creation of
such models, it is necessary to chose a di�erent
approach: The abstract models have to be cre-
ated from real world dependency models, be-
cause it is possible to directly construct them
from noticeable interactions of or between ser-
vices implementations.

The input for the process is a list of (abstract)
services and component types for which depen-
dencies should be modelled, and a matching
list of service implementations and real com-
ponents. They will �nally become the nodes of
the abstract, respectively the real world depen-
dency graph. The output is one abstract and
one real world model, containing all dependen-
cies detected.

Figure 3 depicts the necessary steps. The left
part of the �gure represents the abstract view
on services, whereas the right side deals with
their real world realizations:

5

 abst r act v i ewpoi nt r eal −wor l d v i ewpoi nt
(1)

select services

(2)
choose matching

service−realizations

(3)
install means of
data collection

(4)
collect data

apply management
to models

(6)
find dependencies

(7)
derive abstract

model

real−
world
model

abstract
model

(5)
merge data

Figure 3: Steps of the Modelling Process

1. First, all services and components that
should be part of the model must be se-
lected. Of course this depends on the man-
agement tasks the model will be used for.

2. For each abstract service the matching im-
plementations in the real world must be
chosen. These may be a number of di�er-
ent software implementations, hardware
components, etc. In some cases, as ex-
plained in section 3, several of these ob-
jects may �nally represent only one in-
stance of a service.

3. Now, the necessary means of data collec-
tion may be installed per object, using e.g.
local management agents or tools com-
monly available.

4. Then, the real world data may be col-
lected,

5. merged according to the reduced model,
and

6. dependencies may be calculated. This
step is the actual challenge for the au-
tomation using neural technologies, as de-
scribed in the next section.

7. If necessary for the management task, also
an abstract service model can be derived,
from the model above, together with the
information from step 2.

It is then possible to apply the required man-
agement tasks, e.g. as described in section 2,
to the models.

The �rst step is manual, but this is not a real
problem, because it is directly driven by the
needs of the management. If only models of the
real world dependencies are needed, the �rst
two steps may even be omitted; instead, the
service implementations must then be selected
directly.

The installation of the means of data collection
should | together with the process of collec-
tion itself | be tied to already used manage-
ment tools, like management platforms, simple
SNMP ([1]) querying software etc. (for a com-
plete overview see [8]). Thus, the e�ort that
must be put into these steps is acceptable.

The most complex task is the �nal creation of
the model (step 6). As it has to deal with even
more objects (nodes), it is even more complex
than the original task of directly constructing
the abstract models. However, with data avail-
able from step 5 it is now possible to automate
this step. This is described in more detail in
the following section.

6

Figure 4 also shows possible extensions of the
process (dotted lines, marked with asterisks)
enabling even more applications of the depen-
dency models.

(4)
collect data

(6)
find dependencies

(7)
derive abstract

model

real−
world
model

abstract
model

 **

re−instantiate
model

 **

instan−
tiated
model

(5)
merge data

**

compare

Figure 4: Extension of the Modelling Process

The �rst types of applications assume the itera-
tive repetition of steps 4 to 6 (*) | respectively
4 to 7, if they work on the abstract models |
and take two (or more) models, created at dif-
ferent points in time, as input, e.g. to make
out changes that happened in the system.

Such comparisons support fault prediction, be-
cause changes in system behaviour often re
ect
errors already present, but simply do not yet
e�ect the usability of services | or at least not
to a noticeable extent.

The detected changes may also be used to point
out forbidden actions or disallowed use of ser-
vices. This is helpful especially for intrusion
detection or to recognise service misuse.

Further helpful applications are based on the
comparison of the real world models with a re-
instantiated abstract model (**), making ex-
ceptions and special cases explicitly visible.

Both types of applications take special bene�ts
from the modelling process that are not avail-
able in conventional, manually created models.

6 Generating the Models

A basic assumption of the modelling process
is that dependencies can be guessed quiet well
from the activities of the services, collected in
the data of step 5.

A straightforward method to determine the de-
pendencies is to choose data directly expressing
this kind of information, like usage entries in
log �les. Step 5 would then be carried out by
extracting the information from the relevant
�les.

However, a major drawback of this approach
is, that log �les typically have a proprietary
format or sometimes even change between soft-
ware versions. Even worse, not all applications
provide log �les containing this information, or
its access may be restricted for several other
reasons, like e.g. security policies or limited
amount of local disk space.

The suggested solution is to concentrate on in-
formation which is relatively easy to collect and
available for all types of services respectively
applications.

Examples for such measurable values allowing
to draw conclusions on the services' activities
are:

� cpu usage compared to the cpu power
available over a certain period of time, or

� communication bandwidth used by the
system the service is running on.

Generally speaking, this is information taken

7

from lower layers, like the operating system,
middleware or the transport system.

Of course, this information does not show the
dependencies explicitly. The fact that two ser-
vices show activity at the same time does not
yet allow to say that they are dependent, but
after observing behaviour several times (over
a certain period of time), such a conclusion is
plausible.

This is where methods from the �eld of neural
networks are able to make use of their advan-
tages, like:

� dealing with uncertain information,

� robustness to noise in the input data

and others also described in [7].

In this case, a neural network is used to de-
termine whether two real world objects have
a relationship or not. It is achieved by train-
ing the neural network with the data collected
from the real environment, for which the re-
sults (whether dependencies between the ob-
jects exist or not) are known. Examples are
needed for both cases.

To achieve good quality, the training set must
contain data from at least two or more distinct
\service implementation { service user" depen-
dencies as well as pairs of non-related services.
Each of them must be observed under various
usage conditions and during times of high and
low utilisation. Usually, this is the case with
data from chosen services in real environments,
collected over a longer time period, e.g. a few
days including some hours during night and
weekend.

During the utilisation of the neural network it
may be improved further using reinforcement
learning techniques.

Using data from real environments leads to the
problem of noisy training data, but with the
neural networks ability to generalise these re-
quirements can be met. Furthermore, by this,

designing and building a special test �eld is
not necessary | this would even be impossi-
ble when hard to set up services have to be
modelled.

Figure 5 shows two plots of data collected from
two hosts during the same time. The values
shown represent the intensity of the hosts' IP-
communications with others during time inter-
vals of �ve seconds.

0

100000

200000

300000

400000

500000

1770 1780 1790 1800 1810 1820 1830 1840

"hpheger0.Out"

0

100000

200000

300000

400000

500000

1770 1780 1790 1800 1810 1820 1830 1840

"hpheger2.In"

host 1

ac
tiv

ity host 2
ac

tiv
ity

Figure 5: Example plots of network activities
of two hosts

Of special interest within the plots are the high
spikes. At three time intervals (labelled with
the numbers 1785, 1801 and 1826 for the �rst
host, respectively 1784, 1800 and 1825 for the
second) both hosts show an activity (of nearly
the same intensity) indicating a possible re-
lationship. The plot of host one additionally
shows activity at other times (at numbers 1794
and 1837) which is just noise for the investiga-
tion of the two hosts' relationship.

In the general case, similar data expressing ac-
tivity must be selected, as described in the pre-
vious section, for each object implementing a

8

service. If several objects have to be merged
in the �nal models the data has to be merged
accordingly. This simply can happen by assess-
ing them (assigning factors) and summing the
values up.

One problem of this method needs further in-
vestigation: In the generation process of real
world models of course more than just two ob-
jects are involved. To test for all possible rela-
tionships of n objects O(n2) tests are necessary.

On the one hand this argument supports the
use of neural networks, as | once trained |
they can calculate their tasks faster than tradi-
tional correlation analyses. On the other hand
it is still a problem for large numbers n.

If only the abstract models are needed �nally,
it is possible to restrict the modelling process
on a very small number of implementations per
service. To get complete real world models
other restrictions have to be applied. One pos-
sibility is to preselect pairs of objects which
surely cannot depend on each other. E.g. it is
not necessary to test whether two web clients
depend on each other. Such exceptions are
easy to specify, but signi�cantly reduce the
amount of dependencies that have to be inves-
tigated.

Another way is to divide the environment that
should be modelled into smaller areas, like ad-
ministrative zones or according to topological
aspects. To avoid that these areas must remain
absolutely isolated, it is possible to add special
objects to each of them representing connec-
tions to the outside. This also helps to �nd the
right partitioning: If too many dependencies
exist to these objects, it is helpful to add ob-
jects to the area. Objects with no (or very few)
dependencies within the area are good candi-
dates to remain outside.

7 Conclusion and future

work

This article showed that, although dependency
models provide a lot of advantages to ser-
vice management, they are not widely used.
The main reason for this is the lack of gener-
ally available service models (respectively suf-
�ciently exact dependency descriptions) and
the huge e�ort needed to generate such models
manually.

A method was presented that enables the cre-
ation of such models for various use cases in a
| to a considerable extent | automated way.

There are still unsolved problems and ques-
tion that have to be investigated further, like
to what number of services and applications
the method still works well enough. Or what
polling intervals are suitable for the data col-
lection. For this, a compromise between reduc-
ing time and bandwidth' for the management
purposes and the quality of the dependency de-
tection must be found.

To prove and to improve the robustness of the
method, especially because it is based on some-
times mistrusted neural networks, the plans
for the future also include tests in several real
world environments and for various manage-
ment tasks.

Acknowledgment

The author wishes to thank the members
of the Munich Network Management (MNM)
Team for helpful discussions and valuable com-
ments on previous versions of the paper. The
MNM Team directed by Prof. Dr. Heinz-Gerd
Hegering is a group of researchers of the Uni-
versity of Munich, the Munich University of
Technology, and the Leibniz Supercomput-
ing Center of the Bavarian Academy of Sci-

9

ences. Its webserver is located at http://

wwwmnmteam.informatik.uni-muenchen.de.

References

[1] J. D. Case, M. Fedor, M. L. Scho�stall,
and C. Davin. RFC 1157: Simple network
management protocol (SNMP). RFC,
IETF, May 1990.

[2] A. Clemm. Modellierung und Handhabung
von Beziehungen zwischen Managemento-
bjekten im OSI-Netzmanagement. Dis-
sertation, Ludwig-Maximilians-Universi-
t�at M�unchen, June 1994.

[3] Common Information Model (CIM) Ver-
sion 2.0. Speci�cation, March 1998.

[4] DMTF Application Management
Working Group. Application MOF
Speci�cation 2.1. CIM Schema
CIM Application21.mof, Desktop Man-
agement Task Force, September 1998.

[5] B. Gruschke. A New Approach for
Event Correlation based on Dependency
Graphs. In Proceedings of the 5th Work-
shop of the OpenView University Associ-
ation: OVUA'98, Rennes, France, April
1998.

[6] B. Gruschke. Integrated Event Manage-
ment: Event Correlation using Depen-
dency Graphs. In A. S. Sethi, editor, Pro-
ceedings of the 9th IFIP/IEEE Interna-
tional Workshop on Distributed Systems:
Operations & Management (DSOM 98),
Newark, DE, USA, October 1998.

[7] Denise W. G�urer, Irfan Khan, and
Richard Ogier. An Arti�cal Intelligence
Approch to Network Fault Management.
California, USA.

[8] H.-G. Hegering, S. Abeck, and B. Neu-
mair. Integrated Management of Net-

worked Systems { Concepts, Architectures
and their Operational Application. Mor-
gan Kaufmann Publishers, 1999.

[9] K. Houck, S. Calo, and A. Finkel. Towards
a Practical Alarm Correlation System. In
Integrated Network Management IV, New
York, USA, 1995.

[10] T. Kaiser. Methodik zur Bestimmung der
Verf�ugbarkeit von verteilten anwendung-
sorientierten Diensten. PhD thesis, Tech-
nische Universit�at M�unchen, 1999. (To be
published).

[11] G. Prem Kumar and P. Venkataram. Net-
work performance management using real-
istic abductive reasoning model. In A. S.
Sethi, Y. Raynaud, and F. Faure-Vincent,
editors, Integrated Network Management
IV (ISINM'95). Chapman & Hall, 1995.

[12] A. Pell, K. Eshghi, J. Moreau, and S. Tow-
ers. Managing in a distributed world.
In Yves Raynaud and Adarshpal Sethi,
editors, Proceedings of 4th International
Symposium on Integrated Network Man-
agement. IFIP, Chapman & Hall, May
1995.

10

