8th IEEE/IFIP Network Operations and Management Symposium 15-19 April, Florence, Italy

A Case–Driven Methodology for Applying the MNM Service Model

M. Garschhammer, R. Hauck, H.-G. Hegering, B. Kempter, I. Radisic, H. Roelle, H. Schmidt

Presenter: Harald Roelle

MUNICH NETWORK MANAGEMENT TEAM Department of Informatics, University of Munich Email: roelle@informatik.uni-muenchen.de

Motivation

- MNM Service Model
 - Customer-oriented conceptual meta model
 - Defines common view and terminology
 - Immediately useable for theoretical studies
 - Applicable for all kinds of concrete scenarios
- Applying the model includes
 - Identifying and collecting relevant information
 - Deriving concrete classes in appropriate order
 - In-detail specification of classes
- But: By now no guidelines available
 - Reasonable order of steps
 - Adequate information representation
- \Rightarrow Methodology for easier model application needed

MNM Service Model: Basic Service Model

- Gives overview over the service environment
- Specifies:
 - Roles of participating entities
 - Participating services
- Separates service from customer and provider side
- Recursive application shows hierarchies

MNM Service Model: Service View

Harald Roelle

MNM

MNM Service Model: Realization View

MNM Service Model: Realization View

MNM Service Model: Realization View

Basic Modeling Cases

Reverse engineering:

- Gain formal description of existing service infrastructures
- Demanded for internal restructuring or outsourcing decisions

Bid invitation:

- Future customer requests offers from providers
- Unambigous and complete specification needed
- Independence from realization for comparable offers

Offering:

- Offer new services to potential customers
- Presenting only customer relevant parts
- Specifying in a customer understandable way
- Modeling cases form basis for methodology

Methodology: Overview

- Inspired by software engineering
- Workflow based
- Actions deliver objects step-by-step
- Artifacts
 - Input/output of actions
 - Used for in-detail specification of objects
 - Deliver structuring and refinement
- Two basic processes
 - Top-down: bid invitation
 - Bottom-up: reverse engineering
 - Both: offering

Methodology: Overview

- Inspired by software engineering
- Workflow based
- Actions deliver objects step-by-step
- Artifacts
 - Input/output of actions
 - Used for in-detail specification of objects
 - Deliver structuring and refinement
- Two basic processes
 - Top-down: bid invitation
 - Bottom-up: reverse engineering
 - Both: offering

MNM

Basic Service Model's Workflow

- Role identification
 - Transparencies define depth of modeling
 - Modeling case influences availability of information

MNM

Basic Service Model's Workflow

- Service naming
 - Naming of all identified services
 - Associations between roles and services

bottom-up

real. view's

bottom-up WF

realization view

bottom-up WF

service view

service view's top-down WF

service view

real. view's

top-down WF

Basic Service Model's Workflow

- Finished deriving Basic Service Model
- Next in top-down process: Service View

- Functionality definition:
 - Defines usage and management functionality
 - Use cases refined by activity diagrams

- QoS definition: •
 - Begin/end of activities as reference points
 - QoS dimensions: duration, capacity, correctness

- Client and access point (AP) definition
 - Ability to fulfill QoS parameters
 - Access points must match corresponding clients

- Service agreement definition
 - Include information from all artifacts
 - Specify concrete boundaries

Harald Roelle

- Finished deriving Service View •
- Next: Realization View •

basic service model

- Provider's service management (SM) process
 - TOM / ITIL as structured starting points
 - Activities and use cases extended by internal processes

- Outsourcing decision
 - Every process marked as either internal or outsourced
 - Former Basic Service Model refined/extended

Harald Roelle

- Resource and basic management functionality identification
 - Analysis of every single internal activity
 - Logics extended by collaboration diagrams modelling interactions

- Finished deriving Realization View
- Finished applying whole MNM Service Model to specific scenario

Conclusion

- Basic modeling cases identified:
 - Reverse engineering
 - Bid invitation
 - Offering
- Modeling case determines basic decisions
- Methodology
 - Simplifies model application in all modeling cases
 - Delivers step-by-step guidelines
 - Artifacts for in-detail class specification
 - Ensures comparable results
- Creation of all views supported
- MNM Service Model with methodology serve as a checklist in all modeling cases

Harald Roelle

Current Work

- Development of integrated tool support
 - Incorporates workflow and document management component
 - Implementation by extension of existing CASE tool
- Design Patterns for model application
 - Underlines relations to software engineering
 - Similarities in structures were found
 - Rapid model application
 - Delivers design decision support
- Investigations on impact of context-awareness
 - Modeling of mobile service scenarios
 - Basis for automatic service composition