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Abstract

In this thesis, several linear and non-linear machine learning attacks on optical physical
unclonable functions (PUFs) are introduced. For this purpose, a simulation of such a
PUF is implemented to generate a variety of datasets that differ in several factors, to
find the superior simulation setup, as well as to investigate the behaviors of the machine
learning attacks under different circumstances. The main focus lies on the number of
bits of the applied challenges and multiple challenge restrictions, which are intended to
increase the input-output-complexity of the simulated PUF. All the datasets are evalu-
ated with respect to the individual samples and their correlations among each other. In
the following, both linear and deep learning approaches are used to attack these PUF
simulations to comprehensively study the influence of the varying factors on the datasets
with respect to their security level against adversaries. An additional focus will lie on
the different behaviors of both attacking methods, i.e. the major differences in their per-
formances and which approach should be preferred under which circumstances. Several
independent metrics are used to highlight these differences from varying perspectives.
Furthermore, multiple enhancements to these first machine learning models and new at-
tacks that fall into the two categories will successively be introduced and investigated,
while aiming for gradually better modeling performances. This leads to the development
of an attack that is able to almost perfectly predict the outputs of the simulated PUF.
Also, data from a real optical PUF will be investigated and compared to those from
the simulation. This data is further used to see how the introduced machine learnings
models would perform in the real world. Here, quite impressive results could be found,
such that all the models fulfilled the defined criterion for a successful machine learning
attack. For all the datasets, there are quite large differences between both the linear and
non-linear attacking approaches, which this thesis will try to thoroughly elaborate on and
give further insights into the benefits of differing architectures.
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1. Introduction

In our technologically steadily advancing society, electronic devices have become ubiq-
uitous in almost all parts of our everyday life. In the course of this, cryptography has
taken an exceedingly important role in the security of the transportation of information.
In general, such a cryptographic algorithm should be very easy and fast to compute, but
virtually infeasible to invert. Thus, the overhead of the encryption process should be
minimized, while at the same time the effort to decrypt the message for outside parties
should be maximized. Many modern approaches use a binary key-pair, which is composed
of a private key and a public key, which is generated using the private key. The latter is
publicly accessible and can be used by anyone to encrypt messages, such that decrypting
the message requires the private key that was used to create the public key in the first
place. Given an adversary has no other knowledge about the process, they can only apply
brute-force attacks to guess the private key, which, needless to say, will statistically not
produce any results in a reasonable time frame. Therefore, most attacks instead focus
on acquiring the private key used in the public key generation. Once the private key is
known, all encryptions carried out via this key-pair can effortlessly be read out by the
adversary. There already exist dozens of approaches, such as physical key extraction or
viruses, which have been successfully applied to attack such systems [1–3].

One approach to avert these types of attacks is not to use a digital key for the encryption
process, but instead a so-called physical unclonable function (PUF). PUFs take advantage
of the properties of a physical structure, which are tightly bound to the instance of this
system and vary strongly between different instances. This is supposed to make the PUF
resilient to cloning and reverse engineering, hence the name physical unclonable function.
In general, a PUF is presented with some kind of specific external stimulus, often called
Challenge 𝐶𝑖, which the PUF reacts upon with an output called Response 𝑅𝑖. The PUF
can therefore be thought of as a function 𝑓 that maps a domain of challenge 𝐶 onto a
domain of responses 𝑅 in constant time. Since no digital keys are used in this process,
the classical aforementioned attacks cannot be applied on PUFs.

A concrete example of such a PUF would be a so-called optical PUF, which relies on
speckle patterns that are the result of the interference of several coherent wavefronts [4].
Typically, a laser beam that propagates through an inhomogenous material, most of
the time several randomly placed microstructures, is used. These structures scatter the
incoming light, which is an uncontrolled process that is based on highly complex interac-
tions between all wavefronts that emerge during this process and is strongly dependent
on the initial incoming electromagnetic field as well as the position, size and shape of
the used scatterers. [5] Creating a model of this type of PUF would require to divide the
whole system into voxels of the size of the laser beam’s wavelength and to exactly solve
Maxwell’s equation, which is a numerically overly laborious task [6]. However, there have
been reports of vulnerabilities of these types of systems to machine learning attacks [6,7],
which can be attributed to the linearity in the process of these systems. In such a sce-
nario, the adversary gains access to the speckle pattern outputs of the PUF as well as
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1. Introduction

the applied challenges and trains a model to learn an approximation to the underlying
function. This knowledge is then used to further predict the patterns that will emerge
for new challenges.

In this thesis, different machine learning attacks on optical PUFs will be tested, includ-
ing several linear as well as non-linear attacks. The necessary data will be created using a
software specialized on optical interference problems by simulating the behavior of a real
optical PUF as close as possible. While the generation of large datasets on real optical
PUFs can be a laborious and expensive operation, simulating the data allows for a com-
parably easy and fast computation and facilitates the construction of multiple varying
datasets. Therefore, the machine learning attacks will be used on several datasets with
different properties to draw conclusions on the strengths and weaknesses of the attacks
themselves as well as the properties of the datasets and the underlying simulation.
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2. Related Work

Physical Unclonable Functions (PUFs)

One of the most well known works in the optical PUF research landscape is called "Phys-
ical One-Way Functions (POWFs)" from Pappu et al. (2002) [5], where they presented
one of the first PUFs and the first version of an optical PUF. They suggested a one-way
function usable in modern cryptography by exploiting highly complex physical interac-
tions. On this account, they proposed to take advantage of the properties that are shown
by light when it propagates through disordered media. They used a light source that emits
coherent radiation, which propagates through a manufactured token that contains many
microscopic particles, which scatter the incoming light into many different directions.
This creates a set of coherent wavefronts, which produce highly complex interference pat-
terns throughout the whole medium. At the opposing end of the device, an unique speckle
pattern emerges, which is highly dependent on the exact events that happened within
the PUF and is very sensitive to tiny changes within the system. The positioning of the
scattering particles is carried out uncontrolled by distributing them completely randomly
and therefore makes it virtually close to impossible to copy the physical system.

Another work on this topic is from Tuyls and Skoric [8] from 2007, who discussed how
optical PUFs can be used for security aspects on data management systems. On this ac-
count, they elaborate on the unclonability of the system itself, the cost-effective storage
of the cryptographic key information as well as the PUF as a system for strong authen-
tication. Furthermore, they suggested an integrated version of an authentication token
that uses an optical PUF, combining the challenge application, scattering process and
the response detection into a single small, integrated package. However, their suggestion
was only theoretical, and no real experimental prototypes were constructed. Tuyls and
Skoric also further explored secure key storage with PUFs in [9] and [10].

In 2013, Rührmair et al. suggested three new types of integrated optical PUFs and
actually manufactured one of these in [6]. Their integrated version directly allows to
miniaturize optical PUFs, and, in contrast to previous miniaturized suggestions as in [11],
works without any moving components. This removes the need for a complex readout
mechanism as it was necessary for the optical PUF of Pappu et. al. [5]. Furthermore,
they proposed an attacking algorithm on their integrated optical PUF and showed that,
under the assumption that the adversary has access to the raw speckle patterns, the PUF
can successfully be modelled with extremely high accuracy using machine learning.

Additionally, further types of enhancements and other variants of optical PUFs have
been published. These include reconfigurable optical PUFs [12–14], optical PUFs us-
ing noise-immune nanostructures to increase the robustness of responses [15] and optical
PUFs using a single optical waveguide as physical token to even further decrease physical
clonabiliy [16]. Furthermore, PUFs have been used to provide optical channel commu-
nication for vehicle to vehicle authentication within vehicular environments [17] and for
anti-counterfeiting of manufactured metallic goods [18].
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2. Related Work

In addition to optical PUFs, numerous different types of PUFs based on other physical
systems have been suggested. A large focus has been set on PUFs that take advantage of
uncontrollable variations during operations in electrical circuits, such as ring-oscillators
[19,20], arbiter-based PUFs [21,22], SRAM PUFs [23,24] and many more [25–73]. Inter-
ested readers are referred to some of the existing PUF-surveys and tutorials for further
studies [74–79].

Machine Learning and PUF Attacks

Due to their applicability in countless varying domains, the field of machine learning is
significantly broader and can be divided into numerous subcategories. Linear models such
as linear regression, which form one of these categories, are among the most widely used
statistical techniques and have been intensively optimized to fit to different problems.
Detailed information on these types of models and their modifications can be found
in [80], [81] and [82]. The range of applications of linear models is huge and include
genetic studies [83, 84], economics [85, 86] and even human behavior [87, 88]. A further
important category of machine learning is deep neural networks, which have significantly
risen in popularity over the last two decades. Nowadays, they are quite common in various
fields, such as speech recognition, image recognition, natural language processing and so
on. Deep neural networks themselves can again be split into several further categories,
one of which are generative neural networks. These types of networks have been used in
dialogue generation [89, 90], image reconstruction [91, 92] and even unconventional fields
such as quality prediction for work-in-progress products [93] or wind speed forecasting
[94]. Another branch of these networks that has become increasingly popular is image
generation [95–98].

So far, there have been several reports of successful attacks on electrical PUFs, includ-
ing modeling attacks [99–103] as well as side-channel attacks [104–107] or even physical
cloning in the case of SRAM PUFs [108]. However, the amount of research on the topic of
attacks on optical PUFs is rather sparse. While integrated versions of optical PUFs have
been successfully attacked [6], surprisingly, no successful machine learning attacks on a
PUF following the principle of Pappu et. al. [5] have been reported up to this point [6,7].

To complete this section, another central Strong PUF attack vector should not be
missed, namely PUF protocol attacks. In the latter, not the security features of the PUF
itself are attacked, but rather their specific use in a given protocol or application. This
attack type has emerged over the last ten years, and actually constitutes one of the most
efficient and inexpensive attacks forms. Since it is not our main concern in this thesis,
interested readers are again referred to the literature for further investigations on PUF
protocols and PUF protocol attacks [109–118].

Contributions of This Thesis

This work will make the following contributions to this field of research: Firstly, an
integrated optical PUF similar to the one from Rührmair et al. [6] will be simulated
to artificially generate several datasets of challenge-response-pairs (CRPs). The results
of this simulation will be thoroughly investigated, including different restrictions on the
challenge generation to evaluate their influence on the output complexity of the system.
Furthermore, the CRPs will be used for different machine learning algorithms, which
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consist of several linear and non-linear modeling attacks. In the beginning, the focus will
lie on simple linear regression and one generative neural network, while adding further
modifications of the linear model and further deep learning models later on as well. It will
be investigated which algorithms work better on which datasets and which factors may
be responsible for the differences that may be found. The algorithms will be tried to be
optimized in the course of this thesis to achieve the best possible results with the models
at hand. In addition to the evaluation of the simulation and the attacks, a dataset from
a real integrated optical PUF will be investigated as well, to be able to draw comparisons
across the results from a simulated and a real optical PUF where it is applicable.
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3. Background
To grasp how precisely optical PUFs work and to later understand what the benefits and
disadvantages of using them are, the first part of this chapter will dive deeper into the
processes that take place within these systems. Afterwards, the focus will switch to the
machine learning algorithms that will be used later on to attack the optical PUF. Lastly,
further insights into important metrics that will be used in this thesis will be provided.

3.1. Optical PUFs
The type of optical PUF that will be the subject of this thesis follows the previously
explained principle established by Pappu et al. [5]. Here, light propagates through a
disordered medium to create an unique speckle pattern that is highly dependent on several
factors, such as the structure, positioning and number of the spheres or the positioning
of the laser and the readout system for the speckle pattern. To ensure the necessary
complexity, the light has to undergo multiple scattering events before exiting the token.
The scatterers are therefore randomly distributed in all three dimensions. Furthermore, it
is important that there is enough space between two scatterers, so that optical interference
effects can take place. Specifically, this distance needs to be larger than the wavelength
of the incoming light. For the optical PUFs that will be used in this thesis, this inequality
will easily be fulfilled. [5]

Pappu et al. [5] realized this proposition in the following way: Several glass spheres
ranged in size from 500 microns to 650 microns were stirred into a transparent epoxy,
taking care to not create any patterns. This mixture was poured into an 10 mm wide and
2.54 mm thick pre-cut square aperture in the center of a sheet of plexiglass and waited for
to set. A laser beam with a diameter of 1 mm was used to illuminate the microstructure,
and the emerging speckle pattern was captured with a camera. Additionally, a complex
system called reader was built to allow moving the laser beam precisely to specific po-
sitions. This ensures a high readout stability, i.e. preserves the relative positions of all
parts, such that carrying out the same experiment will result in the same speckle pattern.
A challenge to the system is realized by the position and angle of the laser beam. [5]

The raw speckle patterns are usually too large to directly use them for security pur-
poses. Additionally, they can be influenced by outside factors such as illumination, and
inaccuracies during measuring sessions can lead to small spatial transformations of the
speckles. Therefore, Pappu et al. [5] suggest not to use them as the direct response
and instead apply a post-processing algorithm, the 2D Gabor transformation proposed
by Daugman [119], to the raw output. This transformation is mostly insensitive to the
aforementioned effects and can furthermore be used to scale down the image. An example
of how these transformed images may look like can be found in Figure 3.1. Using the
value 0 as a threshold, the gabor-transformed image is further transformed into a 2D
binary array, which is flattened to a 1D bitstring and finally represents the response of
the PUF. Now working with bitstrings, the Fractional Hamming Distance (FHD) was

6



3.2. Machine learning

chosen as indicator for the decorrelation between responses. The FHD is defined as the
Hamming distance of two bitstrings divided by their length. A FHD of 0.5 indicates
virtually decorrelated Gabor images and is the ideal value when comparing responses of
the PUF, as this indicates that the two responses do not share any significant patterns
and therefore cannot be distinguished from a randomly generated bitstring of the same
length. [5] Altogether, they report that the PUF can be presented with roughly 2.37×1010

challenges for which the gabor-transformed outputs are uncorrelated.
However, the whole structure cannot be easily transported, and miniaturization at

some point becomes rather difficult due to the necessary precision during measuring. On
this account, Rührmair et al. [6] proposed alternative versions called integrated optical
PUFs, with the intent to overcome these downsides. Similar to Pappu et al. [5], they
used a medium containing several randomly distributed scattering particles. They gave
two suggestions for the light source: Either a single fixed laser is used to illuminate a
LCD array, or an array of phase-locked lasers is used directly. An illustration can be
found in Figure 3.2. In both cases, there are 𝑘 units which can be switched on and off
by either opening or closing the corresponding pixel of the LCD array, or by turning the
corresponding laser on or off. The system is attached in front of the medium containing
the light scattering particles. On the opposite site, i.e. behind the medium, they use a
sensor that registers the incoming scattered light. A challenge to this system corresponds
to one configuration of the light source array, hence the system provides a challenge space
of size 2𝑘. The response is the bitstring that can be retrieved from the transformed version
of the speckle pattern registered by the sensor. [6]

The concept of Rührmair et al. [6] works without any moving parts and can be man-
ufactured quite easy. It also allows for miniaturization. However, they report that while
finding no vulnerabilities for a setup similar to what Pappu et al. [5] used, they were able
to successfully attack the integrated version and predict the raw speckle patterns with
very high accuracy. [6]

3.2. Machine learning

Machine learning (ML) refers to a group of algorithms that attempt to detect meaningful
patterns in data in an automated matter. In most cases, these patterns are too complex
for a human to explicitly tell the program how to extract them, or sometimes even

Figure 3.1.: An example speckle pattern and two images of a gabor-transformed speckle
pattern for different parameters.
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3. Background

Figure 3.2.: Two versions of integrated PUFs as suggested by Rührmair et al. [6].

what the exact patterns to look for are. Nowadays, ML has become ubiquitous in many
completely different fields, such as search engine optimization, e-mail filtering, security
software, face and voice recognition, automated driving and much more. [120]

Two of the largest subcategories are supervised and unsupervised learning. The main
difference here is that in the former, models are trained with datasets where the samples
already have correctly assigned labels or are correctly categorized, while in the latter,
models are presented with uncategorized/unlabeled data [121]. Since the common ML
attacks on PUFs belong to the supervised learning category, this thesis is going to focus
on these.

Specifically speaking, the goal in supervised learning is to infer a function 𝑓 : 𝒳 → 𝒴
from a training set 𝑇 of ordered pairs (𝑥𝑖, 𝑦𝑖) ∈ (𝒳 × 𝒴), where 𝒳 refers to the input
and 𝒴 to the output space. It is preconditioned that the samples of the training data
are independent and identically distributed pairs. To allow the model to measure how
accurate its predictions with respect to the real outputs are, a loss function 𝐿 : 𝒴 × 𝒴 →
R+ is used. This function describes the error between 𝑓(𝑥𝑖) and 𝑦𝑖 for a pair (𝑥𝑖, 𝑦𝑖),
which the model tries to minimize. The choice for 𝐿 is highly dependent on the training
data and the exact problem the model is working on. [122] In regression problems in
particular, quadratic loss functions of the form (𝑓(𝑥𝑖) − 𝑦𝑖)2 are frequently used, since
they are simple to use and symmetric, i. e. an error above and below the target causes
the same loss. In practice, a loss function is often applied on a whole batch of 𝑛 pairs. In
such a case, for the two vectors 𝑦 of the real and �̄� of the corresponding predicted values,
the Mean Squared Error is a commonly used quadratic loss function and is defined as

𝑀𝑆𝐸 = 1
𝑛

𝑛∑︁
𝑖=1

(𝑦 − �̄�)2.

For regression problems and linear systems, linear regression (LR) is a common approach
to infer the function 𝑓 . LR assumes that there is a linear relationship between 𝒳 and 𝒴,
and each 𝑦𝑖 ∈ 𝒴 can therefore be calculated as

𝑦𝑖 = 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 · · · + 𝛽𝑝𝑥𝑖𝑝 + 𝜖𝑖,

where 𝜖𝑖 is called error variable and represents the influence on 𝑦 that cannot be covered
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3.2. Machine learning

by the linear equation. This is relevant if the relationship is not completely linear and
the regression is looking for the best linear approximation of 𝑓 . Often, all 𝑛 equations of
the 𝑛 pairs are stacked together and instead written in matrix notation as

𝑦 = 𝑋𝛽 + 𝜖,

where

𝑦 =

⎛⎜⎝𝑦1
...

𝑦𝑛

⎞⎟⎠ , 𝑋 =

⎛⎜⎝𝑥T
1
...

𝑥T
𝑛

⎞⎟⎠ =

⎛⎜⎝𝑥11 . . . 𝑥1𝑝
...

...
𝑥𝑛1 . . . 𝑥𝑛𝑝

⎞⎟⎠ , 𝛽 =

⎛⎜⎝𝛽1
...

𝛽𝑝

⎞⎟⎠ , 𝜖 =

⎛⎜⎝𝜖1
...

𝜖𝑛

⎞⎟⎠ .

Here, 𝑦 is denoted as the dependent variable and 𝑥1, ..., 𝑥𝑝 as the independent variables.
The elements of 𝛽 are the coefficients for the independent variables. Regularly, there
exists one independent variable which takes on the constant value 1, such that the cor-
responding coefficient is called the intercept. The goal of the regression is to model the
relationship between the independent and dependent variables by estimating the coef-
ficients. Standard LR models are usually fitted using a version of the aforementioned
quadratic loss function, which is called ordinary least squares (OLS) and aims to mini-
mize the function

𝑛∑︁
𝑖=1

(𝑦𝑖 −
𝑝∑︁

𝑗=1
𝑋𝑖𝑗𝛽𝑗)2 = ‖𝑦 − 𝑋𝛽‖2.

From this, the estimator
𝛽 = (𝑋T𝑋)−1𝑋T𝑦

for the coefficients can be derived. [123]
Note that this model is restricted to only one dependent variable. When predicting

multiple dependent variables, the corresponding model is called multivariate linear re-
gression and takes the form

𝑦𝑖𝑗 = 𝛽1𝑗𝑥𝑖1 + 𝛽2𝑗𝑥𝑖2 + · · · + 𝛽𝑝𝑗𝑥𝑖𝑝 + 𝜖𝑖𝑗

for each independent variable 𝑗 and observation 𝑖. Since the coefficients are specific for
each independent variable, the multivariate linear regression is equivalent to computing
a standard linear regression for each 𝑗. [124]

Another, more general approach to ML is deep learning (DL), which takes the biological
nervous system as role model and uses so-called artificial neural networks (ANNs) to
model complex interactions of large numbers of small components. An ANN consists of
several concatenated layers, which in turn consist of several artificial neurons. Generally,
a neuron 𝑗 receives 𝑛 numerical inputs 𝑥1, ..., 𝑥𝑛, which are each weighted with an input-
specific value 𝑤1, ..., 𝑤𝑛. By applying the dot product to the vectors of the inputs and
weights, the input to the neuron is transformed into a single numerical value and can be
depicted as

𝑛𝑒𝑡𝑗 = 𝑥 · 𝑤 =
𝑛∑︁

𝑖=1
𝑥𝑖𝑤𝑖𝑗 .

This value is then handed over to an activation function 𝜙, which calculates the output
𝑜𝑗 of the neuron, also called activation. There are numerous implementations for this
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3. Background

function, but often the activation has to exceed a specific threshold. An example for
this would be ReLU, which is defined as 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥). To avoid having to redefine
the activation functions for different thresholds, the threshold is often realized by an
additional input 𝑥0 called bias with the constant value 𝑥0 = 1, while the threshold itself
is realized in its weight 𝑤0. [125] An illustration of this concept can be found in figure
3.3.

The type of ANNs used in DL consist of several successive layers, hence the name deep
learning. To summarize, the ANN is supposed to approximate a certain function and
can be given an input, which is propagated through the various layers of the network to
produce a specific output. This thesis is going to focus on convolutional neural networks
(CNNs), or transposed CNNs in particular, which are feedforward neural networks, i.e.
the information only passes the network in one direction, so there are no cycles. Note
that there are numerous other kinds of ANNs, e.g. recurrent neural networks, in which
data can theoretically flow in any direction. [126]

CNNs receive their name from the mathematical convolution operation and are most
commonly used for analyzing image data. The core of these networks lies in the convolu-
tional layers, which consist of several learnable kernels that form a filter. These kernels
are convolved across the whole image, producing a feature map of that kernel for each
area of the image it is applied to. As the network learns, filters become able to detect
specific features in the input. There are many options to customize a convolutional layer.
Firstly, the number and size of the filters can be adjusted. It is also possible to change
the stride, which defines how many pixels a kernel moves between the convolutions and
therefore impacts the amount of overlap between the extracted features. A padding adds
artificial pixels around the image and can help in detecting features at the borders of the
image. [127]

Whereas regular convolutional layers usually create smaller representations of its input
with each layer, there are also transposed convolutional layers, which carry out convolu-
tions in the opposite direction and increase the shape by each step. This allows to create
shapes and even whole images from an abstract representation. [128]

To allow feedforward networks to learn, an algorithm called backpropagation is applied.
As the inputs to a neuron can be described by a vector, the whole layer can be described
as a matrix. This allows to define the whole network as a combination of function
compositions and matrix multiplications, using a single function 𝑔. Just like in LR, a loss
function 𝐿 evaluates the quality of the output 𝑔(𝑥𝑖) with respect to the corresponding
label 𝑦𝑖 for a sample (𝑥𝑖, 𝑦𝑖) of the training set. Backpropagation then computes the
gradient of the loss function for a fixed sample with respect to the weights. Since 𝑔 is
a composition of differentiable functions, the chain rule can be applied to compute the
individual components of the gradient for each layer recursively, propagating through the
network backwards from the output to the input layer. Lastly, the weights are updated
accordingly by moving in the direction of the negative gradient, aiming to decrease the
value of the loss function for the next iteration and therefore increasing the performance
of the network. [129]
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3.3. Important metrics

Figure 3.3.: An illustration of the parts of an artificial neuron.

3.3. Important metrics

In this thesis, there will be several occasions were certain metrics are used to evaluate
the results. This section quickly summarizes what those metrics are and how they are
defined.

First, the so-called Shannon entropy, often simply called entropy, is a numerical value
that represents the amount of information within a variable. For a random variable 𝑋
and all possible outcomes 𝑥1, ..., 𝑥𝑛, which occur with the probability 𝑃 (𝑥1), ..., 𝑃 (𝑥𝑛),
the entropy is defined as

−
𝑛∑︁

𝑖=1
𝑃 (𝑥𝑖)𝑙𝑜𝑔𝑃 (𝑥𝑖),

where the base of the logarithm corresponds to the choice of the unit for measuring
information and is commonly chosen as either 2, 𝑒 or 10. [130]

Another metric is the Pearson correlation coefficient (PCC), which, given a sample of
pairs (𝑥1, 𝑦1), ..., (𝑥𝑛, 𝑦𝑛), is defined as

𝑃𝐶𝐶 =
∑︀𝑛

𝑖=1(𝑥𝑖 − �̄�)(𝑦𝑖 − 𝑦)√︀∑︀𝑛
𝑖=1(𝑥𝑖 − �̄�)2

√︀∑︀𝑛
𝑖=1(𝑦𝑖 − 𝑦)2 ,

where 𝑛 is the size of the sample, 𝑥𝑖 and 𝑦𝑖 are the values of the 𝑖-th entry in the sample,
and �̄� = 1

𝑛

∑︀𝑛
𝑖=1 𝑥𝑖 as well as 𝑦 = 1

𝑛

∑︀𝑛
𝑖=1 𝑦𝑖 are the means of the samples. It is a common

measurement for the linear correlation between two datasets. The PCC can vary in the
interval [−1, 1], where 𝑃𝐶𝐶 > 0 indicates a positive and 𝑃𝐶𝐶 < 0 a negative correlation
between both datasets. [131] When referring to the PCC, the “coefficient” is often omitted
from the term, so the abbreviation PC will be commonly used in this thesis as well.

Lastly, the Structural Similarity Index (SSIM) is a perceptual metric to quantify the
similarity between two given images. It compares three components, namely the lumi-
nance 𝑙, contrast 𝑐 and structure 𝑠. For two images 𝑥 and 𝑦, these are defined as

𝑙(𝑥, 𝑦) = 2𝜇𝑥𝜇𝑦 + 𝐶1
𝜇2

𝑥 + 𝜇2
𝑦 + 𝐶1

, 𝑐(𝑥, 𝑦) = 2𝜎𝑥𝜎𝑦 + 𝐶2
𝜎2

𝑥 + 𝜎2
𝑦 + 𝐶2

, 𝑠(𝑥, 𝑦) = 𝜎𝑥𝑦 + 𝐶3
𝜎𝑥𝜎𝑦 + 𝐶3

.
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3. Background

Here, 𝜇𝑥 and 𝜇𝑦 are the means and 𝜎𝑥 and 𝜎𝑦 the variances of 𝑥 and 𝑦. Further, 𝜎𝑥𝑦

is the covariance of 𝑥 and 𝑦 and 𝐶1, 𝐶2 and 𝐶3 are constants, which are used to avoid
instabilities when the corresponding parts in the denominator are close to 0. Specifically
speaking, these constants are defined as

𝐶1 = (𝐾1𝐿)2, 𝐶2 = (𝐾2𝐿)2, 𝐶3 = 𝐶2
2 ,

where 𝐿 is the dynamic range of the pixel values, e.g. 255 for 8-bit grayscale images, and
𝐾1 ≪ 1 and 𝐾2 ≪ 1 are again constants, usually 𝐾1 = 0.01 and 𝐾2 = 0.03. These three
components are combined into a single value, defining the SSIM as

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
[︁
𝑙(𝑥, 𝑦)𝛼 · 𝑐(𝑥, 𝑦)𝛽 · 𝑠(𝑥, 𝑦)𝛾

]︁
,

where 𝛼, 𝛽 and 𝛾 are different weights for each of the components. When setting these
to 𝛼 = 𝛽 = 𝛾 = 1, the whole formula can be simplified to

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = (2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)
(𝜇2

𝑥 + 𝜇2
𝑦 + 𝐶1)(𝜎2

𝑥 + 𝜎2
𝑦 + 𝐶2) .

While it is possible to calculate the SSIM globally on the whole image at once, it usually
operates using several windows of the same size, which move pixel-by-pixel across the
image and compute the SSIM locally for each window. The resulting SSIM is the mean
of all of the individual values for all windows. In this case, the SSIM is also referred
to as Mean Structural Similarity Index (MSSIM), but is often still simply called SSIM.
The resulting values move in the interval [−1, 1], where a higher value indicates a higher
similarity between the images. [132]

12



4. Concept

The first idea of this thesis is about simulating an optical PUF, so that there is no need
to manufacture any physical parts or to carry out the laborious measurements. The kind
of PUF that will be simulated is closest to the second integrated optical PUF suggested
by Rührmair et al. [6], where a single laser is used as light source that illuminates a LCD
array. Different configurations of the LCD array, where certain blocks are turned on or off,
correspond to a challenge to the system. The light will then propagate through a cluster of
spheres, where it scatters into multiple directions and interference effects can take place.
Behind this cluster, the intensity of the outgoing electric field will be measured, and the
emerging speckle pattern will be transformed using the Gabor transformation to receive
a bitstring as the response. Due to restrictions imposed by the simulation software, there
will be no light reflecting encapsulation around the simulated PUF. Hereinafter, when
there is no further information given, the simulated version of this optical PUF will also
simply be referred to as PUF.

The simulation will be carried out multiple times with different setups, focusing on
the compositions of the challenges. It will be investigated whether, and if so how the
results differ for varying challenge sizes and which kinds of downsides come along with
increasing the challenge space. Furthermore, for each of these challenge sizes, there will
be four approaches regarding the compositions of the challenges. The first one will be
simply not to have any restrictions, i.e. all blocks can in theory be activated. This type
of dataset will be referred to as type A. The following approaches will each restrict the
composition of the challenges in some way. The first restriction will be to use only every
second bit in a row of the challenge mask and to disable the rest, alternating whether to
use even or odd positions by each row. This prevents directly vertically or horizontally
neighboring blocks from being activated simultaneously and is hoped to increase the
overall decorrelation between responses, as the simulation shows that the influence on
the speckle pattern appears to be smaller when light travels through neighboring pixels,
compared to locally unrelated pixels. The corresponding datasets will be called type
B. An example of how such a challenge could look like in comparison to one without
restrictions can be found in figure 4.1. The other restriction will be to define an upper
boundary for how many blocks can be activated simultaneously, while there is no local
restriction on which blocks these can be. It was observed that when a large number of
blocks is activated, the amount of light that travels through the PUF already extensively
illuminates the whole structure, so further challenges with more activated blocks lead to
strongly correlating speckle patterns, since the light that travels through further opened
blocks does not greatly influence the internal events. The upper boundary is supposed to
work against this and decrease the overall correlation between CRPs. There will be two
of these restrictions: one, where only half of the blocks and one, where only two-thirds
of the blocks can be activated, referred to as type C and respective type D.

For all of these datasets, two machine learning attacks of two different categories will be
applied: a linear modeling attack and a deep learning attack. The linear modeling attack
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4. Concept

Figure 4.1.: An example of a possible challenge of 11×11 blocks of type A (left) and type
B (right).

is realized by a linear regression and the deep learning attack by a model here referred
to as generator, which closely relates to the principle of the generator of a GAN [133]
or the decoder of an autoencoder [129]. Both approaches will be trained on all available
datasets, to see if there are any fundamental differences in the complexity of the systems,
as well as to compare both concepts and see if there are any differences in their modeling
performances.

For the evaluation of the simulated PUF, the main metric that will be used is the
fractional Hamming distance (FHD). The FHD of a dataset will be computed by taking a
random subset of all available CRPs, calculating the FHD between each of the responses
and taking the mean. The optimal value, in this case, would be 0.5, which indicates
complete decorrelation between the responses. While the FHD is used as the metric to
compare two responses, the Shannon entropy will be used to measure the quality of a
single response. In this thesis, the outcomes 𝑥1, ..., 𝑥𝑛 of the random variable used in
the entropy computation correspond to all different values of the pixels of the response,
and 𝑃 (𝑥𝑖) is the probability of a pixel having the value 𝑥𝑖 based on the frequency of
its appearance. The entropy of a dataset is computed by calculating the entropy of all
responses and again taking the mean. While it may be rather difficult to draw meaningful
conclusions from the absolute entropy value, a comparison across the different setups may
portray useful implications regarding the amount of information stored in a response.

The FHD will also be used for evaluating the ML attacks, by calculating the FHD
between the real response of the simulation and the generated response of the ML model.
In this case, a FHD of 0 would imply that the model perfectly recreates the response.
Furthermore, there will be two supplementary metrics used to evaluate the quality of the
predictions. The first is the Pearson correlation coefficient (PC), where here a sample
corresponds to a pair of a real and a predicted response. For the previously defined
formula, here, 𝑛 is the number of pixels, 𝑥𝑖 and 𝑦𝑖 are the values of the 𝑖-th pixel, and �̄�
as well as 𝑦 are the means of all pixel values. The ideal value for the PC would be 1, which
implies a perfect positive correlation and therefore a perfect prediction. The last metric
that is used is the Structural Similarity Index (SSIM), specifically the Mean Structural
Similarity Index, which will be simply referred to as SSIM, as is common practice. Just
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as for the PC, a value of 1 would be the optimal case. Each of these three metrics will
be computed for all pairs of real and predicted responses, taking the mean as the final
value. An illustration of the whole concept can be found in figure 4.2.
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4. Concept

Figure 4.2.: An illustration that shows all components and the procedure of the concept
of this thesis.
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5. Implementation

The aforementioned methods were implemented in several programming languages fitting
the associated needs. For the simulation, the Python library Diffractio [134], a package
for diffraction and interference optics, was used. The PUF consists of 1179 spherical
scatterers of sizes randomly varying between 10𝜇m and 15𝜇m with a refractive index
of 1.52. Each sphere has a padding of 10𝜇m, resulting in a distance of at least 20𝜇m
between all scatterers. These spheres are randomly placed within the boundaries of a
square with the length of 512𝜇m for each side. For the challenge, a two-dimensional
quadratic mask of length 512𝜇m is placed right in front of the PUF. A gaussian beam is
placed perpendicular to the mask and illuminates a circular area in the center, such that
a square of length 128𝜇m is constantly illuminated. Challenges are formed by splitting
this inner square into a given number of blocks and either allowing or prohibiting light
from traveling through the individual blocks. The propagation of the incoming light is
computed via the Beam Propagation Method [135]. On the opposite site, the responses
are generated by evaluating the intensity in the XY-plane 300𝜇m behind the boundary of
the PUF. The responses are of the size 512𝜇m as well and are evaluated with a resolution
of 1 pixel per 𝜇m, leading to images of 512×512 pixels. An illustration of what the setup
looks like can be found in figure 5.1.

The different challenge sizes are created by dividing the challenge mask into 𝑙×𝑙 blocks,
such that the size of the LCD array stays the same, but the size per block decreases
proportional to 𝑙. The challenges will be of the sizes 5, 7, 9, 11, 13 and 15 blocks per row,
such that for 𝑙 blocks per row, the challenges are of the length 𝑙2, and for each setup,
there will be 2𝑙 possible challenges. Due to computational restrictions and for reasons of
simplicity, only the cases where 𝑙 is an uneven number will be examined in this thesis.
Tests were made to ensure that using an even or uneven number of blocks per row has
no influence on the complexity of the PUF. The challenges are created by generating a
random bit vector, where each bit is equally likely to be activated with a chance of 50%.
The bit vector is then transformed into a matrix of size 𝑙 × 𝑙, where each bit determines
whether the corresponding block in the challenge is activated. For datasets of type A,
no restrictions will be made and therefore the vector will be of length 𝑙2 and simply be
transformed into the challenge. For type B, the generated bit vector will be only of size
𝑙+1

2 , inserting a 0 at every odd position to again achieve a vector of size 𝑙2. Type C and
D are realized by a bit vector of size 𝑙2, where bits are randomly set to 0 if more bits than
allowed are activated, until the respective threshold is reached. For each of the resulting
24 datasets, 1000 randomly chosen CRPs will be computed.

Since the FHD of the generated CRPs is highly dependent on the type of transformation
that is used to retrieve a bitstring from the response, the Gabor transformation is applied
two times with two different kernels of sizes 35 × 35 and respective 9 × 51. This is to
make sure that the results are not only depending on the kind of transformation that
is used. Additionally, since the speckle pattern of the simulation emerges only in the
center of the response, a center square of 128 × 128 pixels is cut out and used for the
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5. Implementation

Figure 5.1.: An illustration of the setup that will be used for the simulation of an optical
PUF.

FHD calculation. This ensures that the whole image is filled with the speckle pattern
and that there is no surrounding black area, which would be the same for all responses
and therefore lead to a generally lower FHD. While this does cut off some of the outer
speckle pattern, the square was picked in a way such that this cut off area is as small as
possible. After transforming the response, the binary conversion is executed with 0 as
threshold, such that all values greater or equal 0 will turn into 1 and all values lower into
0. For the calculation of the FHD of a dataset, 300 CRPs are randomly selected, and the
FHDs between each response and all others are calculated.

For the ML attacks, each dataset is randomly split into a training and a test set of
900 and respective 100 CRPs. For the fitting of the linear models, no special amend-
ments were made and the implementation follows the aforementioned general principle
of a multivariate linear regression. The generator is built to take a bitstring as an in-
put, reshape it into a 2-dimensional representation and create a response using several
consecutive transposed convolutions (T-Conv2D). After each convolution, a batch nor-
malization (BN) is run and for the activation function, LeakyReLU with a slope of 0.2
was used. The detailed structure of the layers can be found in table 5.1. The model is
trained with the ADAM optimizer, using the values 𝛼 = 0.002, 𝛽1 = 0.5 and 𝛽2 = 0.999,
and uses a loss function that tries to minimize the MSE and maximize the SSIM. For the
parameters of the SSIM, the common values of 𝛼 = 𝛽 = 𝛾 = 1, 𝐾1 = 0.01 and 𝐾2 = 0.03
were chosen. Using a batch size of 32, each model is trained for 100 epochs, after which
the performance of the predictions with respect to the FHD did not improve any more
for a precision of three decimal places. All hyperparameters were empirically analyzed,
such that the presented set of values leads to the best performances.
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After training the ML models, the metrics will be measured on the predictions of the
models for the test set. The retrievals of the bitstrings are executed in the same way as
for the dataset evaluation. The FHD, PC and SSIM are all calculated between the real
and generated response pairs. The parameters of the SSIM are the same as for the loss
function.

Nr. Layer kernel stride padding parameters

1 T-Conv2D, BN, LeakyReLU 4 2 1 411,648
2 T-Conv2D, BN, LeakyReLU 4 2 1 8,389,632
3 T-Conv2D, BN, LeakyReLU 4 2 1 2,097,664
4 T-Conv2D, BN, LeakyReLU 4 2 1 524,544
5 T-Conv2D, BN, LeakyReLU 4 2 1 131,200
6 T-Conv2D, BN, LeakyReLU 8 4 2 131,136
7 T-Conv2D, Tanh 8 4 2 2,048

11,687,872

Table 5.1.: Structure of the generator for the DL attack.
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6. Results

After following the procedure described in the previous chapter, all datasets have been
generated and evaluated with the defined metrics. One ML model for each approach has
been trained on each dataset in the previously mentioned manner. In the following, the
results of these works will be reported.

For the most important results, a boxplot showing the data will be directly provided.
This plot follows the standard conventions and shows the first and third quartile at the
lower and upper border of the box as well as the median as a line within the box. The
whiskers reach up to the largest (or respective lowest) observed value within 1.5 times
the interquartile range and outliers are depicted with a small circle. All the plots that
are not directly provided can be found in the appendix under A.1 and A.2.

6.1. Analysis of the generated datasets
Fractional Hamming distance

Using the first Gabor transformation, the mean FHD across all datasets lies at
0.424. The individual means move in the interval [0.412, 0.439] and therefore stay about
the same across all datasets. While there are some outliers, there appears to be a trend of
a decreasing mean for an increase in the number of blocks 𝑛. For the individual FHDs of
the pairs within a dataset, around half of the computed values lies in an interval between
around 0.4 and 0.45. However, there is a wide gap between the smallest and the largest
values, which applies in particular to the datasets with a smaller 𝑛. Here, FHDs below
a value of even 0.1 could be observed, with the smallest recorded value at 0.045 for the
type B dataset of size 5 × 5. The values of the lowest FHDs tend to gradually increase
with an increasing 𝑛, but still reach values as low as 0.25, even for the dataset with the
largest 𝑛. In general, the distributions start to gradually shrink, such that the extreme
FHDs approach the mean value with fewer outliers near the lower boundaries and more
outliers near the upper boundaries. The datasets of type B seem to have the widest range
of FHDs, always including most of the largest and most of the smallest FHDs within one
dataset group of challenge size 𝑛. Additionally, datasets of type C always lead to the
best or second best mean FHD within a dataset group of the same size and always score
for a higher mean than the type D alternative. However, note that since the means move
within a very small interval, the differences are only minor. A plot containing all these
values can be found in figure 6.1.

With the second Gabor transformation, the average mean of 0.352 across the
datasets is significantly lower than for the previous transformation. The means for
all datasets again do not stray apart from each other very far and lie in the interval
[0.340, 0.376]. The majority of all individual FHDs lie between the values 0.3 and 0.4.
While there are a few exceptions, in general, all relative relationships that have been
observed for the datasets using the first Gabor transformation are valid in this case as
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6.1. Analysis of the generated datasets

Figure 6.1.: The FHDs of all generated datasets using the first Gabor transformation.

well, i.e. no new consistent observations could be made. The smallest recorded FHD lies
at 0.027.

Shannon entropy

Regarding the entropy of the datasets, the means lie in the interval [2.681, 2.939] with
an average of 2.866. The smallest recorded entropy is 1.491, which is a rather large
step in comparison to the second smallest value that lies at 2.065. This extreme outlier
was found to be the only challenge where only a single bit is activated. This time, the
entropy means do not significantly change with an increase in 𝑛, but similar to the FHD,
the distributions tend to shrink with fewer outliers at the lower boundary. One especially
prominent aspect is that the mean entropy as well as the individual entropies for datasets
of type B are significantly lower than these of all other types, which in turn rather seem
to closely stick together. When leaving out the datasets of type B and instead only
accounting for those of type A, C and D, the mean entropy rises to 2.925. When in turn
only looking at the type B datasets, it drops to 2.690. Also, both previously mentioned
lowest entropies are of a type B dataset, which also accounts for the lowest value within
all groups of datasets with the same 𝑛. The first smallest outlier that does not belong
to a dataset of type B has a value of 2.414. Furthermore, the datasets of type A and D
always take the highest and second highest values of the mean entropy, but are only very
slightly above these of type C. A plot containing all these values can be found in figure
6.2.
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6. Results

Figure 6.2.: The Shannon entropies of all generated datasets.

6.2. Performance of the machine learning attacks
Again following the previously described principles, all datasets were attacked using a LR
and the generator. In the following, the results of these attacks will be reported. Note
that in contrast to the evaluation of the datasets, from the point of a ML attack, the
FHD will be tried to minimize.

6.2.1. Linear regression
Evaluating with the first Gabor transformation, the mean FHDs of all LR attacks
lie in the range [0.179, 0.206], which makes for an average of 0.194. The lowest recorded
FHD across all datasets lies at 0.064, while the largest is at 0.362. Even though this
maximal value is relatively high, the overwhelming majority of all computed FHDs lie
between 0.15 and 0.25. There also seems to be a trend to have a slightly increasing
FHD proportional to 𝑛. The distributions again shrink with an increasing 𝑛, such that
the number of very accurately predicted, but at the same time also the number of very
poorly predicted responses decrease slightly. Even though these differences are rather
small, the predictions of the model become more stable for larger 𝑛. A comparison of
the different dataset types shows that most of the time, datasets of type A as well as
D show the lowest mean FHDs, while type B and C tend to produce the higher FHDs.
Additionally, the distributions of the FHDs of type B are the widest, while for the rest,
no consistent patterns emerge. There are outliers across all datasets that appear rather
random, showing no meaningful pattern. A plot containing all these values can be found
in figure 6.3.

With the second transformation, only a generally lower FHD could be found, similar
to the observations for the evaluation of the datasets. There are no noteworthy consistent
differences compared to the results of the first Gabor transformation.
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6.2. Performance of the machine learning attacks

Figure 6.3.: The FHDs between the real and predicted responses of the linear regression
using the first Gabor transformation.

The mean PCs lie at quite high values between [0.943, 0.965] with a mean of 0.959 and
do not change much between the datasets. The lowest PC was recorded for the 5 × 5
dataset of type B and lies at 0.788, which is a rather large exception, since even the
second lowest computed value of 0.849 is a lot higher. Starting from the 11×11 datasets,
there appears to be a small trend of a decreasing mean PC. Just as for the FHD, the
distributions start so shrink with an increase in 𝑛, though the differences are not as
significant as for the FHD. Also, the distributions of the type B datasets are again most
of the time a lot wider than those of the other ones, especially at the lower boundary.
The mean for these datasets is, starting with the 9 × 9 datasets, always remarkably lower
than for the other types. The datasets of type C show a generally lower PC than the two
others as well, but the differences are not as large as for those of type B.

Lastly, the mean SSIMs stays at a similarly high value as the PC, moving in the
interval [0.973, 0.982] with a mean of 0.977. Therefore, the results vary even less across
the datasets than for the other two metrics before. Even the lowest SSIM of 0.950 is
relatively close to all other computed values, i.e. there are no significant outliers as could
be found for the PC. A general decrease in the mean as well as shrinking distributions
can be found with an increase in 𝑛 as well, even though the differences are much smaller
than before. This time, the highest mean SSIMs can be found for datasets of type B,
while those of type C consistently show the lowest means. Also, in contrast to the other
metrics, the distributions of the type B datasets are not consistently wider than the others
and are instead actually more narrow for the datasets with smaller 𝑛. When zooming in,
there is a pattern of type B datasets showing the highest and the type C datasets the
lowest mean, with the other two alternating in between. However, these differences only
amount to values even less than 0.01. Altogether, with respect to the results of the LR,
the predictions appear to be most stable for the SSIM.
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6. Results

6.2.2. Deep learning
Using the first Gabor transformation, the FHDs show a very clear gradual increase
proportional to 𝑛 that can be found for both the means and the distributions. The
means move in the range [0.093, 0.278], so compared to the linear model, they are better
for the datasets with smaller 𝑛, but are, in turn, worse for those with larger 𝑛. On
average, the mean lies at 0.199. With a lowest value of 0.055 and largest of 0.357 for any
individual FHD, both extremes show only slightly better values than what was found for
the linear model. Also, the distributions here do not widely differ in size for different 𝑛
and are comparable to the distributions of the 15 × 15 datasets of the linear attack. The
relationships between the mean FHDs for the different types are quite similar for varying
𝑛, showing a tendency for type A, C and D to stay very close together and type B to
have a lower mean FHD than all the others. Except for the 13 × 13 datasets, the mean
FHD is constantly highest for type C. The ranges of all distributions vary by only a small
amount, showing no clear patterns. Outliers are rather rare and appear almost always
above the upper boundary. A plot containing all these values can be found in figure 6.4.

Again, the second Gabor transformation shows a constantly lower FHD, but no
other differences.

Similar to the LR, the generator scores a steadily high mean PC, though the decrease
coming along with a larger 𝑛 is a lot more noticeable here, which matches the observations
for the FHD. Again, the results are initially better than they were for the linear attack,
but become worse when 𝑛 increases, and the distributions do not gradually shrink in
range. There are fewer extreme outliers and the lowest recorded PC lies at 0.870, while
the linear model had a few samples where the PCs were below this threshold. Most of the
time, the PC for the type B datasets is slightly higher, but except for this, no patterns
emerge.

In contrast to the other two metrics, compared to the LR, the SSIM is a lot worse for
this DL model in almost all cases and goes as low as a value of 0.904, which is 0.046 below
the lowest value of the linear model. While this may not sound much, this in fact almost
doubles the difference between the largest and smallest SSIMs. Again, there is a very
clear gradual decrease across datasets with increasing 𝑛 and no patterns regarding the
distribution ranges. Also, noticeably higher values for the type B datasets were measured.
However, it is important to note that the SSIM cannot be considered as an independent
measurement for the generator, since it is part of the loss function and therefore biased
by the training process.
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Figure 6.4.: The FHDs between the real and predicted responses of the generator using
the first Gabor transformation.
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After having thoroughly investigated the results of the carried out experiments, these
results will now be interpreted to better understand the reasons why these findings were
made. On this account, first, some general observations on the experimental setup will
be made, before diving deeper into the analysis on the results themselves.

7.1. Applicability of the Gabor transformations
All findings show that the results are not solely dependent on the applied Gabor transfor-
mation, since only the absolute values of the resulting FHDs differ between the first and
second transformation, keeping the relative relationships constant. In general, it seems
that the first transformation is better at actually extracting information of the responses
that are generated by the simulation. This is directly visible from the overall difference in
the FHD of the datasets, where the first transformation consistently creates a higher av-
erage value. Since no other parameters except for the type of the transformation vary, it
is plausible that the second transformation creates less independent bits from a response.
As a matter of course, this also causes seemingly better results for the ML attacks, since
the FHDs between the real and generated responses will on average be smaller if the FHD
between arbitrarily chosen responses is smaller in the first place as well. This does not
mean that the ML models actually perform better, only the metric for the evaluation of
the results is less suitable for the type of responses from the simulation. Due to this fact,
in the following, the focus will lie on the first transformation, since the type of transfor-
mation will be chosen from the point of view of the PUF holder, who will try to increase
the number of independent bits when transforming the responses. However, in general,
all relationships between the FHDs of the datasets and of the ML results are valid for
both types of transformation, which shows that the conclusions do not only depend on
the type of transformation that is used, but are instead influenced by the underlying
responses themselves.

7.2. Distributions of the number of activated bits within a
challenge

As previously mentioned, each bit is equally likely to be activated and therefore each
possible challenge is equally likely to be generated. When neglecting any benefits to the
complexity of the underlying physical system for certain challenge compositions, from the
point of view of security, this would be the most rational decision, since any influence on
the challenge generation may be used by adversaries to facilitate an attacking process.
However, in this case, this has proven not to be the optimal choice for an analysis on
the PUFs complexity, as the uniform distribution of the challenge generation leads to a
significantly higher probability to pick a challenge, for which the number of simultaneously
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activated bits 𝑏𝑎𝑐𝑡 equals half of all bits. This is simply due to the fact that there are
more challenges in general that fall into this category. Essentially, 𝑏𝑎𝑐𝑡 is equivalent to
the famous example of the number of heads after tossing a coin 𝑛 times. 𝑏𝑎𝑐𝑡 therefore
follows a binomial distribution with 𝑛 experiments for 𝑛-bit challenges and a probability
of “success” of 0.5.

Since the number of challenges gradually increases when 𝑏𝑎𝑐𝑡 → 𝑛
2 , the overwhelming

majority of computed challenges were found to revolve around this value. Naturally,
following the law of large numbers, this effect becomes even stronger for larger 𝑛. An
example of the distributions of 𝑏𝑎𝑐𝑡 for the datasets with 𝑛 = 121 blocks clearly shows
this tendency and can be seen in figure 7.1. Note that for type B datasets, the expected
value of the distribution changes to 𝑛

4 , as the maximum value for 𝑏𝑎𝑐𝑡 is cut in half before
the bit vector is generated. On the other hand, the generation of the bit vector for type
C datasets is the same as for type A, except that for all cases where 𝑏𝑎𝑐𝑡 > 𝑛

2 , bits are
deactivated until 𝑏𝑎𝑐𝑡 = 𝑛

2 , which explains the large spike at this value. This occurrence
can in theory be found for type D for challenges with 𝑏𝑎𝑐𝑡 > 2𝑛

3 as well, however, since no
challenges fulfilling this criterion were generated, this does not become apparent in this
example. This is simply due to the fact that the chance of generating such a challenge
in the first place is rather low, especially for larger 𝑛. An investigation on all generated
datasets revealed that starting with 𝑛 = 81, the datasets of type A and D do not show
any differences regarding 𝑏𝑎𝑐𝑡 any more, which, as this was the only difference between
these datasets, makes the approaches practically the same. They only differ due to the
randomness of the challenge sampling, not showing any significant differences imposed
by the restriction of type D.

Altogether, this finding means that the majority of the generated challenges do not
fall into the categories where most of the bits are either activated or deactivated. These
are the edge cases where the simulation seemed to produce unwanted behaviors such as
strongly correlated speckle patterns. All observations that were made and all interpreta-
tions that follow will therefore only refer to the case of a “regular” challenge sampling, as
it would normally be done during the usage of the PUF. Therefore, no extensive state-
ments regarding the behavior of the simulation on certain edge cases can be derived from
the results that were shown.

7.3. Evaluation of the generated datasets

First, the results of the datasets from the simulation will be elaborated on, before further
investigating the results of the ML attacks, as they form the basis for the attacks them-
selves in the first place. For this reason, this part will focus on the previously reported
results and give further insights into why the corresponding observations may have been
made this way.

Note that a large number of CRPs for a lot of different setups were needed for the ML
attacks, so using a simulation greatly reduces the necessary effort and makes it possible
to build a simple interface that allows for cheap modifications on the whole setup and
unrivaled readout stability and precision. Modifying the quality, quantity and positions
of the scatterers of the simulated PUF, as well as varying the challenge application and
the readout setup are a lot easier and cheaper to carry out with a simulation, and at the
same time there is no need to be wary of any unwanted external influences. Furthermore,
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7. Discussion

Figure 7.1.: The distributions of the number of activated bits in the computed challenges
for all 11 × 11 datasets.
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the exact position of each part and the same relative positioning between different read-
outs can be guaranteed with 100% precision, even over an arbitrary number of sessions.
However, as a matter of course, the simulation is not supposed to be a substitution for
a real optical PUF. Obviously, this would defy the whole purpose of moving away from
a binary key to a physical system in the first place and there are better cryptographic
alternatives when working with computer algorithms. However, the simulation is still
worth to take a closer look at and provides significant benefits regarding the reduction of
effort within the scope of this thesis.

Fractional Hamming distance

It appears that even though there is a small trend of a decreasing mean FHD proportional
to 𝑛, the overall influence is rather small and even negligible, especially when taking into
account that in turn, the number of challenges that can be applied to the PUF increases
drastically. Also, the distributions shrink proportionally to 𝑛, so the number of response
pairs with a low FHD gradually decreases. This may lead to the assumption that a
larger 𝑛 should always be preferred, however, one should keep in mind that when picking
random challenge out of a larger challenge space, the chance of getting closely related
challenges (i.e. challenges, where most of the bits are the same) naturally becomes smaller.
Additionally, the chance of retrieving challenges where the number of activated bits is
close to 0 or close to 𝑛, which have been previously identified as bad samples with respect
to the FHD, also decreases with an increasing 𝑛. If one were to exhaustively generate
all CRPs of one PUF, it would be expected that the boundaries of the distributions do
not greatly differ with varying 𝑛. In this thesis, the number of CRPs for one dataset
amounts to only 1000 and those used in the FHD calculation to only 300, which is a
significantly low number with respect to the whole possible output of a PUF. Since 𝑛
is inversely proportional to the amount of light that travels through each block (and
therefore the influence of switching a single bit in the response), for sufficiently large
numbers of CRPs, there will be a lot of almost visually indistinguishable responses for
the datasets with larger 𝑛. Even for the datasets with smaller 𝑛, where the influence
of switching single bits is the largest, there are still response pairs that show a FHD of
below 0.1, which clearly shows that by far not all CRPs can virtually be classified as
independent. So considering all possible CRPs, this will not become better for larger 𝑛
with even less influence of single bits. Only picking a very small subset might mislead to
the assumption that a larger 𝑛 is always better, while there actually is a tradeoff between
the input-output complexity of the PUF and 𝑛.

As further investigations, additional datasets of 1000 CRPs of type A using 25 × 25
as well as 35 × 35 blocks were generated. The computed mean FHDs are 0.400 and
respective 0.363, showing that the trend of a decreasing mean FHD continues beyond
the investigated number of blocks. Of course, this trend will not go on forever and likely
settles at some value. One last additional dataset of 40 × 40 blocks was investigated and
presented a mean FHD of 0.367, which indicates that this settling value is most likely
somewhere close to that of the 35 × 35 blocks dataset, since no decrease could be found
any more.

A comparison of the FHDs of the different types shows patterns that are emerging
from the challenge compositions themselves, though the differences are only minor. The
wider distributions for type B datasets may as well only emerge from the resulting lower
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challenge space, since only allowing every second block to be activated virtually cuts 𝑛 in
half (or half plus one for uneven 𝑛). As stated previously, the smaller 𝑛, the more likely
the chance to pick related challenges or challenges where 𝑏𝑎𝑐𝑡 → 0. One may think that the
restriction of type C to only use half of all blocks reduces the challenge space in the same
manner, however, this is actually not the case. While for type B datasets, only around
half of all blocks are usable, type C datasets allows for all blocks to be activated and
only excludes those configurations, where more than half of the blocks are simultaneously
activated. This still allows for more configurations than actually deactivating half of the
blocks. Another explanation might be that certain parts of the PUF will never be as
extensively illuminated as by the other variants, since no light will enter through specific
blocks of the mask, resulting in a lower overall complexity. However, this hypothesis
would require further analyses on the simulation including a significantly large subset of
all possible CRPs, which would require a tremendous number of computational resources
and was therefore not possible in the scope of this thesis. It is to be expected that across
the whole challenge space, the mean FHD will be slightly better for the restricted datasets,
since the restrictions act as a countermeasure to the previously mentioned problems of
the simulation, but for a subset significantly smaller than the possible challenge space,
the differences are negligible.

To give further insights into the quality of the simulated datasets, two additional
datasets from two different real optical PUFs were investigated. The first PUF uses liq-
uid crystals as scatterers and was provided by an Italian research group1. The challenges
are realized in the same way as in this thesis, using a LCD array of 16 × 20 blocks. The
speckle patterns are images of 200 × 200 pixels, from which a center square of 128 × 128
pixels was cut out for the computation of the FHD as well. This ensures that the num-
ber of bits retrieved from the bit transformation is the same across both setups. The
computed FHDs for the real PUF lie in the interval [0.32, 0.511] with a mean of 0.426
for the first Gabor transformation, which is quite similar to the values computed for
the simulated data with a comparably large number of blocks. Here, the second Gabor
transformation creates very similar values with an interval of [0.315, 0.52] and the mean
0.419, showing that the transformation is a better fit for these speckle patterns than for
the simulated ones.

The second PUF uses spray-painted ZnO nanoparticles as scatterers and was published
as part of the BOOST (Break Our Optical Security Technology) challenge2. This setup
uses a Spacial Light Modulator (SLM) of 80 × 60 blocks, using 963 of these blocks si-
multaneously for a challenge. The SLM does not simply either allow or prohibit light
from travelling, but also modulates the phase of the incoming light differently for each
block. The responses are of the size 801 × 821, where, similar to the simulated datasets,
a circular speckle pattern emerges in the center of the image. For the computation, again
only the center square was used for better comparability. This resulted in FHDs in the
range [0.39, 0.608] and a mean of exactly 0.500 for the first, as well as [0.377, 0.625] and
respective 0.497 for the second transformation. While the mean is clearly higher for this
setup, the ranges are again not that much different from the simulated version. However,
one should be careful in interpreting these direct comparisons due to the very different

1Francesco Riboli (CNR-INO), Sara Nocentini (INRiM, LENS), Giuseppe Emanuele Lio (CNR-INO,
LENS)

2https://security1.win.tue.nl/Id_IoT/, Organizers: Boris Škorić (TU Eindhoven, The Nether-
lands), Teddy Furon (IRISA, France), Slava Voloshynovskiy (Univ. Geneva, Switzerland)
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challenge setups.
All in all, the results show that at least for randomly chosen CRPs in the size regime of

this setup, the FHDs for the simulated data are in a similar range to these of real optical
PUFs. However, no clear statements regarding the difference of the FHDs between the
simulated and real optical PUFs for only edge cases (e.g. almost all/no bits are activated)
or for a significantly larger number of CRPs can be made with the available data.

Shannon entropy

There is an important aspect of the simulation that should be kept in mind when inter-
preting the entropy measurements: First, the speckle patterns that emerge when a lot
of light travels through the system are by far superior in size and brightness compared
to the patterns when only a small amount of light is exposed to the system. Also, with
an increasing size of the speckle pattern, the dark area around it becomes smaller. Both
these phenomena can be seen in figure 7.2. Since the entropy is calculated on the whole
image, this dark area has a large impact on the computed value and results in an overall
smaller entropy. Naturally, if the speckle pattern increases and the dark area decreases
in size, the entropy will increase as well, since there is more information stored in the
picture. Now, since the restriction of type B only allows half of the bits to be activated,
there will on average less light be travelling through the system per CRP, resulting in
on average smaller speckle patterns and therefore a smaller entropy, which explains the
discrepancy found between this type and the others. Also, within the smaller challenge
space, there is a higher chance to produce challenges where only a very small number of
bits is activated, which may be why close to all outliers with an exceptionally low entropy
are from type B datasets. In fact, all of the extreme outliers for the type B dataset of
size 5 × 5 were found to have a significantly low number of activated bits and therefore
only a very subtle speckle pattern. While it is possible that other effects influence these
observations as well, it is highly likely that these two consequences imposed by the re-
striction already have a rather large impact. Again, the different methods with which
the challenges are generated for each type are the reason why this same behavior was not
found for type C datasets. To verify the above assumptions, the entropy was calculated
again, this time following the preprocessing of the calculation for the FHD, i.e. to only
use the center square of 128 × 128 pixels for the evaluation. This type of response will
from now on be referred to as cropped response and is supposed to protect against the
undesired influence of the dark area. The obtained results show exactly what would be
expected: All entropy values greatly increased and the means started to align, moving
within the minuscule interval of [7.618, 7.672]. In general the entropies of the individual
responses do not vary much and revolve around ±0.2 of their mean. In contrast to the
previous evaluation, the type B datasets now actually show a distribution with slightly
higher values than the others, though the differences are very small. This indicates that
the previously mentioned smaller size of speckle patterns that were found for type B
datasets were the reason for the initially lower entropy.

Furthermore, the previously presented datasets from real optical PUFs were investi-
gated regarding their entropies as well. The responses of the PUF from the italian group
scored a greatly higher mean of 11.709 and all values move in a comparably high range
of [11.350, 12.031]. Since the speckle patterns already fill the whole image, the results for
a cropped response are almost the same. For the second PUF, only the entropies for the
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Figure 7.2.: Two speckle patterns for a 9 × 9 blocks dataset, showing the differences in
size and brightness coming along with a varying number of activated bits. 10
bits were activated in the left and 70 bits in the right image.

cropped responses were investigated due to the dark area again decreasing the entropy.
Here, a mean of 6.230 and the range [6.042, 6.519] was found, which is significantly lower
than the first PUF’s and even lower than the simulated PUF’s results.

Hence, it appears that the Shannon entropy of the responses of this simulation is
somewhere between those of real optical PUFs as well. However, the rather large difference
between both optical PUFs already indicates that the entropy measurement does not give
a clear answer regarding the true complexity of the response, since the responses of the
second real optical PUF are not less complicated than those of the first one. Furthermore,
only the pixel values and no spatial information is taken into account, which would
actually be a rather important factor when evaluating speckle patterns. Other entropy
measurements may lead to completely different conclusions. While in general the entropy
evaluation is a non-trivial matter for which no universal solution has been found so far,
some other popular approaches include the NIST Statistical Test Suite [136], Diehard
Tests [137] or TESTU01 [138]. All three methods were designed to measure the quality
of random number generators and perform more complex evaluations than the Shannon
entropy.

Choosing the challenge size and applicability of restrictions

All in all, the differences of the metrics between all datasets are quite small or even
negligible for the number of CRPs that were investigated. As stated a few times, many of
the differences were found to be at least to some point caused by the challenge generation
and do not only emerge from changes in the complexity of the PUF. While it may be
possible that more significant differences start to appear for considerably larger numbers
of CRPs, from the currently available data, no such ideas can be inferred. The only
tendency that already became apparent even for the small number of CRPs was a decrease
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in the mean FHD for larger 𝑛. It would therefore be suggested to choose a reasonably
large challenge space, somewhere in the order of 15 × 15 blocks. This still allows for
2225 ≈ 5.39 · 1067 different challenges without suffering too much from the decreasing
mean FHD. Furthermore, even though it did not become clear from the results of this
thesis, the kind of restrictions of type C and D would still be recommended, since the
responses at some point do become very similar for a large number of activated blocks.
Further analyses that could not be covered so far would be necessary to decide on a fitting
threshold for the allowed number of simultaneously activated bits.

7.4. Evaluation of the machine learning attacks
Now that the observations for the simulation have been elucidated, the focus will switch
towards the results of the ML attacks. There is one important aspect to keep in mind
during the following interpretations: The simulation used in this thesis is completely
deterministic without any type of noise, i.e. for the same challenge, the according response
will in all cases be exactly the same, even across an arbitrary number of measurements.
Therefore, it is rather difficult to define a point at which a ML attack can be viewed as
successful. Pappu et. al. [5] defined a possible candidate for this value as follows: First,
they calculated the distributions of the FHDs between a set of collected CRPs, where the
mean ideally lies at 0.5, i.e. the responses are on average completely decorrelated. Next,
they collected the same set of CRPs again and this time calculated the distributions of
the FHDs between all of the CRPs that used the same challenge, to measure how much
the responses differ between the two measuring sessions. In an ideal scenario, all of these
FHDs would be 0, i.e. the responses are identical for the same challenge. However, due
to external influences such as noise in the system or measuring inaccuracies, this is not
the case, and there are in fact differences between the responses for the same challenge.
This raises the need to define a decision criterion for when two responses are viewed to
originate from the same challenge, which was defined to be at the cross-over value of the
two distributions. In their case, this value was found to be at approximately 0.41. This
value leads itself to be used as the criterion for the ML attack as well, so if the predictions
of the attack are below this threshold, the attack can be classified as successful. However,
since the responses of the simulation will always be identical for the same challenge, this
threshold will always be found to lie at 0. This makes interpreting the computed values
a bit more complex, since all pairs of responses that exceed a FHD of 0 can be regarded
as different, but this would require the ML attacks to be able to perfectly model the
simulation, which is rather difficult to achieve. At the same time, it is no solution to
simply use a threshold found for real optical PUFs for the simulation as well, as ML
attacks in the real case would have to work with noisy data, which can be expected
to decrease the performance compared to data without any noise. Therefore, while the
results of the ML attacks will be further discussed, it will be refrained from classifying
the ML attacks as successful or unsuccessful.

7.4.1. Linear regression
Before diving further into the results of the LR, consider the following analysis: Since
the linear attack works with the bitstrings of the challenges, the number of independent
variables rises accordingly to the increase in 𝑛. However, there is no actual change in
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the underlying scattering system. Only the challenge mask is divided into smaller blocks,
which allows to more precisely adjust the area the incoming light can pass through,
but all properties of the beam, the scatterers and the relative positioning stay constant.
Therefore, it is possible to define a transformation for all challenges of a given 𝑛 into
challenges with larger 𝑛, by simply dividing all blocks into several smaller quadratic
blocks of equal size. If each block is split into 4 smaller blocks, as is depicted in figure
7.3, the resulting challenges will be of the size 4𝑛. This does not raise the need to carry
out any changes on the simulation or to provide any additional information, but still
maintains the same relationship between each CRP. This also quadruples the number of
independent variables used in the regression. The same process can in theory be applied
for the final regression model in a similar way: As previously described, the multivariate
LR model takes the form 𝑌 = 𝑋𝐵 + 𝐸. Here, 𝑋 is a 𝑝 × 𝑛 matrix, such that 𝑝 = 900,
i.e. the number of training CRPs, and 𝑛 corresponds to the number of blocks. Now, for
an arbitrary observation 𝑖 as well as an arbitrary value of the response 𝑌𝑖𝑗 , any variable
𝑋𝑖𝑘 can be split into four variables 𝑋𝑖𝑘1 , 𝑋𝑖𝑘2 , 𝑋𝑖𝑘3 and 𝑋𝑖𝑘4 , which always take the same
value as 𝑋𝑖𝑘. Accordingly, the corresponding coefficient 𝛽𝑘𝑗 can be split into the four
coefficients 𝛽𝑘𝑗1 , 𝛽𝑘𝑗2 , 𝛽𝑘𝑗3 and 𝛽𝑘𝑗4 . To ensure that the results of the models do not
change, the equation 𝑋𝑖𝑘𝛽𝑘𝑗 =

∑︀4
𝑚=1 𝑋𝑖𝑘𝑚𝛽𝑘𝑗𝑚 has to hold, which, since all 𝑋𝑖𝑘 are

binary, can be reduced to 𝛽𝑘𝑗 =
∑︀4

𝑚=1 𝛽𝑘𝑗𝑚 . This can easily be fulfilled, for example by
setting 𝛽𝑘𝑗𝑚 = 1

4𝛽𝑘𝑗 for all 𝑚 = 1, .., 4. By applying this procedure to all variables, it
is possible to create a model that produces equivalent results, while taking four times as
many independent variables. Obviously, the regression will not follow such a pattern as
no similar assumptions are made, but this analysis shows that such a model does exist.
Therefore, if the LR were independent of 𝑛, it should be able to find a similar model that
does not show a difference in the quality of the predicted responses when 𝑛 is increased
in this manner.

Fractional Hamming distance

To better understand the differences in the mean FHDs of the LR, the aforementioned
procedure was applied to all datasets, training a LR model each time. Every attack
showed an increase in the mean FHD after applying the challenge-transformation. While
this was rather low for most of the 5 × 5 datasets (difference of around 0.01), the 7 × 7
datasets already showed a difference of 0.04 and almost all the others showed a difference
of at least 0.05, with many even above 0.1. Since no other variables were influenced
between these attacks, it can be assumed that for these training sizes, at least part of an
increase in the FHD for larger 𝑛 is simply due to the resulting increase in the number
of independent variables used in the regression. Further analyses on this topic as well as
a way to avoid this behavior by modifying the loss function of the LR will be shown in
chapter 8.3.1.

As further investigations, the in chapter 7.3 mentioned additional datasets of sizes
25 × 25 and 35 × 35 were attacked as well, resulting in mean FHDs of 0.264 and 0.257.
While there is another increase in the mean FHD for the first attack, the latter shows
that this increase will not go on forever. This is most likely due to the decrease in
the mean FHD of the datasets themselves, which appears to cancel out the influence
of the previously described effect to some degree. Furthermore, the mean FHDs of the
transformed datasets were compared with the non-transformed datasets where 𝑛 is as
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Figure 7.3.: The concept of the challenge transformation into a larger challenge space.
Here, a 4 × 4 challenge is transformed into an equivalent 8 × 8 challenge.

similar as possible, e.g. the transformed 5 × 5 (𝑛 = 100) and the non-transformed 9 × 9
(𝑛 = 82) dataset. If the increase in the mean FHD were only due to the number of
independent variables, it would be expected that the transformed dataset would show
a higher mean FHD. However, the mean FHDs of the non-transformed datasets are
consistently significantly higher, indicating that there are also other effects taking place.
In summary, the observed trend of an increasing FHD proportional to 𝑛 seems to be
based on a combination of the increase in the number of independent variables, as well
as some additional factors of the datasets.

When comparing the distributions of the FHDs of the datasets with the FHDs of the
LR, one may notice that in both cases the distributions start to shrink with an increasing
𝑛 and that there are some similarities regarding the types as well. This suggests some
correlation which may be explained with the following: The wider distributions of the
datasets mostly affect the lower boundary, i.e. there are more CRPs that are strongly
correlated. This means that there are on average more visually similar responses in the
training sets, which may bias the ML model and increase the tendency towards overfitting.
The over-represented visually similar responses are predicted more accurately, but in
turn, the results on the other responses deterioriate. As 𝑛 grows, the number of closely
correlated responses shrinks and therefore the model’s predictions stabilize.

Lastly, one may think that the generally worse mean FHDs of the predictions for the
type C datasets indicates that the LR has more trouble modeling these. Except for the
5 × 5 and 7 × 7 datasets, this observation holds for the type B datasets as well. However,
there are also noticeable differences between the results for the type A and D datasets,
which, as already shown in 7.2, should show no differences when 𝑛 is larger than for the
9 × 9 datasets. For the 11 × 11 datasets, the difference between the best and worst mean
FHD across all types is 0.012, while the difference between these two virtually equivalent
datasets already amounts to 0.007. This value can only be inferred from the randomness
of the challenge generation. This shows that chance also plays an important role, which,
as the mean FHDs do not vary much more than these values, makes it difficult to draw
precise conclusions. In general though, it can be said that even if there were fundamental
differences between the types that affect the results of the LR, the influence is quite small
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and, depending on the usage, may even be neglected.

PC and SSIM

The PC between the real and predicted responses is at a constantly high level, showing
that there is a strong linear correlation between the images. The repeated decrease of
the mean with an increasing 𝑛 substantiates the assumption that the model’s predictions
gradually become worse, as has been observed for the FHD as well. The differences
found for the predictions after the aforementioned challenge-transformation procedure
produced a similar relative decrease for the PC as was found as an increase for the FHD.
This suggests a relationship between the number of independent variables and 𝑛 with
respect to the variations in the PC, as was found for the FHD before as well.

Again, a trend towards shrinking distributions for larger 𝑛 can be observed, which at
large matches the results of the FHD and may therefore be explained in the same manner.
Even though the distributions of the type B datasets are noticeably wider here as well,
there are still some differences when comparing the results for individual datasets to those
of the FHD. This again shows that there are some significant differences between how
the metrics measure similarity. Especially prominent is the lower correlation for the type
B datasets starting with the 9 × 9 variant, which indicates that the model’s predictions
are slightly worse with respect to the PC. Due to the relatively large distance to all other
types as well as its consistent occurrence, this is unlikely to only emerge from chance.
While one may interpret some patterns in the results for the other types as well, the
differences are so small that they may as well only originate from chance. Altogether,
since the overall range the values are moving in is very small in the first place, it is difficult
to draw clear conclusions from the PC in this case.

The SSIM is at an even higher value than the PC and shows close to no deviations in
the absolute values. The pattern of a higher SSIM for type B and lower SSIM for type
C datasets is rather constant and therefore quite unlikely to be only due to chance, but
the differences are so small that further investigations are rather difficult to carry out.
In any case, even assuming that there is a structural reason for this pattern, due to the
minuscule scale they are moving in, they were deemed to be negligible.

7.4.2. Deep learning

The most prominent observation for the DL attack is probably the clear gradual deteri-
oration of each metric with an increase in 𝑛. A closer look at the setup of the generator
architecture shows that 𝑛 corresponds to the number of input channels of the first trans-
posed convolutional layer. However, the number of output channels of this layer as well
as the number of inputs and outputs of all following layers are fixed, i.e. only the input
into the network varies corresponding to 𝑛.

In general, a two-dimensional (transposed) convolutional layer can be thought of as a
tensor of shape 𝑐′ × 𝑐 × 𝑘𝑤 × 𝑘ℎ, such that 𝑘𝑤 and 𝑘ℎ correspond to the kernel sizes, 𝑐
to the number of inputs and 𝑐′ to the number of output channels. This means that for
each output channel, there is a tensor of shape 𝑐 × 𝑘𝑤 × 𝑘ℎ, which is also called filter,
i.e. a collection of 𝑐 kernels. When carrying out the convolutions, the values of each
output channel are calculated from the corresponding kernels, which operate on all input
channels. So, for each output channel, a convolution is performed on each channel on
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the two-dimensional input using the two-dimensional kernel, summing up all results over
the input channels to again retrieve a two-dimensional tensor for each output channel.
This results in a transformation of a 𝑐 × 𝑤 × ℎ tensor into a 𝑐′ × 𝑤′ × ℎ′ tensor, such that
𝑤, ℎ and 𝑤′, ℎ′ correspond to the sizes of the inputs and outputs. These sizes are also
dependent on the stride and padding of the convolution.

Now, in the case of the generator, the first layer corresponds to a tensor of shape
1028 × 𝑛 × 4 × 4, that receives inputs of shape 𝑛 × 1 × 1 and produces outputs of shape
1028×2×2. It is already clear that while the complexity of the inputs increases by adding
more channels for a larger 𝑛, the output of the layer is of fixed size and does not provide
an accordingly larger complexity to react to the increasing number of input channels.
In other words, the convolution has to gradually operate on more input channels in the
above explained manner, but has to map these a fixed number of output channels. As
was already seen for the LR, it is possible that other circumstances influence the decrease
of the prediction quality as well.

Fractional Hamming distance

In addition to the increase in the means for larger 𝑛, the model constantly produces
the best results with respect to the FHD for the type B datasets. Note that for these
datasets, every other bit and therefore every other input channel will in all cases have
a value of 0. This means that all corresponding kernels of the filter for these channels
will not have any influence on the output of the first layer, since, due to the nature of a
convolution, all results will be 0 as well. This means that no matter how these kernels are
adjusted during backpropagation, they will never influence the output of the layer. This
will, of course, also impact the training process and may even result in the corresponding
kernels being ignored, effectively only considering half of all input channels. This leads
to a smaller complexity on the initial input of the model, which, as previously analysed,
makes the model produce better results. To test this assumption, the model that was
trained on the 11 × 11 dataset of type A was taken as an example. The model first
received regular challenges from the test dataset and afterwards a modification of these
challenges where every usually deactivated bit was instead activated, to compare the
predictions of the corresponding responses. And indeed, the predicted responses for the
regular and modified challenges were almost identical, presenting a FHD of only around
0.006 (PC: 0.999, SSIM: 0.996). If instead only half of the deactivated bits were set to 1,
the FHD shrinks to around 0.0017 (PC: 0.999, SSIM: 0.999) and going even lower quickly
results in completely identical predictions. This clearly shows that, as suspected, the
model actually does learn to almost completely ignore the corresponding input channels.
Lastly, it seems that the model actually does perform a bit worse for the type C datasets,
as this pattern is quite consistent across varying 𝑛 and the three metrics. No external or
unwanted influence was found that could be the cause for this behavior, however, these
differences are most of the time quite small to begin with.

PC and SSIM

All previously analysed relationships for the FHD can mostly be applied to both the PC
and SSIM as well. This indicates that the model’s predictions actually do become worse
and the observation is not only specific to the FHD. However, no further observations
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can be made from these metrics that would give further insights beyond what has already
been found for the FHD.

7.5. Comparison of linear and deep learning attacks

Now, after exploring the results of both ML attacks, there are a few interesting contrasts
that are worth to further elaborate on. Probably the most prominent difference is the
development of the prediction quality with an increase in 𝑛. Even though it was shown
that both approaches do perform worse for larger 𝑛, there is a significant discrepancy
between the degrees of deterioration. When grouping the four types for each challenge
size and taking the mean, the LR starts with a FHD of 0.186 for all 5 × 5 datasets that
increases to 0.201 for the 15×15 datasets. On the other hand, the corresponding means for
the generator go from 0.124 up to 0.253. In other words, while the mean FHD of the LR
increases by only around 8%, the mean of the generator increases by 104%. The LR model
is by far more stable with respect to the mean FHD when 𝑛 increases, while the generator
is a lot more sensitive. This makes the LR a better pick for datasets with a larger 𝑛,
while the generator outperforms for those with smaller 𝑛. This is also supported by the
distributions of the FHDs for the LR, which present significantly more worse predictions
for smaller 𝑛 and only gradually approach the rather stable distributions of the generator.
Also, due to the virtually lower number of usable challenge bits, the generator should be
preferred for datasets of type B with an at most medium-sized 𝑛 (with respect to the in
this thesis investigated size range), as starting with the 13 × 13 datasets, the LR starts
to outclass the generator even for these datasets. For all other datasets, the LR model
should be preferred starting with the 9 × 9 dataset, where it again starts outperforming
the DL model. However, obviously, all of this only holds for this specific kind of linear
and DL model and may be different for other architectures, as will be investigated in the
next chapter.

In practice, when choosing the best ML architecture, this discrepancy between both
approaches greatly outweighs all other observations on the performance that were made.
Nevertheless, an additional aspect should be highlighted as well. Firstly, it was seen
that the LR on average produces slightly worse results for the type B and C datsets.
While for the generator, the type B datasets are biased due to the network ignoring parts
of the challenge, for the type C datasets, this observation can be made as well. Since
this is consistent across most of the dataset sizes and especially across both models, it
seems that the restriction of type C actually makes it more difficult to accurately predict
the responses using these ML attacks. However, these differences are not too large, and
most of the time do not even exceed a deviation in the mean FHD of around 0.01 to
0.02 to the next values for the type A or D dataset. Also, as mentioned in 7.4.1, the
mean FHD of the predictions of the LR for two equivalent datasets (i.e. type A and D)
already differed by up to 0.007, which goes up to even 0.028 on the 13𝑥13 datasets for the
generator. Therefore, even the randomness of the challenge generation can already have
a similarly large influence on the quality of the predictions. And finally, this still assumes
a naive approach on the side of the attacker, where the information that only half of the
bits can be activated is not detected or completely ignored. However, the consistency
of this observation indicates that there are some fundamental differences that emerge
from the restriction of type C, which may be interesting to further investigate in different
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experiments.
Except for these aspects, no other differences that would be worth to further investigate

have been found. Both the PC and the SSIM mostly follow the observations of the FHD
and therefore support the conclusions that could be drawn from this metric. While
there is a considerably large drop in the absolute value of the SSIM from the LR to the
generator, since it is not an independent measurement for the latter model, one should
be careful in interpreting these differences.

All in all, the previous observation that the restrictions do not greatly increase the
complexity of the datasets (within this size regime) also holds after investigating the ML
attacks. On the contrary, the type B restriction even greatly reduced the complexity on
the DL model side, as the restriction was automatically learned by the algorithm without
even giving any further information. Only the type C restriction might be considered to
make the PUF a bit more difficult to model, but the differences are very small and would
first have to be investigated on other setups and for a larger number of CRPs.
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In the following, further experiments on the simulation as well as the ML attacks will
be presented. This includes a new setup for the simulation, modifications of the old ML
attacks, completely new ML models, attacks on real optical PUFs and attacks with a
larger number of CRPs, both for the linear and non-linear approaches.

8.1. New simulation setup
This part introduces an additional simulation setup with changes in a few of the param-
eters that are used. The idea is to double both the length and width of the PUF while
keeping the depth constant. This virtually quadruples the area of the challenge mask and
the responses, and changes the whole PUF’s dimensions from 512𝜇𝑚 × 512𝜇𝑚 × 512𝜇𝑚
to 1024𝜇𝑚 × 1024𝜇𝑚 × 512𝜇𝑚. Likewise, the number of scatterers is roughly quadrupled
as well to fit the resulting larger volume. All other settings are kept constant and the
responses are still recorded with a size of 512 × 512 pixels. An illustration of how the
setup looks like can be found in 8.1. It was observed that this new setup creates more
fine-grained responses, as can be seen in figure 8.2. It was hoped that these changes
increase the complexity by responding to one of the flaws entailed by a larger number of
blocks 𝑛: the absolute size of a block and therefore the amount of light that can travel
through gradually decreases proportional to 𝑛. While this relationship of course does
not change with the new setup, it may still help to increase the influence of flipping
single bits, since the initial area of each block is larger compared to the initial setup.
As an example: When using 4 × 4 blocks with the first setup, each block will be of size
(128𝜇𝑚)2 = 16.384𝑚𝑚2, while the new setup yields blocks of four times the size, i.e.
(256𝜇𝑚)2 = 65.536𝑚𝑚2. Additionally, since the overall area of the speckle pattern and
the total number of scatterers increases, the whole PUF is hoped to become more com-
plex, since a significant amount of new information is introduced to the simulation. For
the evaluation, the same 24 datasets as previously investigated with 1000 CRPs each are
generated and evaluated in the same manner. The new setup will also be simply referred
to as larger simulation.

Even though the apparently more detailed responses may look very promising in terms
of a larger complexity, the evaluation actually showed a decrease in both metrics. For
the first Gabor transformation, the average mean FHD across all datasets falls from
0.424 to 0.414, which is largely influenced by the significantly lower mean FHD for the
datasets with smaller 𝑛, where the lowest mean FHD lies at 0.380 (previous minimum:
0.412). However, the larger 𝑛 becomes, the more these values start to approach the
previous means, i.e. there is a strong tendency to an increasing FHD proportional to 𝑛.
This quickly falls off with the 11 × 11 dataset, where the values for both setups start to
align. However, for the 13 × 13 and 15 × 15 datasets, there is actually still a very small
increase in the mean FHD for all types except B. The distributions of the FHDs are quite
similar and again shrink with an increasing 𝑛. This phenomenon is therefore not specific
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Figure 8.1.: The new setup for the simulated PUF where the length and width are dou-
bled.

Figure 8.2.: Two speckle patterns for a 11 × 11 dataset for the initial simulation setup
(left) and the new setup with doubled lengths and widths (right).
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to the previously generated datasets. Interestingly, the type B datasets seem to produce
significantly worse results with the new setup and most of the time present the lowest
mean FHD, which is especially prominent for the 5 × 5 and 7 × 7 datasets. For the initial
setup, no similar distinction could be found and the type B datasets actually tended to
have one of the higher FHDs. However, for both setups, the type C datasets produce the
highest mean FHDs.

Using the second Gabor transformation, the results become even worse. While
the mean FHD previously fell to 0.352 and therefore already significantly decreased, this
time, the mean FHD on average lies at only 0.284, with the largest value only at 0.295.
However, the same relationships for the types can be seen again. It is highly likely that
the more fine-grained responses are the cause of this deterioration and that the second
Gabor transformation is an even worse fit for the larger simulation than it already was
for the initial one.

Similarly, there is a rather large drop in the mean Shannon entropy from 2.866 to
2.368. In contrast to the FHD, this is not caused by a part of the datasets, but is instead
consistent across all of them, i.e. each mean is about 0.4 to 0.5 lower than for the initial
datasets. All relative relationships still hold, except that the distance of the type B
datasets to the others is a bit lower. However, as already stated in 7.3, the Shannon
entropy is not the best fit for estimating the complexity of a response and one therefore
should be careful with interpreting these values.

In general, the new setup did not show many improvements compared to the initial
setup and instead even produced on average worse results. However, a small increase in
the mean FHDs for larger 𝑛 could be observed. This may indicate that the increase in the
size of the blocks actually does help at some point, where the influence of a single block
starts to become too small for the initial simulation. Altogether, from this evaluation,
the new setup should not be considered as superior, but instead as an alternative that
has its own benefits and downsides compared to the initial one. Again, further investi-
gations regarding special challenge compositions, a significantly larger number of CRPs
and maybe even other types of Gabor transformations or entropy estimations should be
considered to fully understand the potential of this setup.

8.2. Further attacks on simulated data
So far, only the standard datasets have been the subject of the modeling attacks. While
there already were a lot of variations introduced by using different challenge sizes and
restrictions on the challenge compositions, the underlying PUF setup as well as the type
of response did not change at all. In the following, the results of attacks on the previously
introduced larger simulation and on only the cropped responses will be investigated.

8.2.1. Attacks on the new simulation setup
As previously seen in chapter 8.1, the larger simulation should not be regarded as a
simple improvement to the initial one, but instead as a separate type of PUF. Both the
generator and LR were trained on this new type of data, to see how the approaches
perform compared to initial setup. Note that the objective of this section is not to find
the best type of attack on the new data, but instead to see how the already implemented
models perform when they are used on a similar but still somewhat different type of data.
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Therefore, no changes to the models or any hyperparameters were made and both attacks
were carried out in the exact same manner as already explained in chapter 5.

This time, the LR shows a clear gradual decrease in its prediction quality with respect
to the FHD. The best mean FHD was registered at 0.146 (previously: 0.179) for a 5 × 5
and the worst at 0.216 (previously: 0.206) for a 15 × 15 dataset, i.e. compared to the
initial setup, the results are better for smaller, but worse for larger 𝑛. The distributions
follow this pattern of an increasing FHD and again slightly decrease in range quite similar
to how it was investigated before. Instead of a decrease in the number of observations
on both ends of the distribution, only the number of very accurately predicted responses
declines, while the upper boundary of the distribution stays about the same. However,
compared to the attack on the regular dataset, the distributions are generally a bit more
narrow. Most of the time, the model produces the best results for type B and the worst
for type C datasets, with the other two in between. This matches what could be inferred
from the evaluation of this dataset for the four different types.

The PC shows fewer differences to the regular datasets’ results. All mean values move
in a very similar size range of [0.943, 0.965], where the lower values appear starting with
the 11 × 11 dataset, where a small general decrease can be found. This decrease has
already been observed before, but became slightly larger for the new setup. However,
the absolute values of these differences are again quite small in the first place, so the
actual quality with respect to the PC does not differ that much. The distributions are
again a bit more narrow compared to the initial setup, but are still quite similar. The
relationships between the types generally match those found for the FHD, but there is
no consistent large gap between the values of type B and the others for larger 𝑛.

The SSIM also presents a slight decrease in the mean values, but shows no noteworthy
differences to the previous attacks.

The generator shows rather strong differences with respect to the FHD, which is
consistently worse than for the regular datasets. The mean FHDs all increased by values
between roughly 0.05 and 0.1, such that the relative differences on different challenge
sizes and types as well as the gradual increase of the FHD proportional to 𝑛 is still
quite similar, but shifted upwards significantly. This shift becomes even stronger when
𝑛 increases. The new best mean FHD increased from 0.093 to 0.145, both on the type B
dataset of size 5 × 5, and the worst mean FHD from 0.278 to 0.341, previously for type C
of size 15 × 15 and now type C of size 13 × 13. The earlier appearance of the worst mean
FHD is likely only due to chance, since the corresponding dataset of size 15 × 15 shows
a very similar FHD of 0.337 and some variations due to the CRP sampling have already
been observed before. This behavior can be found for the distributions as well, which in
addition seem to follow the tendency to become a bit wider, especially on type B datasets,
i.e. the predictions become more unstable. All previously observed relationships between
the types in general still hold for the new dataset, i.e. the generator performs best on
type B and worst on type C.

Both the PC and SSIM behave in a very similar way, showing a general drop compared
to the previous setup. The same tendency of wider distributions as seen for the FHD can
be found as well, and again, the already identified relationships between types are still
valid.

It became apparent that there are significant differences on how the two approaches
handle the new datasets. The quality of the predictions of the LR does not greatly differ
with respect to the PC and SSIM, but there are noticeable differences on the FHD, which
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acts as the most important of the three metrics. These differences match those that can
be found between the FHDs of the dataset evaluation. Here, a rather large drop in the
FHD for smaller 𝑛, but a slight increase for larger 𝑛 could be observed, which directly
correlates to the increases and decreases in performance of the LR. On the other hand, the
generator shows a significant overall decrease in its predictive abilities. The correlation
with the observations on the datasets can still be found for the DL model as well, since
the deterioration becomes even stronger when 𝑛 increases.

It seems that the new simulation setup can actually be more difficult to model for larger
𝑛, but, at least in the case of the LR, makes it easier when 𝑛 is small. The significantly
worse results of the generator indicate that either the architecture or the hyperparameter
configuration does not quite match the new datasets. Since DL models have a lot more
hyperparameters that can be adjusted and are usually highly sensitive to small changes,
better results can be expected after fine-tuning the model. This indicates that in general,
the linear attack can be better transferred onto new domains, whereas the DL attack is
more sensitive to such changes and might require reconfigurations.

8.2.2. Attacks on cropped responses

As already explained in chapter 5, the speckle pattern of the simulated PUF only emerges
in the center of the response, while the rest is filled with a large dark area. For the
computation of the FHDs, a center square of 128 × 128 pixels is cut out of the response
so as to not distort the value due to the constantly dark parts of the images. While
this does catch the largest part of the relevant area in most cases, due to the varying
sizes and the circular nature of the speckle pattern, it is inevitable that sometimes parts
of the outer pattern are cut off. For this reason, the attacks up to this point have been
applied with the intent to produce the full image, so the models have to predict the whole
response and therefore the whole speckle pattern as well. However, this approach also
forces the models to “predict” the large unused dark area. From the view of an attacker,
this is unnecessary, since only the resulting bitstrings from the Gabor transformation
have to match for the attack to be successful. Therefore, it may be worth to take a look
at whether, and if so, how the performances differ if from the beginning, only the center
square used in the FHD calculation is given to the models. Note that both the PC and
SSIM will be expected to be significantly lower, since the dark area already increases the
correlation and similarity between two responses, without taking the speckle pattern into
account. Therefore, the basis on which these two metrics are computed is completely
different for this new approach, so no comparisons to the previous results will be made.
The FHD, however, directly correlates with the change in performance, since the basis of
computation is still the same.

This new approach was only carried out for the generator, since there is in fact no
difference for the LR models. As previously stated, the actual model that is referred to
by LR is a multivariate linear regression, which, as explained in chapter 3.2, computes a
standard multiple linear regression for each of the dependent variables, i.e. for each pixel
of the response. Here, each of these standard regressions has its own set of regression co-
efficients. Removing a part of the images is therefore equivalent to removing the multiple
linear regression that correspond to these pixels, which does not have any impact on the
computations of the pixels that are left.

To run the new experiments, slight alterations to the previous architecture of the DL
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model from table 5.1 had to be made to match the new images sizes. Two different models
have been tested out on this account: For the first model, simply the first two layers of
the regular model have been removed and the third layer was changed to act as the input
layer. The number of filters of each layer did not change, such that the overall number of
filters is lower, but consistent with the corresponding layers of the initial model. For the
second model, the last two layers were removed, changing the third to last layer into the
output layer. This way, the number of filters are identical for the input and the following
layers, but are cut off into the final output a bit earlier to make up for the missing two
layers. The architecture of both models can be found in table 8.1. The first model will
also be referred to as cropped generator type 1 and the second as cropped generator type
2.

With the first model, there is a clear decrease in the FHD for almost all datasets.
The average mean decreased to 0.189 (previously: 0.199) and the ranges of the means to
[0.082, 0.246] (previously: [0.093, 0.278]). The distributions tend to shrink and simulta-
neously shift downwards across all datasets. Apparently, the DL approach does actually
quite consistently perform better without having to predict the dark area, even if a con-
siderably lower overall number of filters is used. The mean PCs and SSIMs did decrease
as expected and the distributions largely grew in size at the lower boundary. This shows
that there are still a lot of predictions that are not much worse than when predicting
the full response, but also a significant number of predictions that are actually worse
when only observing the “relevant” part. In general, only the absolute mean values and
distributions of all metrics changed, but the relationships between the results for different
challenges sizes and types still hold.

The second model shows even better results, outperforming the previous one on every
dataset and decreasing the average mean FHD to 0.166, with all means in the interval
[0.065, 0.219]. Except for this, there are no noticeable differences to the previous models.
The distributions shrink and shift downwards even more than for the first model, but
all relative relationships again still hold and apparently no other effects are taking place.
Again, the mean PCs and SSIMs are significantly worse than for the initial generator,
but both greatly improved compared to the previous one.

Apparently, the DL attack works significantly better when only the relevant segment of
the response is used and the model does not have to additionally focus on parts that will
not be used for the final response. Investigating how the model performs on the whole
response may be interesting in an experimental setup to draw certain comparisons, but
in a real-world scenario, the adversary will in general only strive to be able to predict the
right binary response to the challenge. Since both new approaches greatly improved the
performance of the DL attack, they should be preferred in all cases. Also, except for more
computational resources that are necessary to run the attacks, there are no downsides in
using the second model over the first one, since this one consistently performs better. All
further analyses will therefore only relate to the performance of the cropped generator
type 2.

Since the LR performs the same on the cropped responses, the new model changes
the relationships between the DL and the LR attacks. Previously, the LR started to
outperform the DL model starting with the 9 × 9 datasets and gradually built up its
advantage with an increase in 𝑛. Now, this advantage only starts with the 11 × 11
datasets and is significantly smaller than for the initial model, even for larger 𝑛. Most of
the time, this decrease in the FHD does not even exceed a value of 0.01. Additionally,
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while the DL attacks show better results for the type B datasets, the LR initially still
outperformed the DL model starting with the 13 × 13 size. This now shifted upwards
to 15 × 15, however, the difference in the FHD between both models here is only 0.002,
so it is practically negligible. Also, the predictions of the DL models are now even more
stable than before, which can be seen in the significantly smaller distributions. This
effect holds on until the 15×15 datasets, where the size of the distributions start to align
for both models. Altogether, the new approach shows that there was still a lot of space
left for improvements on the DL attack side and resulted in a modification of the initial
generator that outperforms the previous one in all aspects. However, note again that this
only accounts for the investigated challenge sizes and number of CRPs.

type 1 type 2
Nr. Layer kernel stride padding parameters parameters

1 T-Conv2D, BN, LeakyReLU 4 2 1 102,912 411,648
2 T-Conv2D, BN, LeakyReLU 4 2 1 524,544 8,389,632
3 T-Conv2D, BN, LeakyReLU 4 2 1 131,200 2,097,664
4 T-Conv2D, BN, LeakyReLU 8 4 2 131,136 2,097,408
5 T-Conv2D, Tanh 8 4 2 2,048 8,192

891,840 13,004,544

Table 8.1.: Structure of the generators for the attacks on the cropped responses.

8.3. New machine learning attacks
Both linear and non-linear attacks seem to have their own advantages and downsides and
should be preferred under different circumstances. At the same time, both approaches
have raised further questions. The LR seems to be rather stable and is not greatly in-
fluenced by 𝑛, but there is still room for optimization that could lead to an even lower
general FHD. On the other hand, while the generator produces good results for a smaller
𝑛, as soon as 𝑛 increases, the prediction quality drops significantly. To further explore if
even better modeling attacks on the simulated PUF are possible, additional experiments
with new approaches were carried out. Note that for each of the following experiments,
both Gabor transformations were applied, but just as for the regular attacks, there was
no noteworthy difference except for a generally lower FHD using the second transfor-
mation. Therefore, all numerical results relate to only the first Gabor transformation.
Furthermore, the focus will be shifted even more towards only the FHD, since both the
PC and SSIM mostly supported the observations that could be made for this metric and
did not introduce any new relevant aspects. On this account, if nothing is explicitly
stated, the PC and SSIM match the results described for the FHD. Lastly, all models
will from now on only be trained on the cropped responses introduced in chapter 8.2.2,
since the approach is equivalent for LR-based models and showed to improve the results
for the DL models.

Note that in the following, only the initial simulation setup defined in chapter 4 will be
subject to the ML attacks. However, all of the following attacks have also been carried out
for the earlier introduced larger simulation setup. Here, the same behavior as previously
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discovered still applies, i.e. there are not many differences on the linear attacks and all
deep learning models generally perform worse, but all relevant relationship still hold.
Therefore, for reasons of simplicity, it will be refrained from explicitly presenting this
data. However, all results can be found in the appendix under A.2.

8.3.1. Ridge regression

Ridge regression (RR) is a modification of the linear regression, where the coefficients
are estimated by an augmented version of OLS, the so called ridge estimator. This adds
a penalty term of the squared value of the magnitude of the coefficients, which is also
referred to as L2 regularization. The loss functions turns into

‖𝑦 − 𝑋𝛽‖2 + 𝜆‖𝛽‖2

and, solving this for 𝛽, the estimator becomes

𝛽𝑟𝑖𝑑𝑔𝑒 = (𝑋T𝑋 + 𝜆𝐼)−1𝑋T𝑦,

where 𝜆 is a positive constant that controls the size of the penalty and 𝐼 is the 𝑘 × 𝑘
identity matrix for 𝑘 coefficients. Effectively, this penalty term forces the coefficients to
shrink towards 0 and is often used to compensate multicollinearity. [139] Obviously, no set
of variables in this setup can actually be multicollinear as there is no correlation between
the states of individual bits in a challenge, but RR may still reduce the complexity of
the model and improve the performance. Additionally, since there is a large number of
independent variables that each have a rather small influence, it may actually be desired
to have coefficients that are closer to zero, especially for the datasets with larger 𝑛.

As already seen in chapter 7.4.1, the LR performs worse when the number of inde-
pendent variables increases. The previously explained challenge transformation, which
transfers a challenge into an equivalent challenge with larger 𝑛, was carried out and used
to transform the training sets for the RR as well. The results show that the RR is not
afflicted by this behavior in the same manner. While there is a tendency to an increase in
FHD as well, the difference is in the order of around 0.0001 in the most extreme case and
therefore completely negligible. Since the only difference between these two regressions is
the L2 regularization, the differences in the magnitudes of the coefficients are most likely
the reason for this observation. An investigation on these magnitudes showed that while
it was not uncommon for the coefficients of the LR to exceed sizes of 1013, the coefficients
of the RR tend to move in a range of [−1, 1]. It is therefore likely that this observed
behavior of the LR directly correlates to the sizes of the coefficients and can therefore be
avoided by instead using the RR to shift these values towards 0.

The RR was run on all datasets with a specific parameter 𝜆 that was empirically
evaluated individually for each dataset. The results were not too different from those of
the LR, showing only minor deviations most of the time. The overall mean FHD fell from
0.195 to 0.192. However, the majority of the smaller deviations and all comparably larger
differences showed an improvement to the LR, which becomes even stronger for larger
𝑛. This would match the observation of increasingly worse results for a larger number
of independent variables using a LR model, which can be avoided via the regularization
term of the RR. Interestingly, increasingly large differences on only the type B datasets
starting with the size 9 × 9 could be found, increasing up to a difference of even 0.03 for
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the size 15 × 15. No such influence could be inferred from the increase in the number of
independent variables, so the RR seems to outperform the LR on these types of datasets,
with an increasing impact for larger 𝑛. The regularization, therefore, seems to help
especially for challenge compositions where bits are permanently deactivated, i.e. where
some independent variables are never used.

Altogether, the RR did not significantly outperform the LR, but showed some minor
improvements for the datasets with larger 𝑛. The regularization seems to increase the
performance, which probably at least partly relates to the finding that a larger number
of independent variables does not deteriorate the results, as seen for the LR. While there
is some additional overhead due to the computation of the 𝜆 parameter, the RR should
be preferred over the LR to improve the prediction quality.

8.3.2. Linear attacks with quadratic dependence

Optical PUFs following the principle of the PUF of Pappu et. al. [5] use a linear scattering
medium. The simulation used in this thesis is no exception; all processes that take place
are completely linear. However, this only applies for the electrical field that emerges
when the light passes through the PUF. Since cameras are only sensitive to intensities, the
phase can be neglected in this case. However, for a given amplitude 𝐸𝑖, the corresponding
intensity is defined as 𝐼𝑖 = |𝐸𝑖|2, so the recorded speckle patterns only hold information
about the absolute values of the electrical field and are therefore actually a quadratic
function of the challenge. Since the responses of the simulation only measure the intensity
as well, this also applies to the simulated data. Rührmair et. al. [6] have elaborated an
analysis on how to turn this into a linear relationship: Assuming the challenges are of
size 𝑛, the intensity at the cell 𝑖 is defined as

𝐼𝑖 = |𝐸𝑖|2 = |
𝑛∑︁

𝑗=1
𝑇𝑖𝑗𝑏𝑗 |2 =

𝑛∑︁
𝑗=1

𝑛∑︁
𝑘=1

𝑇𝑖𝑗𝑇 *
𝑖𝑘𝑏𝑗𝑏𝑘,

where 𝑇𝑖𝑗 ∈ C and 𝑏𝑖𝑗 is a binary variable that indicates whether block 𝑗 of the challenge
mask is turned on or off. By defining a matrix 𝑅𝑖,𝑗·𝑛+𝑘 = 𝑇𝑖𝑗𝑇 *

𝑖𝑘 and the vector 𝛽𝑗·𝑛+𝑘 =
𝑏𝑗𝑏𝑘 of suitable dimensions, the intensity can be written as

𝐼𝑖 =
𝑛2∑︁
𝑙=1

𝑅𝑖𝑙𝛽𝑙,

such that the responses are now linear in 𝛽. [6] In other words: Using this approach, the
initial challenge, a bit vector of size 𝑛 where each bit refers to whether the corresponding
block is turned on or off, is transformed into a new bit vector of size 𝑛2, that consists of all
products of all ordered pairs of the initial bit vector. This, however, is partly redundant,
since there is no need to treat ordered pairs of challenge bits as distinct, as they refer
to the same challenge configuration. By applying the same procedure, but instead only
considering the products of all unordered pairs, the same result can be achieved with
challenges of only size 𝑛(𝑛+1)

2 .
First, this transformation of the challenges was applied to the datasets and used to

train a new LR model, also referred to as QLR. As one would expect, the new attack
shows a general improvement in the quality of the predictions, decreasing the mean FHD

48



8.3. New machine learning attacks

from 0.194 to 0.171, which is especially influenced by two extremes: The mean FHD of
the predictions on all 5 × 5 datasets significantly improved by between 0.08 and 0.1, such
that all of these are now below 0.1. Except for the best DL model of chapter 8.2.2 on
the type B dataset, this by far outperforms all previously investigated models for this
challenge size. The same holds for the type B dataset of size 7 × 7. The other extreme is
the type B version of the 9 × 9 dataset, which, with a mean FHD of 0.295, presents the
highest value that was recorded across all attacks. All other datasets showed a small but
noticeable decrease and shrinking distributions with a small downwards shift. The PC
and SSIM again support these observations.

With these results, one can see that the new linear approach overall performed better,
but the most significant improvement can be seen from the attacks on the datasets with
the lowest 𝑛, i.e. where the least number of independent variables are used. As we have
seen before in chapter 7.4.1, the LR performs worse if the number of independent variables
increases. For the new attack, this number is larger from the beginning and increases
much faster, since a challenge of size 𝑛 is transformed into a new challenge of size 𝑛(𝑛+1)

2 .
It may be that the results are biased to some extent due to the deterioration that comes
along with a larger 𝑛. The extreme outlier of the type B dataset of size 7 × 7 was further
investigated, but no differences in neither the data nor the model that could explain the
large deviation in performance could be found. It appears that some combination of the
challenge size and the collected CRPs makes the approach fail to infer a fitting linear
model when using LR.

Next, the same procedure was applied for a new RR model, referred to as QRR.
Here, some further improvements with respect to the previous QLR could be achieved,
decreasing the mean FHD further to 0.164. The improvements are larger for the datasets
with smaller 𝑛 and gradually decrease when 𝑛 increases. Note that while the development
of these improvements is opposite to what has been observed for the RR on the regular
challenges of chapter 8.3.1, they are not directly comparable due to the different number
of independent variables for each challenge size. As an example: while the dataset of size
5 × 5 of the regular RR creates 25 independent variables, the new approach increases this
number to 325 following the previously mentioned formula. In addition, the outlier that
was previously found using the LR does not appear here any more and instead the results
on this dataset are now similar to those of the others of the same size. This indicates that
the QLR simply failed to infer a fitting model for this dataset, which can be counteracted
by adding the regularization term of the QRR.

This new approach for linear models showed some further improvements in the quality
of the predictions, especially for the datasets with smaller 𝑛. This also introduces a
gradual increase in the mean FHD proportional to 𝑛, similar to how it has been observed
for the DL models before. The approach now even outperforms the initial generator
on almost all occasions, even for type B datasets and those with a small 𝑛, where the
generator performed better than all linear models so far. However, the modified version
of the generator of chapter 8.2.2 still performs better on a few datasets: all datasets of
size 7 × 7, all datasets of type B up to size 11 × 11 and the datasets of type A and C of
size 9 × 9, however, the differences on the last two are rather small. Similar to how it
has already been observed for the initial generator and LR in chapter 7.5, the new linear
approach therefore outperforms the DL approach for larger 𝑛, but now additionally for
the smallest 𝑛 and a few other occasions as well. Needless to say, in terms of prediction
performance, this new approach should be preferred over the regular LR and RR and, as
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has been observed for the regular models as well, preferably using the QRR instead of
QLR.

8.3.3. Advanced generator architecture

As a last new ML attack, the architecture of the generator was altered. While a modified
version has already been introduced in chapter 8.2.2, the underlying architecture did not
greatly differ except for the removal of two layers to fit the new images sizes. On the
contrary, the following DL model, also referred to as advanced generator, was altered on
several locations.

First, the input layer was changed to a fully connected layer, which receives the number
of challenge bits 𝑛 as input and maps these onto 𝑤 · 𝑑2 values, such that the resulting
tensor can be reorganized into the shape (𝑤, 𝑑, 𝑑), which is handed over to a transposed
convolutional layer. Here, 𝑑 refers to the height and width and 𝑐 to the number of channels
of the abstract image representation that is used for the convolutions. These parameters
were empirically chosen to be 𝑑 = 32 and 𝑐 = 20, i.e. each challenge is transformed
into a tensor of shape (20, 32, 32) before any convolutions are carried out. Afterwards,
several transposed convolutional layers follow, alternating between kernels of size 3 × 3
with a stride of 1 and 4 × 4 with a stride of 2. A batch normalization is carried out after
each convolution and LeakyReLU with a slope of 0.2 was chosen as activation function.
Further details can be found in table 8.2. This new type of model was trained on all
datasets for 300 epochs, using a batch size of 16 and the ADAM optimizer with the
values 𝛼 = 0.01, 𝛽1 = 0.8 and 𝛽2 = 0.9. Only the MSE was chosen as loss function.

The mean FHD fell to 0.036 and all means now move in the interval [0.023, 0.066].
Again, a gradual increase in the mean FHD proportional to 𝑛 can be observed. This
time, however, the distributions actually become slightly wider proportional to 𝑛 instead
of more narrow or no changes at all, as has been observed for all models so far. Therefore,
the model performs better and is more stable for smaller 𝑛. Most of the time, the best
performance can be seen on the type B datasets, which becomes even more noticeable for
larger 𝑛, i.e. the gradual deterioration of the mean FHD is not as strong for type B as
for the others. However, no clear pattern regarding type A, C and D can be found and
their results stick very close together consistently.

As can be seen easily, this new model greatly outperforms all previously investigated
models on all the siumlated data. The mean FHD across all datasets decreased by 0.163
and 0.159 compared to the initial generator and LR as well as by 0.130 and 0.128 compared
to the modified generator of chapter 8.2.2 and QRR, which is an unrivaled improvement.
During the development of the architecture, several slightly altered models were tested
as well, and the corresponding results indicated that the fully connected layer has the
largest influence on this major improvement. Neglecting computational resources and
training time, there are no downsides using the new DL model instead of all previously
investigated models. Therefore, for all the in this thesis investigated cases, this approach
should always be preferred to maximize the prediction quality of the attacks.
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Nr. Layer kernel stride padding parameters

1 FCL, Reshape — — — 532,480
2 T-Conv2D, BN, LeakyReLU 3 1 1 46,592
3 T-Conv2D, BN, LeakyReLU 4 2 1 524,544
4 T-Conv2D, BN, LeakyReLU 3 1 1 147,712
5 T-Conv2D, BN, LeakyReLU 4 2 1 131,200
6 T-Conv2D, BN, LeakyReLU 3 1 1 576

1,383,104

Table 8.2.: Structure of the advanced generator for the DL attack.

8.4. Attacks on a real optical PUF
So far, all attacks have only been carried out on the simulated data, which works under
ideal conditions that are not met in the real world. This includes for example shot
noise from the varying number of collected photons, dark noise from the current within
the camera sensor or simple inaccuracies during the measuring process or across several
measuring sessions. As previously explained in chapter 7.4, due to these circumstances,
Pappu et. al [5] defined a threshold for the FHD of 0.41, below which two responses are
regarded as the same response. This value leads itself perfectly to be used as a reference
for when a ML attack can be viewed as successful. However, this is not the case for the
completely deterministic simulation, where no external influences are possible and two
responses from the same challenge will always have a FHD of 0. Since there is no trivial
solution to this, to at least get a feeling on how the ML attacks would relate to real-world
data, the in chapter 7.3 mentioned optical PUF of the Italian research group was attacked
with all applicable ML models that have been introduced so far. The only attack that is
excluded from this is the initial generator, since it acts on images of 512 × 512 pixels, but
the responses of this real optical PUF are only of size 200 × 200 pixels. For this PUF,
following the principle of the cross-over point of the like and unlike distributions of Pappu
et. al. [5], the threshold, for when two responses are regarded as identical due to the noise
of the system, was found to be at around 0.31 using the second Gabor transformation.
The available data amounts to 2000 CRPs, from which 1800 were used for training and
200 for testing. To fit the DL model architectures, only the center square of 128 × 128
pixels is used for both training and evaluation for all attacking approaches. Note that
none of the hyperparameters or architectures of the models was altered, except for RR-
based models, for which the penalty parameter 𝜆 changes, as this parameter is directly
inferred from the used training set. This means that better results could be expected
when the models are fine-tuned for the new dataset, especially the DL models, which
are more sensitive to the hyperparameters. For reasons of simplicity, only the FHD will
be analysed in the following. The FHD here will be computed using the second Gabor
transformation, since the threshold was defined using this transformation as well, and the
previous evaluation of the dataset in chapter 7.3 showed that this transformation creates
a higher FHD on the dataset itself. All results can be seen in table 8.3.

The evaluation shows that all of the linear attacks almost perform identical. The LR
scores a mean FHD of 0.208, RR of 0.207, and 0.206 for both models with the quadratic
challenge approach. While these results follow the previously found trend with respect to
their performance, the differences are so small that they can be seen as negligible. The
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largest FHDs that were recorded follow the same pattern, with the largest FHD across
all datasets at 0.284 for the LR, i.e. all predicted responses lie below the found threshold.

The DL attacks show the same pattern that has already been seen on the simulated
data: The cropped generator of type 2 performs better with a mean FHD of 0.208 than
the one of type 1 with 0.231, but the advanced generator performs significantly better
than the other two with a value of 0.149. Again, the largest recorded FHDs follow this
pattern as well, such that the largest across all three attacks was found for the type 1
cropped generator with a value of 0.298. The FHDs for all other predictions are lower,
i.e. all predicted responses do not exceed the threshold.

It was found that all of the attacks can be regarded as successful on this setup, since the
FHDs for all predicted responses lie below the threshold to identify identical responses.
While there were close to no differences at all for all linear attacks, the differences on
the DL attacks match these that were found for the simulated data, indicating that
there are some differences in performance due to the architectures themselves, and not
only the type of data they are presented with. While the cropped generator of type 1 on
average performs worse, the one of type 2 is on par with the linear attacks. The advanced
generator, however, again outperforms all the other attacks by a rather large amount.

Real optical PUF Mean FHD Max FHD

Linear regression 0.208 0.284
Ridge regression 0.207 0.281
Quadratic Linear regression 0.206 0.277
Quadratic Ridge regression 0.206 0.277

Cropped generator 1 0.231 0.298
Cropped generator 2 0.208 0.284
Advanced generator 0.149 0.204

Table 8.3.: The mean FHDs for the second Gabor transformation of all applicable in-
troduced ML attacks on a real optical PUF. The threshold below which two
responses are regarded as the same lies at 0.31.

8.5. Attacks with a larger number of CRPs
As a last additional investigation, it was decided to examine how much space there is left
for improvements if a significantly larger number of simulated CRPs is used to train the
models. Note that this experiment is supposed to find out how well the simulated PUF
can be modelled, and not to investigate the different types of datasets, which has already
been the subject of the majority of the previous chapters. Therefore, only challenge
compositions without any restrictions, i.e. type A datasets, will be taken into account.
Additionally, due to the vast number of computational resources that would be necessary
to do this for all of the type A datasets, it was decided to only use the first Gabor transfor-
mation and to select only two representatives. As to not use the two extremes regarding
the challenge size, but to still compare datasets with smaller and larger challenge sizes,
the 7 × 7 and 13 × 13 datasets of type A were chosen for this experiment. For each of
these, 10000 CRPs were generated and split into training sets of 9000 as well as test sets
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of 1000 CRPs. All models that have been introduced so far were trained using these two
datasets, keeping all hyperparameters constant, such that only the number of CRPs is
different between the attacks. The only exceptions are again the RR-based models, for
which the penalty parameter 𝜆 was changed. In the following, all analyses will only focus
on the mean FHDs of the results. The percentages for the improvements are calculated
using the relative difference, i.e. an improvement of 100% would be equivalent to a new
FHD of 0. All results can be found in table 8.4.

For the linear attacks, both the standard LR and RR improved only very slightly
on the 7 × 7 dataset by 2%. On the other hand, both variants that use the quadratic
challenge transformation of chapter 8.3.2 significantly improved by 59% and 55%, such
that both now score a mean FHD of 0.075 on the test data. However, for the 13 × 13
dataset, both LR and RR improved noticeably more, showing rates of 13% and 12%,
while QLR and QRR here only improved by 20% and 29%.

Especially noticeable here is the very low improvement of only 2% for the standard
LR and RR on the 7 × 7 dataset, which may even be deemed negligible, especially given
that the amount of data was increased by a factor of 10. It appears that these models
are already close to a threshold at which they will not improve any more, even if more
data is provided. Interestingly, this does not seem to be the case for the 13 × 13 dataset,
where both models improved a lot more and even scored better final results than for the
7 × 7 dataset. For the training with only 1000 CRPs, this was actually the other way
around. It would be possible that the LR and RR have a threshold for improvements on
both datasets, which just happens to be lower for the 13 × 13 variant. In this case, they
would have already been closer to this value for the 7 × 7 dataset with only 1000 CRPs
than for the corresponding set of size 13 × 13, which is why the models seem to improve
differently when more training data is provided. However, with the current data at hand,
it is not possible to give a clear answer to this assumption. To do so, new experiments
with more variations in the number of training samples would be necessary.

The data from the QLR and QRR do not give much space for an assumption of such a
threshold. However, it is quite noticeable that the gap between the mean FHDs for both
datasets greatly changed when increasing the number of CRPs, such that the predictions
for the 7×7 dataset are significantly better than for the 13×13 dataset, while the previous
difference was rather low. Even though there are large differences in the total values on
both datasets, for both attacks on both datasets, the amount of improvement is quite
significant.

The results for the DL attacks are rather straightforward: each model has significantly
improved in performance. For all models, the amount of improvement is higher in both
absolute and relative values for the 13 × 13 dataset, where the initial results were worse
for 1000 CRPs training sets than for the 7×7 dataset. However, the relationship between
both datasets did not change, i.e. the models still perform better on the 7 × 7 variant.
The only exception here is the advanced generator, but this exception is likely only due
to the already immensely low FHD and some differences in the CRPs due to the random
sampling process, and therefore does not show any fundamental differences between the
behaviors on these two datasets. The largest improvements can be found for the second
model of the cropped generator of chapter 8.2.2 and the advanced generator of chapter
8.3.3, such that the former showed the highest decrease in the mean FHD on the 7×7 and
the latter on the 13 × 13 dataset. However, since the advanced generator already scored
a mean FHD as low as 0.026 on the 7 × 7 dataset, there was not too much space left
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for improvements in the first place, which largely influences why the cropped generator
improved more in this case.

Essentially, the results for the DL attacks did not provide any surprises and are in
fact exactly what could be expected. All models have significantly improved with more
training data and those models that have previously already performed better, perform
even better now. The relative order of prediction performance did not change either,
i.e. the initial generator still produces the results with the highest, while the advanced
generator produces those with the lowest mean FHD.

Altogether, there are rather large differences between the linear and DL attacks with
respect to an increase in the number of training CRPs. The standard LR and RR showed
close to no improvement at all and therefore produce the worst results of all attacks for
the new training sets. However, the QLR and QRR did show some improvements, but
there are large differences in the amounts between both datasets. On the other hand,
the DL attacks all significantly improved and previously better models even increased the
gap in performance to the other models.

7 × 7 dataset (type A) FHD (1k CRPs) FHD (10k CRPs) Diff. Improvement

Linear regression 0.184 0.181 0.003 2%
Ridge regression 0.184 0.181 0.003 2%
Quadratic Linear regression 0.181 0.075 0.106 59%
Quadratic Ridge regression 0.168 0.075 0.093 55%

Generator 0.171 0.127 0.044 26%
Cropped generator 1 0.157 0.119 0.038 24%
Cropped generator 2 0.140 0.062 0.078 56%
Advanced generator 0.026 0.017 0.009 35%
13 × 13 dataset (type A)

Linear regression 0.196 0.171 0.025 13%
Ridge regression 0.194 0.171 0.023 12%
Quadratic Linear regression 0.191 0.153 0.038 20%
Quadratic Ridge regression 0.191 0.136 0.055 29%

Generator 0.246 0.177 0.069 28%
Cropped generator 1 0.233 0.150 0.083 36%
Cropped generator 2 0.214 0.090 0.124 58%
Advanced generator 0.046 0.015 0.031 67%

Table 8.4.: A comparison of the mean FHDs of all attacks on the 7×7 and 13×13 datasets
of type A with 1000 and 10000 CRPs. An improvement of 100% is equivalent
to decreasing the FHD to 0.
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In this thesis, several linear and non-linear modeling attacks on integrated optical PUFs
were introduced and investigated. On this account, a simulated version of an integrated
optical PUF based on one of the models defined by Rührmair et. al. [6] was implemented
and used for the generation of multiple datasets that vary in their challenge sizes 𝑛. Dur-
ing the setup of the simulation, it was found that for certain challenges, the corresponding
responses of the simulation showed quite large correlations. This was especially notice-
able for challenges with a large number of activated blocks, since the emerging speckle
pattern turned out to be almost identical with the responses for closely related challenge,
i.e. these, which had most of the blocks activated as well. This led to the introduction
of certain restrictions on the composition of the challenges, such that for each 𝑛, multi-
ple datasets with varying restrictions were generated, also referred to as the type of the
dataset. These restrictions include both the deactivation of fixed bits within the challenge
as well as upper boundaries for the allowed number of simultaneously activated bits.

First, the datasets were investigated using the fractional Hamming distance (FHD) and
Shannon entropy. To get a feeling for how they would compare to real-world setups, these
values were also compared to those of real integrated optical PUFs. Here, it was found
that the datasets show slightly worse values for the FHD than what would be ideal, but
are still on par with one of the investigated real optical PUFs. Next, a linear regression
model (LR) and a convolution-based deep learning model (generator) were used to attack
the simulated PUF using all available datasets, to see whether, and if so how they behave
differently on varying 𝑛 and types. It was found that the LR performs in a quite stable
manner across all datasets, whereas the generator performs significantly better for the
datasets with lower 𝑛, but at the same time significantly worse for those with larger 𝑛.
The types of the datasets did not seem to play a major role in the performance, except
for unexpected side effects which even facilitated the attacking process of the generator
on some datasets.

In the following, an additional simulation setup that increases the size and the number
of scatterers of the PUF was introduced and used to generate the same kinds of datasets as
before. An analysis on these datasets showed that the FHD falls for smaller 𝑛, but slightly
increases for larger 𝑛 compared to the initial setup. The setup can therefore not be seen
as a simple improvement to the initial one, but as a completely separate PUF with its own
advantages and downsides. This new simulation was attacked as well, presenting only
minor differences on the LR, but significantly worse values on the generator. However,
since the generator was not specifically optimized on the new data, this was to some
degree expected, and further adjustments with respect to the new setup would likely lead
to better performances. Additionally, some further minor differences which correlate to
the results that have been found during the dataset analysis could be observed as well
for both models.

The investigations on the effects of different input data led to the idea to examine how
the ML attacks behave on the so-called cropped responses. This term simply refers to
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a cut version of the image of the speckle pattern, where the response was cut in a way
that the whole image is filled with the pattern. Since the initial response only contains
a circular speckle pattern in the center of the image, only this cropped version was used
for the FHD calculation in the first place and thus could also be used for the training of
the models. This experiment was only carried out for the generator, as LR acts on every
pixel distinctly, so removing some of the pixels will not change the results of the others.
Since the generator only works on the initial image sizes, two alterations to the initial
model were suggested, which originated from the removal of different layers of the initial
generator. However, they fundamentally only differed in the number of filters that are
used in each layer of the network. The model with fewer filters was referred to as cropped
generator type 1 and the one with more as cropped generator type 2. It was found that
while both models performed better than the initial generator, the latter showed a much
more significant improvement, even outperforming the LR on some datasets, on which
the initial generator performed worse.

Subsequently, the focus was shifted towards completely new ML attacks. In the course
of this, the ridge regression (RR) was introduced, which adds a penalty term to the
LR to force the coefficients to stay close to a value of 0. However, the RR attacks
only showed some very minor improvements compared to the LR, which may even be
deemed negligible. As a further attempt to enhance the linear models, an algorithm that
transforms the challenges into a quadratic representation, such that they more closely
resemble the actual physical circumstances, was presented. This method has already been
explained in detail by Rührmair et. al. [6]. An additional model for both the LR and
RR was trained using this new approach, which showed quite noticeable improvements
compared to their standard counterparts. On the non-linear attacking side, a new DL
model was implemented, for which parts of the convolutional layers were changed and
a fully connected layer was added. This new generator presented values quite close to
the optimal value and significantly outperformed all of the previous models on all of the
datasets.

After presenting several linear and non-linear ML attacks on the simulated data, it was
investigated how these ML attacks will perform if they are instead used on data from
a real PUF. On this account, the data from the real integrated optical PUF, which has
already been investigated before, was used to train all of the presented models. Due to
several factors that influence the measurement accuracy of this PUF, a threshold for the
FHD was defined until which two responses are regarded as identical. This threshold was
used as the criterion to classify the ML attacks as either successful or unsuccessful. It
could be observed that all of the investigated models did not exceed this value and can
therefore be regarded as successful with respect to this criterion. Furthermore, almost
no differences on the linear attacks were found, while there were rather large differences
on the DL attack side. Here, the cropped generator of type 1 performed worse than the
linear approaches, whereas the one of type 2 scored on a par with these. The newest DL
model, which already outperformed all the others on the simulated data, did so on the
real data as well.

Lastly, the subject switched one more time back to the simulated data, to see how
the model’s performances change if a significantly larger number of CRPs is used during
the training process. Due to the large number of computational resources required, only
two datasets with 10 times the previous number of CRPs were generated. Here, both
standard linear approaches showed only minor improvements, whereas the models that
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use the quadratic challenge transformation improved by a fair amount more. On the
other hand, quite significant increases in performance could be seen for all DL models,
especially for the type 2 cropped generator. However, the newest generator still performs
the best by far, such that the responses could be predicted up to an average FHD of
0.015.

Overall, the investigations of this thesis presented numerous quite interesting differences
between linear and non-linear attacks on integrated optical PUFs. However, at the same
time, many questions are still left unanswered and even further questions have arisen.
One aspect that requires further analyses is the simulation of the optical PUF. The setup
that was presented in this thesis only investigated a very small subset of the possible
output and thus does not give any answers regarding the quality of the whole challenge
space. Furthermore, more thorough research should be done on certain edge cases of the
simulation, in particular the cases where almost all blocks of the challenge mask are either
turned on or off. This has already been identified to strongly influence the complexity
of the outputs, but did not make many differences due to the low number of CRPs used
per simulated dataset. Also, the location of the activated blocks or the influence of single
blocks under varying circumstances have not been investigated. Lastly, the simulation
used a rather straightforward setup and there is still a lot of potential being left for
increasing the complexity by adding further components or by even replacing it with a
completely different implementation.

Not only the simulation, but also the ML attacks left some questions unanswered. To
the best of our current knowledge, no similar comparisons between both linear and non-
linear attacks on optical PUFs have been published so far, so the results in this thesis may
serve as the cornerstone for further investigations on this topic. While it was possible
to explain some of the differences under specific circumstances, for other cases, it is still
unclear why exactly these differences could be found and why one of the DL approaches
could consistently perform better than the linear ones on all investigated datasets of both
simulated and real optical PUFs. Furthermore, it was seen that there are quite large
differences between some of the models when the number of available CRPs is increased,
which raises the questions how many improvements can be expected for which model, and
when a point of saturation is reached. Also, the influence of noise on the performance of
the ML model has only briefly been seen on the attacks on the real optical PUF, but no
further investigations have been conducted. Since real optical PUFs are usually subject
to some kind of noise, the results of the attacks on the simulated data cannot easily be
transferred to a real-world scenario, which also applies the other way around. There are
still multiple questions regarding the impact of noise and especially whether, and if so
how the linear and non-linear approaches handle this influence differently. Last but not
least, from a physical point of view, it may also be interesting to investigate how the
DL models correspond to given physical circumstances. In this thesis, only convolutional
networks were investigated, which handled the PUF itself as a complete black box and
only took the inputs and the outputs into consideration. However, there is still a whole
bandwidth of possible other architectures that could be used, some of which may even
try to actually model the physical processes that take place within the PUF. Broadly
speaking, the structure of the internal processes of an optical PUF leads itself quite well
to be reconstructed using a feedforward neural network. Thus, it might be worth to take
the internal structure of the PUF into consideration as well and not to only take the view
of an outside adversary, i.e. to see if not only the input-output behavior can be modelled,
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9. Conclusion

but also the PUF itself.
Altogether, even though the number of publications in the recent years has been rather

low, there is still a lot of space for further research on the topic of optical PUFs. This
includes both the design of the PUFs themselves as well as adversary attacks on the
system. With the quickly advancing field of ML, new techniques are developed at an
incredibly fast rate, which allows for further investigations on already established attacks
as well as on completely new approaches. We think that the interplay between designing
secure optical PUFs and breaking them with new attacks can lead to further fascinating
findings, which may be used to develop further security systems and further attacking
processes, and, on this account hope, that this thesis will be able to contribute to the
progress in these fields.
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A. Appendix

A.1. Plots of the analysis of the generated datasets
Here, the plots of the metrics for the dataset evaluation that have not been previously
shown are displayed. The FHDs using the second Gabor transformation for the in chapter
6.1 generated datasets can be found in figure A.1. Furthermore, for the in chaper 8.1
introduced larger simulation, the FHDs using the first Gabor transformation can be found
in figure A.2 and these using the second Gabor transformation in figure A.3. Lastly, the
Shannon entropies for this simulation are portrayed in figure A.4.

A.2. Plots of the performance of the machine learning attacks
This part contains several plots which enable the comparison of the machine learning at-
tacks that have been introduced. For the initial simulation, the metrics for the DL attacks
can be found in figure A.5 and these for the linear attacks in figure A.6. Respectively,
the same accounts for the larger simulation in the figures A.7 and A.8.
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A. Appendix

Figure A.1.: The FHDs of all the initially generated datasets using the second Gabor
transformation.

Figure A.2.: The FHDs of all the generated datasets for the larger simulation using the
first Gabor transformation.
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A.2. Plots of the performance of the machine learning attacks

Figure A.3.: The FHDs of all the generated datasets for the larger simulation using the
second Gabor transformation.

Figure A.4.: The Shannon entropies of all the generated datasets for the larger simulation.
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A. Appendix

Figure A.5.: The data for all metric for all DL attacks on the standard simulation of the
PUF.
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A.2. Plots of the performance of the machine learning attacks

Figure A.6.: The data for all metric for all linear attacks on the standard simulation of
the PUF.
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A. Appendix

Figure A.7.: The data for all metric for all DL attacks on the larger simulation of the
PUF.
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A.2. Plots of the performance of the machine learning attacks

Figure A.8.: The data for all metric for all linear attacks on the larger simulation of the
PUF.
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